
23 11

Article 07.4.3
Journal of Integer Sequences, Vol. 10 (2007),2

3

6

1

47

Rational Tree Morphisms and Transducer

Integer Sequences: Definition and Examples

Zoran Šunić 1
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Abstract

The notion of transducer integer sequences is considered through a series of ex-
amples (the chosen examples are related to the Tower of Hanoi problem on 3 pegs).
By definition, transducer integer sequences are integer sequences produced, under a
suitable interpretation, by finite transducers encoding rational tree morphisms (length
and prefix preserving transformations of words that have only finitely many distinct
sections).

1 Introduction

It is known from the work of Allouche, Bétréma, and Shallit (see [1, 2]) that a squarefree
sequence on 6 letters can be obtained by encoding the optimal solution to the standard
Tower of Hanoi problem on 3 pegs by an automaton on six states. Roughly speaking, after
reading the binary representation of the number i as input word, the automaton ends in one
of the 6 states. These states represent the six possible moves between the three pegs; if the
automaton ends in state qxy, this means that the one needs to move the top disk from peg x
to peg y in step i of the optimal solution. The obtained sequence over the 6-letter alphabet
{ qxy | 0 ≤ x, y ≤ 2, x 6= y } is an example of an automatic sequence.

We choose to work with a slightly different type of automata, which under a suitable
interpretation, produce integer sequences in the output. The difference with the above
model, again roughly speaking, is that not only the final state matters, but the output
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depends on every transition step taken during the computation and both the input and the
output words are interpreted as encodings of integers. The integer sequences that can be
obtained this way are called transducer integer sequences. We provide some examples that
illustrate the notion of a transducer integer sequence. The chosen examples are related to
the Tower of Hanoi problem on 3 pegs, but one could certainly provide and study a variety of
different examples. The choice was guided by the need for relatively familiar and appealing
setting that is, at the same time, mathematically challenging and interesting.

In recent years, a very fruitful line of research in group theory has led to the notion of a
self-similar group [20] (also known as automata groups [10] or state closed groups [22]). Many
challenging problems have been solved by using finite automata to encode groups of tree
automorphisms with interesting properties, leading to solutions to outstanding problems. To
name just a few, examples include first Grigorchuk group [9], solving the problem of Milnor on
existence of groups of intermediate growth and the Day-von Neumann problem on existence
of amenable but not elementary amenable groups; the Basilica group [18, 7], providing
an example of amenable but not subexponentially amenable group; Wilson groups [25],
solving the problem of Gromov on existence of groups of non-uniform exponential growth;
the realization of the lamplighter group L2 by an automaton [17], leading to the solution of
the Strong Atiyah Conjecture on L2-Betti numbers [15], and the recent solution to Hubbard’s
twisted rabbit problem in holomorphic dynamics [5]. The geometric language and insight
coming from the interpretation of the action of the automata as tree automorphisms greatly
simplifies the presentation and helps in the understanding of the underlying phenomena,
such as self-similarity, contraction, branching, etc (see [10, 4, 3, 20] for definitions, examples,
and details).

In the current article we use automata in the sense of transducers. As such, they generate
self-similar groups (or semigroups) of tree automorphisms (or endomorphisms). In the same
time, the input and the output words are interpreted as encodings of integers, bringing
the topic closer to the topic of automatic sequences. Thus, it is not surprising that the
concrete examples of transducer integer sequences that are exhibited here all gave high level
of self-similarity and can be defined as limits of certain iterations of sequences.

2 Rational tree morphisms and finite transducers

For k ≥ 2 denote Xk = {0, 1, . . . , k − 1}. The free monoid X∗
k has the structure of a k-ary

rooted tree X∗
k in which the empty word ∅ is the root, the words of length n constitute level

n and each vertex v has k children, namely vx, for x a letter in Xk (see Figure 1 for the
ternary tree). The tree structure imposes order on X∗

k , which is the well known prefix order.
Namely, we say that u ≤ v if u is a vertex on the unique geodesic from ∅ to v in X∗

k , which
is equivalent to saying that u is a prefix of v. A map µ : X∗

k1
→ X∗

k2
is a tree morphism if it

preserves the word length and the prefix relation, i.e

|µ(u)| = |u| and µ(u) ≤ µ(uw),

for all words u and w over Xk1
. In the case when k1 = k2, morphisms are called endomor-

phisms and bijective endomorphisms are called automorphisms.
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Figure 1: Ternary rooted tree

Every tree morphism µ : X∗
k1

→ X∗
k2

can be decomposed as

µ = πµ(µ0, . . . , µk1−1)

where πµ : Xk1
→ Xk2

is a map called the root transformation of µ and µx : X∗
k1

→ X∗
k2

, x
in Xk1

, are tree morphisms called the sections of µ. The root permutation and the sections
of µ are uniquely determined by the recursive relation

µ(xw) = πµ(x)µx(w),

which holds for every letter x and word w over Xk1
. Thus the sections describe the action of

µ on the k1 subtrees hanging below the root in X∗
k1

and the root transformation πµ describes
the action of µ at the root.

The tree morphisms act on the left and the composition is performed from right to left,
yielding the formula

µν = πµ(µ0, . . . , µk1−1)πν(ν0, . . . , νk1−1) = πµπν(µπν(0)ν0, . . . , µπν(k1−1)νk1−1). (1)

The notion of a section of a tree morphism µ : Xk1
→ Xk2

can be recursively extended
to all vertices of the tree X∗

k1
by setting µ∅ = µ and µwx = (µw)x, for w a word over Xk1

and
x a letter in X. A tree morphism is rational if it has only finitely many distinct sections.

A quite efficient way of defining rational tree morphisms is by using finite synchronous
transducers. A finite k1 to k2 synchronous transducer is a 5-tuple A = (Q,Xk1

, Xk2
, τ, π),

where Q is a finite set of states, Xk1
and Xk2

are the input and output alphabets, τ : Q×Xk1
→

Q is a map called the transition map of A, and π : Q×Xk1
→ Xk2

is a map called the output
map of A. Every state q of the finite transducer A defines a tree morphism, also denoted q
by setting qx = τ(q, x), for x ∈ Xk1

, and πq : Xk1
→ Xk2

to be the restriction of π defined
by πq(x) = π(q, x). Thus, for each state q of A we have

q(∅) = ∅ and q(xw) = πq(x)qx(w), (2)

for x a letter in Xk and w a word over Xk. When started at state q, the transducer reads the
first input letter x, produces the first letter of the output according to the transformation πq
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and changes its state to qx. The state qx then handles the rest of the input and output.
The states of a k-ary transducer (transducer in which k1 = k2 = k) define k-ary tree
endomorphisms.

An invertible k-ary transducer is a transducer in which k1 = k2 = k and the transfor-
mation πq is a permutation of Xk, for each state q in Q. The states of an invertible k-ary
transducer define k-ary tree automorphisms.

