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Abstract

Wilf stated that the Lagrange inversion formula (LIF) is a remarkable tool for
solving certain kinds of functional equations, and at its best it can give explicit formulas
where other approaches run into stone walls. Here we present the LIF combinatorially
in the form of lattice paths, and apply it to the divisibility property of the coefficients
of a formal power series expansion. For the LIF, the coefficients are in a commutative
ring with identity. As for divisibility, we require the coefficients to be in a principal
ideal domain.

1 Introduction

Wilf [10] stated that the Lagrange inversion formula (LIF) is a remarkable tool for solving
certain kinds of functional equations, and at its best it can give explicit formulas where
other approaches run into stone walls. Here we present the LIF combinatorially in the form
of lattice paths and apply it to the divisibility property of the coefficients of formal power
series expansion. For the LIF the coefficients are in a commutative ring with identity. As for
divisibility, we require the coefficients to be in a principal ideal domain (PID).

We consider those weighted lattice paths in the Cartesian plane beginning at (0, 0) and
proceeding with weighted steps from S = {w−m = (1,−m), m = −1, 0, 1, 2, ...}, where wi

represents the step and also the weight. We normalize the weight by setting w1 = 1 and let
w(y) =

∑

i≤1 wiy
i be the weight generating function. Let p(x) = x(w(x−1)) =

∑

wix
1−i =

1+w0x+w−1x
2+w−2x

3+... be the weight formal power series. The weight of a lattice path

1Author’s current address: 2103 Opal Ridge, Vista, CA 92081, USA.
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is the product of the weights of the steps. Let A(n, k) be the set of all weighted lattice paths
ending at the point (n, k) (the terminal point) and for k > 0, let B(n, k) ⊂ A(n, k) denote
the set of paths that stay above the x-axis except the initial point. Let an,k = w(A(n, k))
be the sum of the weights of all paths in A(n, k) and bn,k = w(B(n, k)) be the sum of the
weights of all paths in B(n, k). Note that the generating function of the nth row of (an,k) is
w(y)n, i.e., an,k = [yk](w(y))n =

∑

i≤1 wian−1,(k−1)+1−i, where the summation represents the
partition of the paths in A(n, k) by the positions preceding to the last step. Similarly we
can write bn,k =

∑

i≤1 wibn−1,(k−1)+1−i, for k > 0.
In combinatorics the weights are non-negative integers, and an,k count the number of

colored paths.

2 Some Examples

Example 1. w1 = w−1 = 1 and wi = 0, otherwise. Then w(y) = y + y−1 = y(1 +
y−2), p(x) = 1 + x2 and an,k =

(

2m+k

m

)

is the binomial coefficient, where n = 2m + k. Some
entries of (an,k) and (bn,k) are as follows:

(an,k) →

































n\k −2 −1 0 1 2 3 4 5 6 7 8
0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0
2 1 0 2 0 1 0 0 0 0 0 0
3 0 3 0 3 0 1 0 0 0 0 0
4 4 0 6 0 4 0 1 0 0 0 0
5 0 10 0 10 0 5 0 1 0 0 0
6 15 0 20 0 15 0 6 0 1 0 0
7 0 35 0 35 0 21 0 7 0 1 0
8 56 0 70 0 56 0 28 0 8 0 1

































,

(bn,k) →

































n\k 0 1 2 3 4 5 6 7 8
0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0
3 0 1 0 1 0 0 0 0 0
4 0 0 2 0 1 0 0 0 0
5 0 2 0 3 0 1 0 0 0
6 0 0 5 0 4 0 1 0 0
7 0 5 0 9 0 5 0 1 0
8 0 0 14 0 14 0 6 0 1

































.

