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Abstract

Paint by Numbers is a classic logic puzzle in which the squares of a p×n grid are to
be colored in such a way as to display a picture. The decision on which squares to color
is determined by sequences of numbers above each column and to the left of each row.
The numbers describe how many consecutive squares are to be colored in that row or
column, and multiple numbers represent multiple blocks of colored in squares (with at
least one uncolored square inbetween blocks.) Certain natural questions arise. For a
given p × n grid, how many possible sequences are in a single column or row? For a
given grid, how many puzzles are there? How many of these have unique solutions? We
will explore these questions as well as connections between Paint by Numbers puzzles,
partition theory, and the Fibonacci sequence.

1 Introduction

Paint by Numbers (also called Nonograms, Picross, and many other names) is a logic puzzle
which allows purely left brained thinkers to draw pictures of Matt Damon, Jim Morrison,
a shootout at a poker table, or any picture that can be converted into a two toned highly
pixelated version. The reward for completing the puzzle correctly is a completed drawing;
however, solving the puzzle needs no greater artistic ability than staying inside the lines.
Ueda and Nagao [4] have shown that determining if a solution is unique is NP-complete (a
famous complexity class from computer science). Batenburg and Kosters [1] have shown that
under certain assumptions puzzles can be solved in polynomial time. In addition Benton,
Snow, and Wallach [2] compute the number of possible row and column sums.

The puzzle starts out with a p × n grid with sequences of numbers above each column
and sequences of numbers alongside each row. The numbers tell you how many consecutive
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squares in the column or row need to be colored in. If there is more than one number in
the sequence then there must be at least one uncolored (white) space between the colored
(black) spaces. Figure 1 is an example of a small puzzle.

2 2
1 1 5 1 1

1
3
3
1
5

Figure 1: Example of a small puzzle

Initially we see that along the bottom and in the middle column we must have 5 black
squares, and there is exactly room for 5. Thus we can fill in the following:

2 2
1 1 5 1 1

1

3

3

1

5

Figure 2: Intermediate stage

Next we note that the top row is completed. That leaves only four remaining squares in
which to fill columns 2 and 4 and that is just barely enough. See Figure 3.

2 2
1 1 5 1 1

1

3

3

1

5

Figure 3: Finished picture

The puzzle is complete, and we have “drawn” a lonely tree.
If a sequence such as 3, 1, 4 is listed alongside a row of the puzzle, then we know that

there must be 3 black squares, at least one white, one black square, at least one white, and
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then 4 black squares. There may or may not be white squares before the 3 black and after
the 4 black. The order is important as 4, 1, 3 would describe a different coloring. Depending
on how large the puzzle is, we may or may not be sure certain squares are colored. For
example if n = 10 then we know exactly which squares are to be colored (see Figure 4).

Figure 4: Forced coloring with 10 squares

If n = 11, then there are four possible configurations; however all four have the black
squares in Figure 5.

Figure 5: Forced coloring with 11 squares

Filling in the remaining black squares can be done using information from the columns
and the other rows. If n = 14 or more, then we would not be able to fill in any of the squares
in this row without using information from the rest of the puzzle because this sequence uses
10 squares and there would be at least 4 left over. That leaves the largest piece of 4 with two
nonoverlapping possible locations. We define a forceless sequence to be a sequence such that
no partial coloring can be determined without the aid of the rest of the puzzle (see Figure
6).

2 Number of Possible Sequences

For any p × n puzzle there are p sequences of natural numbers one to the left of each row
and there are n sequences of natural numbers one above each column. For a row sequence
{aj}i

j=1 = aj we define l(aj) to be the length of the sequence, which is the fewest number of
columns needed for that sequence to fit in a puzzle. Since there must be at least one white
square between each string of black squares the formula is

l(aj) =
i∑

j=1

aj + i − 1.

Also define the norm of a row sequence as

‖aj‖ = max
1≤j≤i

aj.

A row sequence aj in a puzzle with n columns would be forceless if aj 6= {} and

l(aj) + ‖aj‖ ≤ n.
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Column sequences have corresponding definitions but we will focus on row sequences. For a
given n, just how many sequences are allowable? Somewhat surprisingly the number of se-
quences follows a well known sequence. The Fibonacci sequence Fn (A000045) is determined
recursively as

F1 = F2 = 1;

Fn = Fn−1 + Fn−2.