When k1 ≤ k2 and, for each state q, the vertex transformation πq is injective then every
state of the transducer A is an embedding of the k1-ary tree into the k2-ary tree. We
call such a transducer an injective transducer. When A = (Q,Xk1

, Xk2
, τ, π) is injective

transducer one can define a partial inverse transducer A−1 = (Q−1, Xk2
, Xk1

, τ−1, π−1) in
which Q−1 = {q−1 | q ∈ Q}, and τ−1 : Q−1 × Xk2

→ Q−1 and π−1 : Q−1 × Xk2
→ Xk1

are
partial maps, defined by τ−1(q−1, y) = p−1 and π−1(q−1, y) = x whenever τ(q, x) = p and
π(p, x) = y. For a state q in Q and words u in X∗

k1
and v in X∗

k2
we then have

q(u) = v if and only if q−1(v) = u.

Moreover, the composition q−1q : X∗
k1

→ X∗
k1

is the identity map on X∗
k1

and the composition
qq−1 : q(X∗

k1
) → q(X∗

k1
) is the identity map on the range q(X∗

k1
) of the morphism q in X∗

k2
.

The partial morphism q−1 is not defined at any vertex of X∗
k2

that is not in the range q(X∗
k1

)
of q. For such an input word w, starting at the state q−1, the work of the partial inverse
transducer A−1 stops before reading the whole input word, because not all possible transition
steps are defined. In this sense, the partial inverse transducer may be used to recognize the
range of the injective morphism q. Namely, the transducer A−1 accepts the word w if and
only if it can read it completely, in which case the output word is precisely q−1(w).

The boundary ∂X∗
k of the k-ary tree X∗

k consists of all infinite (to the right) words over
Xk. The boundary has a structure of an ultrametric space homeomorphic to a Cantor set.
The recursive definition (2) applies to both finite and infinite words w. The action of a state
q of a k-ary transducer on the boundary ∂X∗

k is by continuous maps, while the action of an
invertible k-ary transducer is by isometries.

More on relations between rational morphisms of rooted trees and transducers can be
found in [10].

There are two common ways to represent finite k1 to k2 transducers by labeled directed
graphs such as the ones in Figure 2. The graph on the left represents an invertible ternary
transducer. The vertices are the states, each state q is labeled by its corresponding root
transformation (in this case permutation) πq, and the edges labeled by the letters from X3

define the transition function τ (for every q in Q and x in X3 there exists an edge from q
to qx = τ(q, x) labeled by x). The graph on the right represents a non-invertible ternary
transducer. The vertices are the states and for each pair (q, x) in Q×X3 an edge labeled by
x | πq(x) connects q to qx. One can easily switch back and forth between the two formats.
We refer to the second form (the one in which the output is indicated on the edges) as the
Moore diagram of the transducer.

For 0 ≤ i < j ≤ 2, the ternary tree automorphisms aij from the transducer AH are
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Figure 2: An invertible ternary transducer AH and a non-invertible ternary transducer AL

defined recursively by


















aij(∅) = ∅,

aij(iw) = jw,

aij(jw) = iw,

aij(xw) = xaij(w), x 6∈ {i, j},

for a word w over X3. In simple terms, the only effect the transformation aij has on a word
w over X3 is that it changes the very first appearance of either of the symbols i or j in w to
the other symbol, if such an appearance exists. To simplify the notation, we write

a = a01, b = a02, and c = a12.

The state labeled by id does not change any input word and represents the identity auto-
morphism of the ternary tree. It is clear that a, b and c are self-invertible transformations
of X∗

3 , i.e a2 = b2 = c2 = id.
The 3 to 2 tree morphisms defined by the transducer AL are defined recursively by

α(∅) = ∅, α(0w) = 0α(w), α(1w) = 1α(w), α(2w) = 1β(w),

β(∅) = ∅, β(0w) = 1α(w), β(1w) = 1β(w), β(2w) = 0β(w).

Definition 2.1. The semigroup (group) of k-ary tree endomorphisms (automorphisms) gen-
erated by all the states of an (invertible) k-ary transducer A is called the semigroup (group)
of A and is denoted by S(A) (G(A)).

The group G(AH) is introduced in [14], where it is called the Hanoi Towers group on 3
pegs (in fact, one Hanoi Towers group H(k) is introduced for each number of pegs k ≥ 3).
The name is derived from the fact that the group H(3) models the well-known Tower of Hanoi
problem on 3 pegs.

To recall, the Tower of Hanoi problem on 3 pegs and n disks is the following. In a valid
n disk configuration, disks of different size, labeled by 1, 2, . . . , n according to their size, are
placed on three pegs, labeled 0,1 and 2, in such a way that no disk is placed on top of a
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smaller disk. In a single move the top disk from one peg can be moved and placed on top
of another peg, as long as the newly obtained configuration is still valid. Initially all n disks
are placed on peg 0 and the problem asks for an optimal algorithm that moves all disks to
another peg.

Each valid configuration of n disks can be encoded by a word of length n over X3. The
word x1 . . . xn represents the unique valid configuration in which disk i is placed on peg xi.
The ternary tree automorphism aij then represents a move between peg i and peg j (in either
direction). For example the move between peg 0 and peg 2 illustrated in Figure 3 is encoded
by a02(10212) = 12212.

1 3

0 1 2

2
a02

0 1 2

54 42
3 1

5

Figure 3: A move between peg 0 and peg 2

The action of H(3) on the ternary tree is level transitive, meaning that it is transitive on
the levels of the tree. This is equivalent to the statement that any valid configuration on n
disks can be obtained from any other valid configuration on n disks by legal moves.

Consider the stabilizer Pn of the vertex 0n in H(3). The group H(3) acts on the set
H(3)/Pn of left cosets of Pn. The action is described by the corresponding Schreier graph
Γn = Γn(H(3), Pn, S) of Pn with respect to the generating set S = {a, b, c}. The vertices
are the cosets of Pn and there is an edge connecting hPn to shPn for every coset hPn and
generator s in S. Since h′ ∈ hPn if and only if h′(0n) = h(0n) the vertices of the Schreier
graph Γn can be encoded by the vertices of the n-th level of the ternary tree (the coset hPn

is labeled by h(0n)) and two vertices are connected if and only if one is the image of the
other under s, for some generator s in S. The Schreier graph Γ3 corresponding to level 3
of the ternary tree is given in Figure 4. Since all generators have order 2, no directions are
indicated on the edges.

The sequence of graphs {Γn} converges to an infinite graph Γ in the space of pointed
graphs based at 0n (see [16] for definitions of this space), which is the Schreier graph
Γ = Γ(H(3), P, S), where P = ∩∞

n=0Pn is the stabilizer of the infinite ray 0∞ = 000 . . .
on the boundary of the ternary tree. One can think of the limiting graph both as the
Schreier graph of the action of H(3) on the orbit of the infinite ray 0∞ in ∂X∗

3 or as the
model of Tower of Hanoi problem representing all valid configurations that can be reached
from the configuration in which (countably) infinitely many disks are placed on peg 0 (this
configuration corresponds to the infinite word 0∞). We denote this graph by Γ0∞ .