Example 2. wi = 1 for i = 1, 0,−1 and 0, otherwise. In this example w(y) = y+1+y−1 =
y(1 + y−1 + y−2), p(x) = 1 + x + x2 and (an,k) are the trinomial coefficients. Some entries of
(an,k) and (bn,k) are as follows:
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(an,k) →

























n\k −2 −1 0 1 2 3 4 5 6
0 0 0 1 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
2 1 2 3 2 1 0 0 0 0
3 3 6 7 6 3 1 0 0 0
4 10 16 19 16 10 4 1 0 0
5 30 45 51 45 30 15 5 1 0
6 90 126 141 126 90 50 21 6 1

























.

The generating function of row 5 is w(y)5 = (y(1+ y−1 + y−2) )5 = y−5 +5y−4 +15y−3 +
30y−2 + 45y−1 + 51 + 45y + 30y2 + 15y3 + 5y4 + y5,

(bn,k) →





























n\k 0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 2 2 1 0 0 0 0
4 0 4 5 3 1 0 0 0
5 0 9 12 9 4 1 0 0
6 0 21 30 25 14 5 1 0
7 0 51 76 69 44 20 6 1





























.

Example 3. w1 = 1, w0 = 3, w−1 = 2 and 0 otherwise. In this example w(y) =
y + 3 + 2y−1 = y( 1 + 3y−1 + 2y−2) and p(x) = 1 + 3x + 2x2. Some entries of (an,k) and
(bn,k) are as follows:

(an,k) →





















n\k −2 −1 0 1 2 3 4 5
0 0 0 1 0 0 0 0 0
1 0 2 3 1 0 0 0 0
2 4 12 13 6 1 0 0 0
3 36 66 63 33 9 1 0 0
4 248 360 321 180 62 12 1 0
5 1560 1970 1683 985 390 100 15 1





















.

The generating function of row 4 is w(y)4 = (y +3+2y−1)4 = 16y−4 +96y−3 +248y−2 +
360y−1 + 321 + 180y + 62y2 + 12y3 + y4,

(bn,k) →





























n\k 0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 3 1 0 0 0 0 0
3 0 11 6 1 0 0 0 0
4 0 45 31 9 1 0 0 0
5 0 197 156 60 12 1 0 0
6 0 903 785 360 98 15 1 0
7 0 4279 3978 2061 684 145 18 1





























.
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Note that (bn,1) is the Schröder sequence of the first kind.

Example 4. Let wi = 2− i for i ≤ 1. Then w(y) = y(1 + 2y−1 + 3y−2 + 4y−3 + ...) and
some entries of (an,k) and (bn,k) are as follows:

(an,k) →





























n\k −2 −1 0 1 2 3
0 0 0 1 0 0 0
1 4 3 2 1 0 0
2 35 20 10 4 1 0
3 252 126 56 21 6 1
4 1716 792 330 120 36 8
5 11440 5005 2002 715 220 55
6 75582 31824 12376 4368 1365 364
7 497420 203490 77520 27132 8568 2380





























.

The generating function of row 4 is w(y)4 with coefficients the same as p(x)4 = ( 1
(1−x)2

)4 =

1 + 8x + 36x2 + 120x3 + 330x4 + 792x5 + 1716x6 + 3432x7 + 6435x8 + O (x9) ,

(bn,k) →





























n\k 0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 2 1 0 0 0 0 0
3 0 7 4 1 0 0 0 0
4 0 30 18 6 1 0 0 0
5 0 143 88 33 8 1 0 0
6 0 838 455 182 52 10 1 0
7 0 4096 2558 1020 320 75 12 1





























.

Example 5. Let w1 = 1 and wi = 2 for i ≤ 0. Then w(y) = y(1 + 2y0 + 2y−1 + 2y−2 +
... + 2y−n + ...) and p(x) = 1+x

1−x
. Some entries of (an,k) and (bn,k) are as follows:

(an,k ) →





















n\k 0 1 2 3 4 5 6
0 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
2 8 4 1 0 0 0 0
3 38 18 6 1 0 0 0
4 192 88 32 8 1 0 0
5 1002 450 170 50 10 1 0





















,

4



(bn,k) →

























n\k 0 1 2 3 4 5 6
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
2 0 2 1 0 0 0 0
3 0 6 4 1 0 0 0
4 0 22 16 6 1 0 0
5 0 90 68 30 8 1 0
6 0 394 304 146 48 10 1

























.