Theorem 2.1. For a puzzle with n columns, the number of row sequences that describe a

coloring which fits in the puzzle is Fn+2.

Proof. Let bn be the number of sequences in a puzzle with n columns. For the case n = 1,
there are 2 possible sequences: {} and 1. Thus b1 = 2. For the case n = 2, there are 3
possible sequences: {}, 1, and 2. Thus b2 = 3. If n > 2, the number of sequences allowed is
bn−1 plus the number of sequences of length n. If a sequence has length n and has i entries,
then there must be i− 1 white squares and n− i + 1 black squares. To count the number of
sequences, think of starting with a long string of n − i + 1 black squares and then choosing
i − 1 places to cut the string of black squares and placing a white squares in the cuts. We
can only cut between black squares and not in the middle of any square. Thus there are n− i

possible cutting points and i− 1 cuts needed to be made, and the cutting order is irrelevent
which gives

(
n−i

i−1

)
sequences of i numbers of length n. Thus

bn = bn−1 +

⌊n+1

2
⌋∑

i=1

(
n − i

i − 1

)

= bn−1 +

⌊n−1

2
⌋∑

i=0

(
n − i − 1

i

)

= bn−1 + 1 +

⌊n−1

2
⌋∑

i=1

(
n − i − 2

i

)
+

(
n − i − 2

i − 1

)

= bn−1 +

⌊n
2
⌋∑

i=1

(
n − i − 1

i − 1

)
+

⌊n−1

2
⌋∑

i=1

(
n − i − 2

i − 1

)

= 2bn−1 − bn−3.

If we assume bn−1 = bn−2 + bn−3 and use induction, we have

bn = bn−1 + bn−2 + bn−3 − bn−3

= bn−1 + bn−2.

So the sequence bn has the same recursion as the Fibonacci sequence but is shifted since bn

starts with 2 and 3 rather than 1 and 1. So bn = Fn+2.

This proof also illustrates the closed form formula for the Fibonacci numbers
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Fn =

⌊n+1

2
⌋∑

i=1

(
n − i

i − 1

)
.

When counting the number of sequences of length n, we are almost counting the partitions
of n − i into i − 1 pieces and to get all the partitions of n − i we could simply sum over all
possible numbers of pieces. If it were not for the seemingly trivial detail that some of the
partitions could be counted numerous times, this would work. For example the partition
{1, 1, 2} of 5 would get counted 3 times since (2, 1, 1), (1, 2, 1) and (1, 1, 2) are different row
sequences.

3 Forceless Sequences

In the process of solving a Paint by Numbers puzzle, the first thing to look for are sequences
that force a coloring. But just how rare is a sequence with no forcing? A sequence would be
forceless if in at least two possible colorings, the largest block of squares are nonoverlapping.
In Figure 6 we see that the largest block of black squares, 4, has no overlapping between
the extreme left and extreme right color placements. Thus 3, 1, 4 would be a forceless row
sequence in a puzzle with 14 columns. The goal of the remainder of the paper is to count
the number of forceless sequences.

3 1 4

3 1 4

Figure 6: Extreme left and extreme right of color placement

In general, we get a forceless sequence in a puzzle with n columns if the row sequence
{aj} satisfies

‖aj‖ + l(aj) ≤ n.

For the moment, let’s consider sequences with a fixed length m. If this sequence is to be
forceless, then its maximum norm is n−m. Let Am,k denote the sequences of length m and
maximum norm k. To count all forceless sequences in a puzzle with n columns we need only
sum Am,n−m over all possible lengths. That is, the number of forceless sequences, denoted
Gn, is

Gn =
n−1∑

m=0

Am,n−m.

To calculate Am,k, it is easier to fix the maximum norm and let the length vary. We
start with k = 1. Since the maximum norm is one, the sequence must consist entirely
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of ones. Say there are r ones. The length of a sequence consisting entirely of ones is
l(aj) = r + r− 1 = 2r− 1. Therefore if m is odd, there is one sequence with maximum norm
1, and if m is even, there are no such sequences. That is Am,1 = 1 for m odd, and Am,1 = 0
for m even.