Graphs similar to Γn, modeling the Tower of Hanoi problem are well known in the liter-
ature, but there is a subtle difference. Namely, the difference with the corresponding graphs
in [19] modeling the Tower of Hanoi problem is that the edges in Γ3 are labeled (by the
corresponding tree automorphisms) and our graphs have loops at the corners (corresponding
to situations in which all disks are on one peg and the generator corresponding to a move be-
tween the other two pegs does not change anything), which turn them into 3-regular graphs.
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Figure 4: The Schreier graph of H(3) at level 3

Finite dimensional permutational representations of H(3) based on the action on the levels
of the ternary tree were used in [14] to calculate the spectrum of the graphs Γn as well as
the limiting infinite graph Γ. Among interesting properties of H(3) we mention that it is an
amenable (but not subexponentially amenable), regular branch group over its commutator,
it is not just infinite and its closure in the pro-finite group of ternary tree automorphisms is
finitely constrained. Moreover, H(3) is (up to conjugation) the iterated monodromy group of
the finite rational map z 7→ z2 − 16

27z
, whose Julia set is the Sierpiński gasket. This explains

the fact that the sequence of Schreier graphs {Γ0n} approximates the Sierpiński gasket. For
more information on properties of H(3) we refer the interested reader to [14, 13, 12, 11].

3 Transducer integer sequences

We first recall the well established notion of automatic sequence. The definition that fol-
lows (Definition 3.1) uses one of the equivalent formulations that can be found in [2] (see
Definition 5.1.1 and Theorem 5.2.3).

A k-ary finite automaton with final state output (k ≥ 2) is a 6-tuple A = (Q,Xk, Y, s, τ, π),
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where Q is a finite set, called set of states, Xk = {0, . . . , k − 1} is the input alphabet, Y is a
finite set called the output alphabet, s is an element in Q called the initial state, τ : Q×X → Q
is a map called transition map and π : Q → Y is a map called final state output map. For
every input word w over Xk, the automaton A produces a unique output symbol yw from
Y , defined as the image π(q) of the state q the automaton reaches after it reads the input
word w starting from the initial state s. Thus yw = π(τ(s, w)), where τ : Q × X∗ → Q is
the recursive extension of τ on Q × X∗ defined by τ(q, ∅) = q and τ(q, xu) = τ(τ(q, x), u),
for q a state in Q, x a letter in Xk, and u a word over Xk.

If, for every word w over Xk and every finite sequence 0m of zeros, the output yw is equal
to the output yw0m we say that the automaton A tolerates trailing zeros. An automaton A
that tolerates trailing zeros defines an infinite sequence y0, y1, y2, . . . over the output alphabet
Y , called the final state output sequence of A, as follows. For a natural number i ≥ 0 let
[i]k = i0 . . . im be any base k representation of i with i =

∑m
j=0 ijk

j (thus the least significant
digit is written first and we may have any number of trailing zeros). The term yi in the final
state output sequence is defined as the image π(q) of the state q the automaton reaches after
it reads the input word [i]k starting from the initial state s, i.e.,

yi = π(τ(s, [i]k)).

Automata with final state output can be represented by labeled directed graphs similar
to the ones representing transducers. The only significant difference is that each state q
is labeled by the corresponding output letter π(q) and the initial state is indicated by an
incoming arrow. As an example, consider the ternary automaton A0−2 in Figure 5.

?>=<89:;1
0,1,2

--
a0 ?>=<89:;1

0
oo

2
//

1

TT

�� a1 GFED@ABC-1
0,1,2

rra2

Figure 5: A ternary automaton with final state output A0−2

Definition 3.1. A k-ary automatic sequence is an infinite sequence that can be obtained as
the final state output sequence of some k-ary finite automaton that tolerates trailing zeros.

Note that Theorem 5.2.3 in [2] allows us to choose among several other, seemingly less
restrictive, settings but we selected the one that reads integer representations starting from
the least significant digit and that handles trailing zeros because it parallels what we are
about to see (Definition 3.2) when we switch our attention to transducer integer sequences.

By Cobham’s theorem [8], a sequence over a finite alphabet is a k-ary automatic sequence
if and only if it is an image under a coding of a fixed point of a k-uniform endomorphism.

Given a free monoid X∗ over a finite alphabet X, an endomorphism α : X∗ → X∗ can be
uniquely defined by specifying the images of the letters in X under α. Suppose that, for all
letters x in X, α(x) 6= ∅ and that there exists a letter x in X such that α(x) = xw, where
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w is a non-empty word. Then, for all n ≥ 0, the n-th iterate αn(x) is a proper prefix of
the (n + 1)-th iterate αn+1(x) = α(αn(x)) and the limit lim

n→∞
αn(x) is a well defined infinite

sequence over X. In the particular case when the length of all the words α(x), x ∈ X, is
equal to k, the morphism α is called a k-uniform endomorphism.

The following example provides a cube-free automatic sequence that both illustrates the
concept of automatic sequence and the claim of Cobham’s theorem. In addition, this example
will play a role in our further considerations.

Example 3.1 (Cube-free automatic sequence). Let X = {1,−1} and denote by wα the
infinite binary sequence

wα = lim
n→∞

αn(1) = 11 -1 11 -1 1 -1 -1 11 -1 11 -1 1 -1 -1 11 -1 1 -1 -1 1 -1 -1 . . .

obtained by iteration, starting from 1, of the endomorphism α : X∗ → X∗ given by (compare
to sequence A080846; all sequence references are to The On-Line Encyclopedia of Integer
Sequences [24])

1 7→ 11 -1 -1 7→ 1 -1 -1.

A finite or infinite word w over an alphabet X is cube-free if it does not contain a subword
of the form uuu, where u is a nontrivial finite word over X.

The infinite sequence wα is cube-free. This claim can be easily verified by using the
criterion of Richomme and Wlazinski [21], which only requires checking that

α(11 -1 -11 -11 -1 -11 -1 -111 -111 -11 -111 -1 -1)

is cube-free.
We offer two additional descriptions of wα.
Define a sequence of words w[n] of length 3n by

w[0] = 1,

w[n+1] = w[n]w[n]w
′
[n],

where w′
[n] is obtained from w[n] by changing the middle symbol in w[n] from 1 to -1. The

limit lim
n→∞

w[n] is well defined and is equal to wα.

For an integer i ≥ 0, let (i)k = i0i1 . . . be the sequence of digits in base k representation
of i, where i =

∑∞
j=0 ijk

j (the sequence ends in infinitely many 0’s).
Call a natural number i a 2-before-0 number if the least significant digit in the ternary

representation (i)3 of i that is different from 1 is 2. Otherwise the number is called a 0-
before-2 number. Define an infinite sequence x0, x1, x2, . . . , by

xi =

{

1, if i is a 0-before-2 number

−1, if i is a 2-before-0 number
.

The infinite binary sequence x0, x1, x2, . . . , is equal to wα.
We claim that the infinite sequence wα is a ternary automatic sequence. It can be

obtained as the final state output sequence of the automaton A0−2. Indeed, the only time
the automaton A0−2 produces -1 in the output is if it reaches the state a2, which only happens
if i is a 2-before-0 number.

9
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We define now the notion of a transducer integer sequence.

Definition 3.2. A k1 to k2 transducer integer sequence is a sequence of integers {zi}
∞
i=0 such

that there exists a k1 to k2 transducer A and a state q in A such that, for every i ≥ 0, the
output word q((i)k1

) is the base k2 representation of zi.

Note that, by the above definition, not every transducer defines a transducer integer
sequence, since some attention needs to be paid to trailing zeros. Namely, it is implicit in
the definition that the state q of A maps the cofinal class of 0∞ in ∂X∗

k1
to the cofinal class

of 0∞ in ∂X∗
k2

(the cofinal class of 0∞ is just the set of infinite words ending in 0∞). We
keep our attention only to this class since it is the one describing non-negative integers.