Note that (bn,1) is the large Schröder sequence. For some of the above examples please
refer to [7].

3 Main Theorems

Please refer to [6, 4] for the following remark.

Remark 6. Let Ak(x) =
∑

an,kx
n be the generating function of the kth column of

(an,k)n≥k≥0 and Bk(x) =
∑

bn,kx
n be the generating function of the kth column of (bn,k)n≥k. Let

g = g(x) = A0(x) and f = f(x) = B1(x). The following generating functions correspond to
Examples 1, 2, 3.

1 + 3x + 2x2

p(x) f(x) g(x) Sloane A Name

1 + x2 1−
√

1−4x2

2x
1√

1−4x2
000108,000984 Catalan, Central binomial

1 + x + x2 1−x−
√

1−2x−3x2

2x
1√

1−2x−3x2
001006,002426 Motzkin, Central trinomial

1−3x−
√

1−6x+x2

4x
1√

1−6x+x2
001003,001850 Schröder, Central Delannoy

.
Let P ∈ A(n, k), find the last point on P where the second coordinate is of height

k − 1. This point splits P into subpaths F,B with P = FB, and F ∈ A(j, k − 1),
B ∈ B(n − j, 1). Then by induction and by the convolution property,

Ak(x) = (gfk−1)f = gfk , Bk(x) = (fk−1)f = fk.

From Introduction we have the recurrence relation
bn,k =

∑

i≤1 wibn−1,(k−1)+1−i, for k > 0. Hence
f(x) =

∑

bn,1x
n =

∑

(
∑

i≤1 wibn−1, 1−i)x
n = x(

∑

i≤1 wi(
∑

bn−1,1−ix
n−1))

= x(
∑

i≤1 wi f 1−i)) = xp(f) and p(x) = x

f
, where f is the inverse function of f.

The following theorem is the LIF (Wilf [10]).

Theorem 7. (LIF) Let f(x) = x +
∑

i=2 bix
i. Then [xn](f(x))k = k

n
[xn−k]( x

f(x)
)n, where f

is the inverse function of f .

The following theorem (The hitting time theorem in probability theory) is the LIF in the
form of lattice paths. A vast literature exists on this subject, see, e.g., [3, 6, 9]. This result
is well-known for k = 1 in some special cases [11, 12].
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Theorem 8. For 0 < k < n, nbn,k = kan,k.

We shall provide two proofs of Theorem 8. In the first proof we use LIF to prove
Theorem 8 algebraically whereas in the second proof we use lattice paths bijection to prove
it combinatorially.
First proof. By Remark 6 and Theorem 7 we obtain that bn,k = [xn]fk = k

n
[xn−k]( x

f(x)
)n =

k
n
[xn−k](p(x))n = k

n
[x−k](w( 1

x
))n = k

n
[yk](w(y))n = k

n
an,k.

Second proof. We construct a bijection between the set of all pairs (P, i) with P ∈ A(n, k)
and i ∈ {0, 1, 2, 3, ..., k − 1} and the set of all pairs (Q, j) with Q ∈ B(n, k) and j ∈ [n],
as follows: For P ∈ A(n, k) and i ∈ {0, 1, 2, 3, ..., k − 1}, let l(P ) be the second coordinate
of the lowest point of P and let j be the maximum element of [n] such that the point
(j, i + l(P )) ∈ P . This point splits the path P into two subpaths F,B with P = FB.

We define Q = BF . Every point of B in Q (apart from the initial point) lies above the
x-axis, because of the maximality of j.

Moreover, every point of F in Q is elevated by k − (l(P ) + i) units, so that the lowest
point of F in Q has second coordinate equal to l(P ) + k − (l(P ) + i) = k − i > 0 and hence
F lies above the x-axis. This shows that Q ∈ B(n, k).