Moving on to k = 2, there is only the sequence {1} of length 1 and there is only the
sequence {2} of length 2. So A1,2 = A2,2 = 1. Considering Am,2, we are counting the number
of sequences of length m and maximum norm 2. There are two ways these sequences could
come about. Either we addend a 1 to a sequence of length m−2 or addend a 2 to a sequence
of length m − 3. Therefore Am,2 = Am−2,2 + Am−3,2.

For a general k, similar reasoning shows A1,k = A2,k = 1. For m ≤ k, the sequence {m}
has length m and max norm less than or equal to k, and is not obtained from addending
a number to a previously counted sequence. However, all other sequences are obtained in
this manner. The remaining sequences of length m are obtained by addending a 1 to the
sequences of length m−2, addending a 2 to the sequences of length m−3,..., or addending a
m− 2 to the sequence of length 1. If m > k, then the sequence {m} has a norm which is too
large; thus that sequence would not be counted. So all sequences are obtained by addending
a number to a previous sequence. The sequences of length m are obtained by addending a
1 to the sequences of length m − 2, addending a 2 to the sequences of length m − 3,..., or
addending an m to the sequences of length m − k − 1. From this we obtain the following
formula:

Am,k =

{
1 +

∑m−2
j=1 Aj,k, m ≤ k;∑m−2

j=m−k−1 Aj,k, m > k.

Simple induction arguments can be used to obtain

Am,k =

{
Fm, m ≤ k;

Am−1,k + Am−2,k − Am−k−2,k, m > k.

For k = 1, . . . , 9, these sequences are in the On-Line Encyclopedia of Integer Sequences,
Am,1 (A000035), Am,2 (A000931), Am,3 (A013979), Am,4, . . . , Am,9 (A013982),. . . ,(A013987).

It is worth noting that for every fixed m, Am,k is an increasing sequence in k. In other
words, if the length is fixed and the maximum norm is allowed to increase, more sequences
would be obtained. Also for every fixed k > 1, Am,k is an increasing sequence in m. Also
notice that if we fix a length m and consider the sequence in that row, the sequence is
bounded. In fact, it is bounded by the mth Fibonacci number. This should by no means be
surprising since m represents the length of sequence, and as we increase the maximum norm
(largest piece size) we will eventually get all sequences of length m, which we have already
decided is determined by the Fibonacci sequence.

To obtain Gn, we simply add all terms such that m + k = n; that is, add along diagonals
in Table 1. Table 2 gives the values of Gn up to n = 11.

So far we have outlined a way of computing the number of forceless row sequences for
any number of columns n. It would be nice to have a closed form formula to do this more
efficiently. That goal seems unlikely to be met, however other questions can be answered
about {Gn}. In the remainder of the paper we will discuss the growth rate of {Gn} and how
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m, k → 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1
3 1 1 2 2 2 2 2 2 2 2
4 0 2 2 3 3 3 3 3 3 3
5 1 2 4 4 5 5 5 5 5 5
6 0 3 5 7 7 8 8 8 8 8
7 1 4 8 10 12 12 13 13 13 13
8 0 5 11 16 18 20 20 21 21 21
9 1 7 17 24 29 31 33 33 34 34
10 0 9 24 37 45 50 52 54 54 55

Table 1: Am,k for 1 ≤ m, k ≤ 10

G2 = 1

G3 = 0 + 1 = 1

G4 = 1 + 1 + 1 = 3

G5 = 0 + 1 + 1 + 1 = 3

G6 = 1 + 2 + 2 + 1 + 1 = 7

G7 = 8

G8 = 15

G9 = 20

G10 = 33

G11 = 47

Table 2: Gn for small n

that growth relates to the growth rate of the Fibonacci sequence. In particular we will prove
the following results.

Theorem 3.1. For every n, Gn ≥ C1
φn

n
, where φ is the golden ratio.

Theorem 3.2. For every n, Gn ≤ C ln nφn

n
.