We should perhaps point out that the equivalent formulation of the definition of auto-
matic sequence provided by Theorem 5.2.4 in [2] even more closely parallels our definition
of transducer integer sequence than the one we gave in Definition 3.1.

Example 3.2. Let AT be the ternary transducer in Figure 6. The state labeled by σ0 just

/.-,()*+ 0/1

2/1
//1/0 99

��

σ1

/.-,()*+ 0,1,2/0eeσ0

Figure 6: A ternary transducer AT

rewrites all digits to 0. Clearly,

σ1(1
n0w) = σ1(1

n2w) = 0n10∞

for any word w in the cofinal class of 0∞. Since (0n10∞)3 = 3n the obtained integer sequence
{an}

∞
n=0 is (compare to sequence A038500)

1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, . . . .

By thinking of the powers of 3 as an (infinite) alphabet, this sequence can be thought of as
the fixed point of the iterations starting from 1 of the 3-uniform endomorphism defined by

x 7→ 1, 3x, 1 .

This sequence can also be defined by blocks a[n] of length 3n as

a[0] = 1 a[n+1] = a[n]a
′
[n]a[n],

where a′
[n] is obtained from a[n] by multiplying the middle term by 3.

The next example shows that there exist sequences of integers, and even bounded se-
quences of integers, that are not transducer integer sequences.
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Example 3.3. The sign sequence (see A057427)

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 . . .

is not a transducer integer sequence. Indeed, regardless of the cardinality of the chosen
alphabets Xk1

and Xk2
, the fact that 0∞ must be mapped to 0∞ (this is simply because the

0 term of the sign sequence is 0) implies that the positive number kn
1 represented by 0n10∞

must be mapped either to 0 or to a number of size at least kn
2 , which is greater than 1 for

n ≥ 1. Here one sees in practice the important difference between the work of automata
with final state output and the work of (synchronous) transducers. While the former can
wait for the whole input before deciding on the output the latter must produce output at
every transition step. In the above situation it is impossible for the transducer “to know
in advance” if non-zero digits will be read at some point in the input and this makes it
impossible to provide a correct output (since the correctness of the output crucially depends
on the first digit of the output).

The following proposition provides a necessary condition for an integer sequence to be a
transducer integer sequence.

Proposition 3.1. Let A = (Q,Xk1
, Xk2

, τ, π) be a finite k1 to k2 synchronous transducer,
and let {zi}

∞
i=0 be the transducer integer sequence defined by choosing q in Q as the initial

state. Then the growth of the sequence {zi}
∞
i=0 is at most polynomial. More precisely,

zi < k
|Q|
2 · ilogk1

(k2),

for all i ≥ 0.
In particular, the growth of transducer integer sequences defined by rational tree endo-

morphisms is at most linear.

Proof. We may assume that all states of Q are accessible from q (otherwise we can delete
the unnecessary states and get even tighter upper bound on the growth of {zi}

∞
i=0).

A 0-path (cycle) in the Moore diagram of A is a directed path (cycle) in which each edge
is labeled by 0|∗, where ∗ stands for arbitrary letters from Xk2

. Call such a path (cycle)
nontrivial if at least one edge is labeled by 0|y for some nonzero y in Xk2

. It is clear that A
does not have nontrivial 0-cycles (otherwise some elements in the cofinal class of 0∞ would
be mapped to elements outside this class). Thus, the longest length of a non-trivial 0-path is
|Q| − 1 (any longer path would have to repeat vertices and therefore would contain a cycle).

Therefore if n is the smallest number of digits needed to write i ≥ 0 in base k1, then zi

can be written in base k2 by using no more than n + |Q| − 1 digits. This gives the estimate

zi < k
n+|Q|−1
2 = k

|Q|
2 · kn−1

2 ≤ k
|Q|
2 · k

logk1
(i)

2 = k
|Q|
2 · ilogk1

(k2).

We end the section by considering another example of a transducer integer sequence
(related to the transducer AL).

Let N2 be the set of all non-negative integers whose base 3 representation does not use the
digit 2 (they are listed in sequence A005836). Define a sequence {ℓn}

∞
n=0, called L-sequence

(see sequence A060374), by
ℓn = ℓ−n + ℓ+

n
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where ℓ−n and ℓ+
n are the unique non-negative integers such that ℓ−n , ℓ+

n , ℓ−n + ℓ+
n ∈ N2 and

n = ℓ+
n −ℓ−n (the L−-sequence {ℓ−n }

∞
n=0 is the sequence A060373 and the L+-sequence {ℓ+

n }
∞
n=0

is the sequence A060372)

Theorem 3.2. The L-sequence is a ternary transducer integer sequence. It is generated by
the transducer AL with initial state α.

Proof. In fact, we will prove that in addition to the L-sequence, both the L−-sequence and
the L+-sequence are ternary transducer sequences, and they are generated by the transducers
AL− and AL+ in Figure 7 (in both cases with initial state α). Define the sequences {r−n }

∞
n=0,

/.-,()*+

2/1

))

0/0

��

1/0

CCα /.-,()*+

0/0

ii

1/1

��

2/0

[[ β

AL−

/.-,()*+

2/0

))

0/0

��

1/1

CCα /.-,()*+

0/1

ii

1/0

��

2/0

[[ β

AL+

Figure 7: Ternary transducers AL− and AL+

{r+
n }

∞
n=0, and {rn}

∞
n=0 to be the integer sequences defined by the transducers AL− , AL+ , and

in AL, respectively.
Observe that all three transducers have the same transition function (they only differ in

the output function). The following table contains the information on all three transducers

α β
input 0 1 2 0 1 2 n

AL− 0 0 1 0 1 0 r−n
output AL+ 0 1 0 1 0 0 r+

n

AL 0 1 1 1 1 0 rn

transition α α β α β β

For example, the middle column under α, indicates that when each of the transducers is
in state α and the input digit in n is 1 then the output digit in AL− , AL+ , and AL (and
therefore the corresponding digit in r−n , r+

n , and rn) is 0, 1, and 1, respectively, and each of
the transducers stays in the state α.

Since all three transducers use only the digits 0 and 1 in the output, it is clear that
r−n , r+

n , rn ∈ N2, for all n ≥ 0.
Further, it is easy to see that rn = r−n + r+

n , for all n ≥ 0. Indeed, by checking the entries
in the above table, we see that each output digit in the row corresponding to rn is exactly
the sum of the two output digits in the rows corresponding to r−n and r+

n (there is never a
carryover in the calculation r−n + r+

n = rn).
Next, we see that n + r−n = r+

n , for all n ≥ 0. Note that the state α corresponds to
the case when there is no carryover and the state β corresponds to the case when there is
a carryover of 1 for the next digit. For instance, when the transducers are in state α and
the input digit is 2, then the output digit in r−n is 1, the output digit in r+

n is 0 and the
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transition entry indicates that all three transducers move to the carryover state β (note that
2 + 1 = 3). When the transducers are in the carryover state β and the input digit is 0, then
the output digit in r−n is 0, the output digit in r+

n is 1, and all three transducers move back
to the state α (note that 0 + 0 + 1 = 1; the last 1 in this sum comes from the carryover).
The other 4 cases in the table are just as easy to verify.