Conversely, for Q ∈ B(n, k) and j ∈ [n], the jth point (apart from the initial point) of
Q splits Q into two subpaths F,B with Q = FB. Note that in Q , 0 < l(B) ≤ k, thus
k = l(B) + i with 0 ≤ i < k. We define P = BF ∈ A(n, k); the (n− j)th point of P splits P

into two subpaths B,F . Since the second coordinates of the points of F are larger than the
second coordinate of the initial point of F , n − j is the maximum element in [n] such that
(n− j, l(P )+ i) ∈ P. Hence the mapping (Q, j) → (P, i) is the inverse of the above mapping.

Note that the mappings involve only switching the steps, and hence they preserve the
weights.2

Let us use an example to illustrate the mapping in the above theorem.
For P = w−3w0w1w1w0w−1w1w0w1w1w1w0w1 ∈ A(13, 3), k = 3, i = 0, 1, 2 we have

respectively

(P, 0) = w−3w0 ∗ w1w1w0w−1w1w0w1w1w1w0w1 →
(Q, 11) = w1w1w0w−1w1w0w1w1w1w0w1 ∗ w−3w0.

(P, 1) = w−3w0 w1w1w0w−1 ∗ w1w0w1w1w1w0w1 →
(Q, 7) = w1w0w1w1w1w0w1 ∗ w−3w0 w1w1w0w−1.
(P, 2) = w−3w0w1w1w0w−1w1w0 ∗ w1w1w1w0w1 →
(Q, 5) = w1w1w1w0w1 ∗ w−3w0w1w1w0w−1w1w0

where the symbol * marks the splitting point of each path.
Graphically, for the second pair of paths (i.e., for i = 1) we have

(P, 1) =





















◦
◦ ◦

◦
× ◦

◦ ◦ ◦ ◦
◦ •

◦ ◦





















→
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(Q, 7) =





















•
◦ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

◦ ◦
×





















where × marks the origin (0, 0).
For the following divisibility properties please refer to [1, 2].

Corollary 9. Let d = g.c.d.(n, k). Then for 0 < k < n

(1) n
d

divides an,k,

(2) k
d

divides bn,k,

(3) g.c.d.(n, an,k) > 1.

Corollary 10. a2n+1,1 = (2n+1
n ) = (2n + 1)b2n+1,1 is odd if and only if n = 2m − 1 for some

m.

Proof. b2n+1,1 = cn is the Catalan number. It is well known that the Catalan number cn is
odd if and only if n = 2m − 1.

Corollary 11. If n = pm for some m and prime p, then p divides an,k for 0 < k < n.

For the proof of the next result, it is enough to apply Corollary 11 and use the fact that
an,k = an−1,k−1 + w0an−1,k + w−1an−1,k+1.

Corollary 12. If n = pm + 1 for some prime p and wi = 0 for i < −1, then p divides an,k

for 1 < k < n − 2.

Corollary 13. If pm divides n for some m and prime p, then p divides bn,k for n 6=
0(mod(pm)).

The following generalization of Corollary 11 can be proved by applying Corollary 9.

Corollary 14. If pm divides n for some m and prime p, then p divides an,k for k 6=
0(mod(pm)).

Remark 15. Let A(x) = 1 + 2x1 + 3x2 + ... =
(

1
1−x

)2
and B(x) = xA(x) = x

(

1
1−x

)2
.

Then B(x) = 1+2x−
√

1+4x

2x
, by Remark 6, let p(x) = x

B(x)
and f = f(x) = xp(f) = B(x). By

Corollary 13, if pm divides n for some m and prime p, and A(x)n =
∑

an,kx
k, then p divides

an,k for k 6= 0(mod(pm)).

Remark 16. Theorem 8 may be used for a combinatorial proof of [1, Corollary 2.2].

Remark 17. In the course of the work we never use the weights of lattice path, so one
may be able to prove the divisibility by using only factorials and combinations.
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