But first we present an alternate method for computing the sequence {Gn}.
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4 Generating Polynomial

We can also use polynomials to find the sequence {Gn}. Consider the polynomial

xi

(
k∑

j=1

xj

)i+1

. (4.1)

For a fixed k, let us examine this polynomial as i goes from 0 to ∞. When i = 0, the
coefficient of xm in (4.1) is the number of ways to pick one number between 1 and k with
sum m. In the context of Paint by Numbers puzzles, the coefficient of xm is the number of
sequences with norm k, length m, and one entry. When i = 1, the coefficient of xm−1 in(∑k

j=1 xj
)i+1

is the number of ways to pick two numbers between 1 and k with sum m− 1.

Again in our context, we have the number of sequences with norm k, length m, and two
entries. Thus the coefficient of xm in (4.1) is the number of sequences with norm k, length

m, and two entries. For a general i, the coefficient of xm−i in
(∑k

j=1 xj
)i+1

is the number

of sequences with norm k, length m, and i + 1 entries. Hence the coefficient of xm in (4.1) is
the number of sequences with norm k, length m and j +1 pieces. If we sum over all possible
numbers of pieces, we will have all sequences of length m and norm k. Therefore,

∞∑

m=1

xmAm,k =
∞∑

j=0

xj

(
k∑

i=1

xi

)j+1

. (4.2)

Now we compute the generating polynomial for Gn as follows:

∞∑

n=1

Gnx
n =

∞∑

n=1

xn

n−1∑

k=1

An−k,k

=
∞∑

k=1

∞∑

n=k+1

xnAn−k,k

=
∞∑

k=1

xk

∞∑

m=1

xmAm,k

=
∞∑

k=1

xk

∞∑

j=0

xj

(
k∑

i=1

xi

)j+1

.

5 Lower Bound for Gn

5.1 The Main Idea

Unfortunately Gn is not itself a linear recursion so finding a closed form formula for it is a
daunting task. However, the columns (fix k and consider the sequence Am,k in m) are linear
recursions. We will use this fact along with some clever observations to find asymptotic
results for Gn.
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m, k → 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1
3 1 1 2 2 2 2 2 2 2 2
4 0 2 2 3 3 3 3 3 3 3
5 1 2 4 4 5 5 5 5 5 5
6 0 3 5 7 7 8 8 8 8 8
7 1 4 8 10 12 12 13 13 13 13
8 0 5 11 16 18 20 20 21 21 21
9 1 7 17 24 29 31 33 33 34 34
10 0 9 24 37 45 50 52 54 54 55

Table 3: Am,k for 1 ≤ m, k ≤ 10, red numbers sum to G11

First let us find a lower bound for Gn. When calculating G11, we add the red numbers
in Table 3. Now choose any column and add the red number and all numbers above it in
that column. No matter which column you choose you will obtain a smaller result than G11.
This is the idea behind the following proposition.

Proposition 5.1. For every k, Gm ≥∑m−k

j=1 Aj,k.

Proof. Fix k ≥ 1. If m − j ≥ k, then Aj,m−j ≥ Aj,k. This is because for a fixed length j, as
the maximum norm increases, so does the number of sequences. Therefore

Gm =
m−k∑

j=1

Aj,m−j +
m−1∑

j=m−k+1

Aj,m−j

≥
m−k∑

j=1

Aj,k + 0.

5.2 Linear recursions

When studying linear recursions such as the Fibonacci sequence, we notice that the ratios of
consecutive terms seem to approach a fixed number (call it the limiting ratio). If the ratios
of consecutive terms were a fixed number ρ then then mth term of the sequence would be
ρm and the sequence would also have to satisfy the Fibonacci recursion

ρm = ρm−1 + ρm−2.

If we factor out ρm−2, we the get characteristic equation for the Fibonacci recursion

ρ2 = ρ + 1.
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Solving for ρ, we obtain two roots φ = 1+
√

5
2

and λ1 = 1−
√

5
2

. We find another closed form
formula for the Fibonacci sequence by writing

Fn = b0φ
n + b1λ

n
1 ,

and then using the fact that F1 = 1, F2 = 1 to solve for the constants b0 and b1, we obtain

Fn =
φn − λn

1√
5

.

Notice since φ is the larger of the two roots (in absolute value), as n increases the Fibonacci
numbers grow very closely to φn

√
5
.