Thus the sequences defined by the transducers AL− , AL+ , and AL satisfy the requirements
in the definition of L−-sequence, L+-sequence, and L-sequence, respectively. Let us prove a
triple of sequences that satisfies these requirements is unique.

By way of contradiction, assume that two distinct triples of sequences {h−
n }

∞
n=0, {h

+
n }

∞
n=0,

and {hn}
∞
n=0, as well as {s−n }

∞
n=0, {s

+
n }

∞
n=0, and {sn}

∞
n=0 satisfy the definition. Consider some

n at which these two triples of sequences differ from each other.
Without loss of generality, assume that s−n = h−

n + m, for some non-negative integer m.
Then s+

n = n + s−n = n + h−
n + m = h+

n + m and sn = s−n + s+
n = h−

n + h+
n + 2m = hn + 2m.

Since the triples differ, m must be positive.
Note that there is no carryover in the ternary representation of the additions hn = h−

n +h+
n

and sn = s−n + s+
n (only the digits 0 and 1 are used). This means that the only possible pairs

of digits appearing in the same position in the ternary representations of h−
n and h+

n (as well
as s−n and s+

n ) are (0, 0), (0,1), and (1, 0). Indeed, if the pair (1, 1) appeared, then the digit
2 = 1 + 1 would appear in the ternary representation of the sum hn = h−

n + h+
n .

Let the least significant nonzero digit of m appear in position i and denote this digit by
x. The following table describes all possible pairs of digits in position i for h−

n and h+
n as

well as the corresponding pair of digits for s−n and s+
n , depending on whether x = 1 or x = 2:

x = 1 x = 2
(h−

n , h+
n ) (s−n , s+

n ) (s−n , s+
n )

(0, 0) (1, 1) (2, 2)
(0, 1) (1, 2) (2, 0)
(1, 0) (2, 1) (0, 2)

We see that in each case, either the digit 2 appears in one of the ternary representations of
s−n and s+

n or the pair of digits (1, 1) appears in the same position in s−n and s+
n , none of

which is allowed.
Thus we have a contradiction and there is only one triple of integer sequences satisfying

the definition of L−-sequence, L+-sequence and L-sequence, which then must be the triple
{r−n }

∞
n=0, {r

+
n }

∞
n=0, and {rn}

∞
n=0 defined by the transducers AL− , AL+ , and AL, respectively.

Let {pn}
∞
n=0 be the sequence defined by

p0 = 0, pn =
n−1
∑

i=0

wiai, for n ≥ 1

where the sequence {wn}
∞
n=0 providing the signs is the cube-free sequence generated by the

automaton A0−2 and {an}
∞
n=0 is the transducer integer sequence generated by AT .

Proposition 3.3. The sequence {pn} is equal to the L-sequence.
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Proof. We have p0 = 0 = ℓ0 and, for n a positive integer and w a word over X3,

α(0w + 1) = α(1w) = 1α(w) = 0α(w) + 1 = α(0w) + 1,

α(1n0w + 1) = α(21n−10w) = 11n−11α(w) = 1n0α(w) + 3n = α(1n0w) + 3n,

α(1n2w + 1) = α(21n−12w) = 11n−10β(w) = 1n1β(w) − 3n = α(1n2w) − 3n,

α(2n0w + 1) = α(0n1w) = 0n1α(w) = 10n−11α(w) − 1 = α(2n0w) − 1,

α(2n1w + 1) = α(0n2w) = 0n1β(w) = 10n−11α(w) − 1 = α(2n1w) − 1.

In each case the change in the value of α(i) is exactly wiai, i.e., for all i,

ℓi+1 = α(i + 1) = α(i) + wiai = ℓi + wiai

and therefore the sequence of partial sums {pn} is exactly the L-sequence.

The sequence {ℓn}
∞
n=0 can also be described as a fixed point of an endomorphism over the

alphabet consisting of the elements of N2. The iterations start at 0 and the endomorphism
is given by

0 7→ 0, 1 x 7→ 3x + 1, 3x, 3x + 1, for x ≥ 1.

4 Relation to the Tower of Hanoi problem

In this section we exhibit a connection between the Tower of Hanoi problem, the automatic
cube-free sequence {wn} and the transducer integer sequence {an}.

Define a matrix Kn of size 3n × n, n ≥ 1, with entries in X3 by

K1 =





0
1
2



 , Kn+1 =





Kn 0n

KR
n 1n

Kn 2n



 ,

where the matrix KR
n is obtained from the matrix Kn by flipping Kn along the horizontal

axis, and 0n, 1n and 2n are column vectors with 3n entries equal to 0, 1 and 2, respectively.
Denote the infinite limit matrix lim

n→∞
Kn by K.

For example, the transpose of K3 is given by

KT
3 =





012 210 012 210 012 210 012 210 012
000 111 222 222 111 000 000 111 222
000 000 000 111 111 111 222 222 222





The limiting matrix K is well defined due to the fact that Kn appears as the upper left
corner in Kn+1. By definition, the indexing of the rows of K starts with 0 while the indexing
of the columns starts with 1. For future use, denote the i-th row of K by ki. We will think
of ki as of a right infinite word over X3. Similarly, denote the i-th row of the matrix Kn by
k

(n)
i . We will think of k

(n)
i as a word of length n over X3. Note that, for i ∈ {0, . . . , 3n − 1},

ki = k
(n)
i 0∞, ki+2·3n = k

(n)
i 20∞, and ki+3n = k

(n)
3n−1−i10∞

14



A sequence w0, . . . , wkn−1 of words of length n over Xk is a k-ary Gray code of length n if
all words of length n over Xk appear exactly once in the sequence and any two consecutive
words differ in exactly one position. Note that the 3n rows of the matrix Kn represent a
ternary Gray code of length n.

By interpreting the rows of K as ternary representations of integers, we obtain the se-
quence

0, 1, 2, 5, 4, 3, 6, 7, 8, 17, 16, 15, 12, 13, 14, 11, 10, 9, . . . ,

which is not included in The On-Line Encyclopedia of Integer Sequences (as of December
2006).

We observe that the successive rows in K are obtained from each other by applying the
ternary tree automorphism a at odd steps and c at even steps (the automorphisms a and c
are defined by AH - the transducer generating the Tower of Hanoigroup).

Proposition 4.1. For j ≥ 0, define t2j = (ca)j and t2j+1 = a(ca)j. Then

ki = ti(k0).

Proof. Recall that the result of the action of the rational ternary tree automorphism a on any
ternary word w is that the first occurrence of a letter from {0, 1} in w, if such an occurrence
exists, is replaced by the other letter from that set, while the result of the action of c is that
the first occurrence of a letter from {1, 2} in w, if such an occurrence exists, is replaced by
the other letter from that set. As already observed, this implies that both a and c have order
2. Also, note that a and c change at most one letter in any word.

We will prove by induction on n that ki = ti(k0), for 0 ≤ i ≤ 3n − 1.
Since a(0∞) = 10∞ and c(10∞) = 20∞, the claim is true for i ≤ 2.
Assume that the claim is true for all i ≤ 3n − 1, for some n ≥ 1.
Since the last row in Kn is 2n, we see that k3n−1 = 2n0∞. This row is obtained from the

previous row by applying c in step 3n − 1. In the next step applying a to 2n0∞ produces
2n10∞, which is equal to k3n . We wish to understand the next 3n − 1 steps, starting at the
word 2n10∞, in which c and a are applied alternately. By inductive assumption, starting at
0∞, alternate applications of a and c (3n − 1 total) change the word in the first n positions
from 0n to 2n by going through the 3n words in the rows of Kn. Since both c and a are
self-inverse, starting at 2n10∞, alternate applications of c and a (3n − 1 total) backtrack
the word in the first n positions from 2n back to 0n by going through the 3n words in the
rows of KR

n . Moreover, during this backtracking, no part of the word beyond the position n
is affected. This is simply because neither c nor a change more than 1 letter in any word.
Thus, starting from 0∞, alternate applications of a and c (3n − 1 + 1 + 3n − 1 = 2 · 3n − 1
total) produce the first 2 · 3n rows of K. The last taken step is a and therefore, in the next
step, c takes 0n10∞ to 0n20∞. Alternate applications of a and c then again change the word
in the first n positions from 0n to 2n in 3n − 1 steps by going through the 3n words in the
rows of Kn without affecting any letter beyond position n and eventually producing 2n+10∞

in 2 · 3n − 1 + 1 + 3n − 1 = 3n+1 − 1 steps.

It is clear that the rows of K constitute the whole cofinal class of 0∞. Thus the subgroup
〈a, c〉 acts transitively on this class. Since the order of both a and c is 2 this means that 〈a, c〉
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is the infinite dihedral group D∞. The transitivity of the action of 〈a, c〉 on the cofinal class
of 0∞ is equivalent to the known fact that any valid n disk configuration can be obtained
from any other in a restricted version of Tower of Hanoi problem in which no disk can
move between pegs 0 and 2 (in our terminology, applications of the automorphism b are not
allowed). Figure 8 shows the path taken by (ca)13 from 000 to 222 in Γ3.
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000 200 a 210 c 110 112 a 012 c 022 222

Figure 8: The ternary Gray code path generated by a and c in H(3) at level 3

Order all configurations (words in the cofinal class of 0∞) according to their position in
the matrix K (small configurations correspond to rows with small index). When b is applied
to any configuration ki the obtained configuration b(ki) is either larger or smaller than ki.
Based on this alternative define an infinite sequence {di}

∞
i=0 over X = {1,−1} by

di =

{

1, if b(ki) > ki

−1, if b(ki) < ki

.

Call this sequence the b-direction sequence. Further, define an integer sequence {b̂i}
∞
i=0 by

b̂i = |i − j|/2, where j is the index of the configuration kj = b(ki). Call this sequence the
b-change sequence.

Theorem 4.2. The b-direction sequence is exactly the cube-free automatic sequence {wn}
generated by A0−2 and the b-change sequence is exactly the transducer integer sequence {an}
generated by AT .
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Proof. The proof is by induction on blocks of size 3n.
For n = 1, the b-change sequence is 1, 3, 1 which coincides with the transducer integer

sequence generated by AT , while the b-direction sequence is 1, 1,−1, which coincides with
the cube-free automatic sequence generated by A0−2.

Assume that the b-change sequence {b̂i} and the transducer integer sequence {ai} defined
by AT agree up to index 3n − 1, and that the b-direction sequence {di} and the automatic
sequence {wi} defined by A0−2 agree up to index 3n − 1, for some n ≥ 1.

Note that this implies that for i ∈ {0, . . . , 3n − 1}, i 6= (3n − 1)/2,

b̂i = b̂3n−1−i and di = −d3n−1−i.

This is true simply because both claims are true for the transducer integer sequence {ai}
and the automatic sequence {wi}. Also, note that for the middle term in this block we have

b̂(3n−1)/2 = 3n and d(3n−1)/2 = 1.

Let i ∈ {0, . . . , 3n−1}, i 6= (3n−1)/2. Note that the exception i 6= (3n−1)/2 corresponds

to k
(n)
i = 1n (the middle row of Kn consists entirely of 1’s). Since either 0 or 2 appears in

k
(n)
i we know that the tree automorphism b acts on any ternary word that has k

(n)
i as a

prefix by simply replacing the first occurrence of 0 or 2 in k
(n)
i by the other letter and leaving

everything else unchanged. Therefore,

b(ki+2·3n) = b
(

k
(n)
i 20∞

)

= k
(n)

i+dib̂i

20∞ = ki+dib̂i+2·3n .

This implies that
b̂i+2·3n = b̂i and di+2·3n = di.

Similarly,

b(ki+3n) = b
(

k
(n)
3n−1−i10∞

)

= k
(n)

3n−1−i+d3n
−1−ib̂3n

−1−i

10∞ = k
(n)

3n−1−i−dib̂i

10∞ = ki+dib̂i+3n ,

and this implies that
b̂i+3n = b̂i and di+3n = di.

We now handle the exceptional terms (those are the “middle” terms, i.e., the terms
corresponding to the indices (3n − 1)/2 + 3n and (3n − 1)/2 + 2 · 3n).

Since
b(k(3n−1)/2+2·3n) = b(1n20∞) = b(1n00∞) = k(3n−1)/2

we see that

b̂(3n−1)/2+2·3n = 3n = b̂(3n−1)/2 and d(3n−1)/2+2·3n = −1 = −d(3n−1)/2.

Further,
b(k(3n−1)/2+3n) = b(1n10∞) = 1n+120∞ = k(3n+1−1)/2+2·3n+1 ,

and therefore

b̂(3n−1)/2+3n = 3n+1 = 3 · b̂(3n−1)/2 and d(3n−1)/2+3n = 1 = d(3n−1)/2.
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Thus the block of length 3n+1 of the b-change sequence is obtained by repeating the block
of length 3n three times and then changing the middle term by multiplying it by 3. This
is exactly how the block of length 3n+1 of the sequence {an} is obtained from the block
of length 3n. Similarly, the block of length 3n+1 of the b-direction sequence is obtained by
repeating the block of length 3n three times and then changing the middle term in the third
sub-block of length 3n from 1 to -1. This is exactly how the block of length 3n+1 of the
sequence {wn} is obtained from the block of length 3n.

This completes our induction step.

5 Geodesic configurations in the Tower of Hanoi prob-

lem

Define a matrix Mn of size 2n × n, n ≥ 1, with entries in X2 by

M1 =

[

0
1

]

, Mn+1 =

[

Mn 0n

MR
n 1n

]

,

where the matrix MR
n is obtained from the matrix Mn by flipping Mn along the horizontal

axis, and 0n and 1n are column vectors with 2n entries equal to 0 and 1, respectively. The 2n

rows of the matrix Mn represent a binary Gray code of length n. Denote the infinite limit
matrix lim

n→∞
Mn by M . For future use, denote the i-th row of M by mi and the i-th row of

the matrix Mn by m
(n)
i . We will think of mi as an infinite word and of m

(n)
i as a word of

length n over X2. Note that, for i ∈ {0, . . . , 2n − 1}, mi = m
(n)
i 0∞, mi+2n = m

(n)
2n−1−i10∞.

We observe that the successive rows in M are obtained from each other by applying the
binary tree automorphism f at odd steps and the automorphism g at even steps, where f
and g are given by the invertible transducer AD given in Figure 9. The self-similar group
G(AD) defined by AD and generated by f and g is the infinite dihedral group D∞.