Just as with all linear recursions, for a fixed k, the terms of Am,k can be expressed in a
closed form manner using the zeros of the recursion’s characteristic polynomial. In this case
the characteristic polynomial is

xk+2 − xk+1 − xk + 1.

This polynomial has k + 2 zeros (counting multiplicity), and for k > 1, one of these zeros is
real and larger than 1. We will call this zero φk with multiplicity α0. Label the remaining
zeros as λ1, . . . , λj with multiplicities α1, . . . , αj (most of these are complex numbers). Using
linear recursion theory, we can write

Am,k =

α0∑

i=1

bi,0m
i−1φm

k +

j∑

l=1

αj∑

i=1

bi,lm
i−1λm

l . (5.1)

The coefficients bi,l can be determined using the first k+2 terms of the recursion. So in theory,
nice formulas can be obtained for Am,k; however computing the zeros and then solving the
systems of linear equations can only be done approximately. Nontheless determining which
zero is the largest in absolute value will go a long way in approximating Am,k.

Proposition 5.2. Let k > 1 and φk, λ1, .., λj be the zeros of fk(z) = zk+2 − zk+1 − zk + 1,
where φk is the real zero that is larger than 1. For all 1 ≤ i ≤ j, φk > |λi|. Furthermore, φk

is a zero of multiplicity one.

Proof. Since φk is a zero of fk(z), (z − φk) is a factor. A simple multiplication shows that

fk(z) = (z − φk)(z
k+1 + (φk − 1)zk −

k−1∑

j=0

zjφ
−j−1
k ).

Consider the function gk(z) = (φk − 1)zk −
∑k−1

j=0 zjφ
−j−1
k . For all z such that |z| = φk, we

have

|gk(z)| ≤ (φk − 1)φk
k +

k−1∑

j=0

φ
j
kφ

−j−1
k

10



= φk+1
k − φk

k +
k−1∑

j=0

φ−1
k

= φk+1
k − φk

k + kφ−1
k

< φk+1
k .

Where the last inequality is justified because for all k ≥ 2, φk ≥ φ2 > 3
√

2 ≥ k+1
√

k. On
the closed curve |z| = φk, we have |gk(z)| ≤ φk+1

k = |zk+1|. Thus Rouche’s theorem (see
any complex analysis textbook, for example [3]) tells us that zk+1 and zk+1 + gk(z) have the
same number of zeros inside the curve |z| = φk. The polynomial zk+1 has k + 1 zeros inside
this curve. Therefore all k + 1 zeros of zk+1 + gk(z) are inside this curve. That is, for all
1 ≤ i ≤ j, φk > |λi| and φk has multiplicity one.

In light of (5.1) and Proposition 5.2, we see that for large m the term b1,0φ
m
k is the

dominating factor in computing Am,k. Furthermore

lim
m→∞

Am+1,k

Am,k

= φk.

Clearly, φk < φ for all k; the sequences Am,k grow slower than the Fibonacci sequence. Also
limk→∞ φk = φ; as k goes to infinity Am,k goes to the Fibonacci sequence. Furthermore, for
k1 < k2, we have φk1

< φk2
. We can generalize the definition of φk for nonintegers k > 1 as

well by defining φk to be the largest positive real zero of fk(z) = zk+2 − zk+1 − zk + 1. Now
that we know which zero to focus on, we must find a way to approximate it. We begin the
following subsection with a lower bound for φk.

5.3 Proof of Theorem 3.1

Proposition 5.3. For every k ≥ 8, φk ≥ φ
(√

5φk+1−(k+2)√
5φk+1−(k+1)

)
.

Proof. Let fk(x) = x2 + x − 1 − xk+2. The largest zero of fk(x) will be the reciprocal of φk.
We use a linear approximation to fk at φ−1 and the following:

fk(φ
−1) = −φ−k−2

f ′
k(φ

−1) =
√

5 − (k + 2)φ−k−1

f ′′
k (x) = 2 − (k + 2)(k + 1)xk.

So the linear approximation is

fk(x) ≈ (
√

5 − (k + 2)φ−k−1)(x − φ−1) − φ−k−2.