AD : ?>=<89:;()

0,1
-- id GFED@ABC(01)

0

ff

1
xx

f ?>=<89:;()
1

oo
0

qqg
AL2

: ?>=<89:;()

0
--

1

66
λ0

GFED@ABC(01)

1
ss

0
xx

λ1

Figure 9: Two binary invertible transducers: AD and AL2

Proposition 5.1. For j ≥ 0, define s2j = (gf)j and s2j+1 = f(gf)j. Then

mi = si(m0).

Note that the previous result is just a binary analogue of Proposition 4.1 and can also
be proved by a simple inductive argument.

Consider now the transducer in the right half of Figure 6. It is known [17] (see also [23, 6])
that the group G(AL2

) is the lamplighter group L2 which is the wreath product of the cyclic
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group of order 2 (representing a switch) and the infinite cyclic group (representing moves
between consecutive lamps). The realization of the lamplighter group L2 by the transducer
AL2

was used by Grigorchuk and Żuk [17] to calculate the spectrum of the Markov operator
on the Cayley graph of L2, which then lead to the solution of Strong Atiyah Conjecture
in [15].

For i ≥ 0, denote by 〈i〉
(n)
2 the length n binary representative (including leading zeros if

necessary) in which the most significant digits are written first. Define, for i ∈ {0, . . . , 2n−1},

m
(n)
i to be the reversal of the word m

(n)
i (more generally, denote by w the reversal of any

word w).

Proposition 5.2. For i = 0, . . . , 2n − 1,

λ0

(

〈i〉
(n)
2

)

= m
(n)
i .

Proof. We prove, by induction on n, that

λ0

(

〈i〉(n)
2

)

= m
(n)
i and λ1

(

〈i〉(n)
2

)

= m
(n)
2n−1−i,

for 0 ≤ i ≤ 2n − 1.
The claim is correct for n = 1, since λ0(0) = 0 = m

(1)
0 , λ0(1) = 1 = m

(1)
1 , λ1(0) = 1 =

m
(1)
1 , and λ1(1) = 0 = m

(1)
0 .

Assume that the claim is correct for some n ≥ 1.
Then, for 0 ≤ i ≤ 2n − 1,

λ0

(

〈i〉
(n+1)
2

)

= λ0

(

0〈i〉
(n)
2

)

= 0λ0

(

〈i〉
(n)
2

)

= 0m
(n)
i = m

(n)
i 0 = m

(n+1)
i ,

λ1

(

〈i〉
(n+1)
2

)

= λ1

(

0〈i〉
(n)
2

)

= 1λ0

(

〈i〉
(n)
2

)

= 1m
(n)
i = m

(n)
i 1 = m

(n+1)

2n+1−1−i,

while for 2n ≤ i ≤ 2n+1 − 1,

λ0

(

〈i〉(n+1)
2

)

= λ0

(

1〈i − 2n〉(n)
2

)

= 1λ1

(

〈i − 2n〉(n)
2

)

=

= 1m
(n)

2n+1−1−i = m
(n)

2n+1−1−i1 = m
(n+1)
i ,

λ1

(

〈i〉
(n+1)
2

)

= λ1

(

1〈i − 2n〉
(n)
2

)

= 0λ1

(

〈i − 2n〉
(n)
2

)

=

= 0m
(n)

2n+1−1−i = m
(n)

2n+1−1−i0 = m
(n+1)

2n+1−1−i.

We can define a variation on the notion of transducer integer sequences as sequences that
can be obtained from transducers by reading the input starting from the most significant
digit (and interpreting the output as starting from the most significant digit). Call these
sequences SF transducer integer sequences (for significant first). Since the sequence of binary
Gray code words can be obtained by feeding the binary representations of integers, most
significant digit first, into AL2

starting at λ0, we see that the sequence A003188 of integers

0, 1, 3, 2, 6, 7, 5, 4, . . .
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represented by the binary Gray code words is a SF binary transducer integer sequence.
We offer two 2 to 3 transducers each of which generates all the configurations on the

three geodesic paths between the three regular configurations 0n, 1n and 2n in the Schreier
graph Γn modeling the Tower of Hanoi problem on 3 pegs and n disks (a geodesic path
between two vertices is a path of shortest possible length connecting the vertices). Call
such configurations geodesic configurations. The first transducer (see Theorem 5.3) uses the
natural order, while the second one (see Theorem 5.4) uses the order implied by the binary
Gray code.

Theorem 5.3. The 2 to 3 transducer OH in Figure 10 generates the geodesic configurations
in the Tower of Hanoi problem. More precisely, for x, y ∈ {0, 1, 2}, x 6= y, starting at state

qxy, and feeding the length n binary representative 〈i〉
(n)
2 of i (including leading 0’s if needed)

into OH produces the reverse of the length n ternary word representing the unique n disk
configuration at distance i along the geodesic from xn to yn in the n-th level Schreier graph
Γn of Tower of Hanoi group H(3).

OH : /.-,()*+

0/0

''

q01

1/1

ww

/.-,()*+

1/2

��

q020/0

gg

/.-,()*+

1/1

77

q21

0/2

��

/.-,()*+

0/1

yy

q12

1/2

PP

/.-,()*+

0/2

RR

q20
1/0

''/.-,()*+

1/0

gg

q10

0/1

99

Figure 10: A 2 to 3 transducer generating geodesic configurations

Proof. For any permutation x, y, z of the three letters in X3 the states of the transducer OH

have (as tree morphisms) the decomposition

qxy = πxy(qxz, qzy),

where πxy : X2 → X3 is the map defined by πxy(0) = x and πxy(1) = y.
It is well known that the unique way to solve the Tower of Hanoi problem in which n,

n ≥ 1, disks are moved from peg x to peg y in 2n − 1 steps can be recursively described as
follows. First, in 2n−1 − 1 steps move the top n − 1 disks from peg x to peg z (the third
available peg). Then, in step number 2n−1, move the largest disk from peg x to peg y. Then,
in 2n−1−1 steps, move the n−1 smallest disks from peg z to peg y. Observe that the largest
disk is moved only once, in the middle step (step number 2n−1).
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Employing the encoding of configurations by words over X3, we see that the unique
geodesic path of length 2n − 1 from xn to yn connects xn to zn−1x in the first 2n−1 − 1 steps,
then in the next step it connects zn−1x to zn−1y, and in the last 2n−1 − 1 steps it connects
zn−1y to yn.

Since the largest disk is moved only once, the last digit in the configurations on the
geodesic from xn to yn is equal to x in the first 2n−1 configurations along the way, and it is
equal to y in the last 2n−1 configurations.

Thus, if we denote by ξ
(n)
xy (i) the reversal of the word over X3 representing the vertex at

distance i from xn along the geodesic between xn and yn in Γn, we have, for n ≥ 2,

ξ(n)
xy (i) =

{

xξ
(n−1)
xz (i), 0 ≤ i ≤ 2n−1 − 1

yξ
(n−1)
zy (i − 2n−1), 2n−1 ≤ i ≤ 2n − 1

.

We can now easily prove that

qxy

(

〈i〉
(n)
2

)

= ξ(n)
xy (i),

by using induction on n.
Since qxy(0) = πxy(0) = x = ξ

(1)
xy (0) and qxy(1) = πxy(1) = y = ξ

(1)
xy (1), the claim is true

for n = 1.
Assume that the claim is true for all integers smaller than some n, n ≥ 2.
Then, for 0 ≤ i ≤ 2n−1 − 1,

qxy

(

〈i〉
(n)
2

)

= qxy

(

0〈i〉
(n−1)
2

)

= πxy(0)qxz

(

〈i〉
(n−1)
2

)

= xξ(n−1)
xz (i) = ξ(n)

xy (i)

and, for 0 ≤ i ≤ 2n−1 − 1,

qxy

(

〈i〉
(n)
2

)

= qxy

(

1〈i − 2n−1〉
(n−1)
2

)

=

= πxy(1)qzy

(

〈i − 2n−1〉
(n−1)
2

)

= yξ(n−1)
zy (i − 2n−1) = ξ(n)

xy (i).

Theorem 5.4. The 2 to 3 transducer O′
H in Figure 11 generates the geodesic configurations

in the Tower of Hanoi problem. More precisely, for x, y ∈ {0, 1, 2}, x 6= y, starting at state

txy, and feeding the reversal m
(n)
i of the length n row i binary Gray code word from Mn

into O′
H produces the reverse of the length n ternary word representing the unique n disk

configuration at distance i along the geodesic from xn to yn in the n-th level Schreier graph
Γn of the Tower of Hanoi group H(3).

Proof. Observe that, for any permutation x, y, z of the three letters in X3 the states of the
transducer O′

H have (as tree morphisms) the decomposition

txy = πxy(txz, tyz),

where πxy : X2 → X3 is the map defined by πxy(0) = x and πxy(1) = y.
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O′
H : /.-,()*+

1/1 77

0/0

��

t01 /.-,()*+
1/2 77

0/1

��

t12 /.-,()*+

1/0

ww

0/2

��

t20

/.-,()*+

1/2

77

0/0

FF

t02 /.-,()*+1/0ww

0/1

FF

t10
/.-,()*+1/1ww

0/2

FF

t21

Figure 11: A 2 to 3 transducer generating geodesic configurations

If we preserve the notation from the proof of Theorem 5.3, we have, for n ≥ 2,

ξ(n)
xy (i) =

{

xξ
(n−1)
xz (i), 0 ≤ i ≤ 2n−1 − 1

yξ
(n−1)
yz (2n − 1 − i), 2n−1 ≤ i ≤ 2n − 1

.

The reason that this formula is correct for 2n−1 ≤ i ≤ 2n − 1 is simply that vertices that are
distance i from xn along the geodesic between xn and yn are distance 2n − 1 − i from yn.

One can then use induction on n just as in the proof of Theorem 5.3. The only small
difference is in the inductive step for 0 ≤ i ≤ 2n−1 − 1, which now reads

txy

(

m
(n)
i

)

= txy

(

m
(n−1)

2n−1−1−i1
)

= txy

(

1m
(n−1)

2n−1−1−i

)

=

= πxy(1)tyz

(

m
(n−1)

2n−1−1−i

)

= yξ(n−1)
yz (2n−1 − 1 − i) = ξ(n)

xy (i).

Observe that the X∗
2 → X∗

3 tree morphism defined by the state qxy in the transducer
OH is just the composition of the binary tree automorphism X∗

2 → X∗
2 defined by the state

λ0 with the X∗
2 → X∗

3 tree morphism defined by the state txy in the transducer O′
H (recall

that λ0 translates from reversals of binary representations to reversals of Gray code words
and the state txy in O′

H translates from reversals of Gray code words to reversals of geodesic
configurations between xn and yn). This observation could be used to prove only one of the
two theorems above and then claim the result in the other as a simple corollary.

The transducer OH , started at q01, generates the sequence A055661

0, 1, 7, 8, 17, 15, 12, 13, . . . ,

but only when all input words are adjusted by leading zeros to have odd length, and it gives
the sequence

0, 2, 5, 4, 22, 21, 24, 26, . . . ,

which does not appear in The On-Line Encyclopedia of Integer Sequences (as of December
2006), when the input words are adjusted to have even length. In fact, the former sequence
records the integers whose ternary representations give the configurations in the Tower of
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Hanoi problem on the geodesic line in the infinite Schreier graph Γ0∞ (recall the definition of
the limiting graph Γ0∞ in Section 2) determined by applying repeatedly the automorphisms
a, b and c (in that order) and the latter records the integers whose ternary representations
give the configurations on the geodesic line in Γ0∞ determined by applying repeatedly the
automorphisms b, a and c (in that order). There is nothing strange in this split, since it
is known that the optimal solution transferring disks from peg 0 to peg 1 follows different
paths depending on the parity of the number of disks. Namely, for odd number of disks, the
optimal way to transfer the disks from peg 0 to peg 1 is to apply repeatedly the ternary tree
automorphisms a, b and c (in that order), and for even number of disks, the optimal way is
to apply repeatedly the ternary tree automorphisms b, a and c (in that order).

By flipping the input and the output symbol in the transducers OH and O′
H we obtain

the partial inverse transducers O−1
H and O′−1

H that can be used to recognize the geodesic
configurations in the Tower of Hanoi problem and encode them either by using binary rep-
resentations or by Gray code words.

Corollary 5.5. The 3 to 2 transducer O−1
H in Figure 12 obtained by inversion from the 2

to 3 transducer OH , recognizes the geodesic configurations in the Tower of Hanoi problem.
More precisely, starting at the inverse state q−1

xy , x, y ∈ X3, x 6= y, and feeding ternary words

of length n into the inverse transducer O′−1
H , only reversals of ternary words representing the

configurations on the geodesic from xn to yn in Γn are read entirely by the transducer and,
for such configurations, the output represents reversals of the binary representation of the
distance to xn.

Corollary 5.6. The 3 to 2 transducer O′−1
H obtained by inversion from the 2 to 3 transducer

O′
H , recognizes the geodesic configurations in the Tower of Hanoi problem. More precisely,

starting at the inverse state t−1
xy , x, y ∈ X3, x 6= y, and feeding ternary words of length n into

the inverse transducer O−1
H , only reversals of ternary words representing configurations on the

geodesic from xn to yn in Γn are read entirely by the transducer and, for such configurations,
the reversal of the corresponding binary Gray code word of length n is produced in the output.

For example, the configuration 10021 is not a geodesic configuration between 00000 and
11111. This follows from the fact that the reversal word 12001 is not accepted by O−1

H

starting from the state q−1
01 (the reading stops in state q−1

20 after reading the first 4 symbols
and the transducer cannot read the last symbol).

On the other hand, starting from the state q−1
01 the word 12002 is read completely and

it produces the output 10110, which says that the configuration 20021 is on the geodesic
between 00000 and 11111 and its distance to 00000 is 24 + 22 + 21 = 22. If we read 12002
starting from state q−1

10 we obtain the output 01001, which confirms that the configuration
20021 is on the geodesic between 11111 and 00000 and that its distance to 11111 is 23+20 = 9
(note that 22 + 9 = 31 = 25 − 1, which is the distance between 00000 and 11111).
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O−1
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Figure 12: A 3 to 2 transducer recognizing geodesic configurations
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