For k ≥ 8, 2 − (k + 1)(k + 2)φ−k > 0. Thus fk(x) is concave up at x = φ−1 and the linear
aproximation is an underestimate. Now because the linear approximation is an underestimate
and fk(φ

−1) is negative, the approximation of φ−1
k ,call it φ̃−1

k , using Newton’s method, will
be larger than φ−1

k . Indeed,

φ̃−1
k = φ−1 +

φ−k−2

√
5 − (k + 2)φ−k−1
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=
φ−1(

√
5 − (k + 2)φ−k−1) + φ−k−2

√
5 − (k + 2)φ−k−1

= φ−1

(√
5 − (k + 1)φ−k−1

√
5 − (k + 2)φ−k−1

)

= φ−1

(
φk+1

√
5 − (k + 1)

φk+1
√

5 − (k + 2)

)
.

Since φ−1
k < φ̃−1

k , we have

φk > φ

(
φk+1

√
5 − (k + 2)

φk+1
√

5 − (k + 1)

)
.

Since Gn is bounded below by the sum of the first few terms of a linear recursion using
Proposition 5.1 and in turn those terms are approximately exponential, we can approximate
Gn by summing a geometric series. In order to provide the details, a lemma is in order.

Lemma 5.4. Let r = logφ m. For all m > 2, φm
r ≥ Cφm.

Proof. If m ≥ 50, then r ≥ 8, we can use Proposition 5.3 to see that

ln

(
φr

φ

)m

≥ m ln

(√
5mφ − r − 2√
5mφ − r − 1

)

= m ln

(
1 − 1√

5mφ − r − 1

)

≥ −2m

(
1√

5mφ − r − 1

)

≥ −2m

(
1√

5mφ − m

)

=

( −2√
5φ − 1

)
.

In the third step, we observed that for all −1
2

< x < 0, ln(1 + x) > 2x. Exponentiating, we
have (

φr

φ

)m

≥ e

“

−2
√

5φ−1

”

.

If m < 50 then we can bound φm
r ≥

(
φ1

φ

)50

φm, and the result is obtained with C =

min

{
e

“

−2
√

5φ−1

”

,
(

φ1

φ

)50
}

.
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We are now ready to prove Theorem 3.1.

Proof. Let r = ⌊logφ n⌋. Using Proposition 5.1 with k = r, we have Gn ≥
∑n−r

m=1 Am,r. Since
Am,r is a linear recursion with limiting ratio φr, Am,r ≥ K1φ

m
r for some constant K1 which

is independent of m. Therefore,

Gn ≥
n−r∑

m=1

Am,r

≥
n−r∑

m=1

K1φ
m
r

=K2φ
n−r
r

≥K2φ
n−r
logφ n

≥K2φ
n−logφ n−1

logφ n

≥K2Cφn−logφ n−1

=
C1φ

n

n
,

where in the 6th step we used Lemma 5.4.

6 Upper Bound for Gn

6.1 The Main Idea

Let’s refer to Table 4 to try to obtain an upper bound for Gn. Again the values in red are
summed to get G11. The important thing to notice for an upper bound is that roughly the
first half (starting in the upper right corner) of the numbers to be summed are the Fibonacci
sequence. So if we go to the column which starts with the same number of terms from the
Fibonacci sequence and sum down, we will have an upper bound. How far down should we
sum? Well G11 is the sum of 10 terms so using the first 10 terms in that column (underlined
numbers in Table 4) will definitely give an upper bound.

However, we can find a better upper bound. Towards the end of the column with un-
derlined numbers, the underlined numbers (approximation of G11) are much larger than the
numbers in red (G11). How can we get around using those extraordinarily large numbers?
The largest summand used to determine G11 is 11. So instead of adding 20, 31, and 50,
replace each of those with 11 (notice also that leaving the 20 alone and replacing 31 and 50
with 7 and 7 would give another upper bound). In fact, we need not be concerned about
which column we choose. We are finding an upper bound so that we can approximate the
first segment of summands with Fibonacci numbers. So for a general Gn, the strategy is
to locate the largest summand, gmax, or at least find a summand so that all the summands
to the left and below are smaller. Starting from the upper right, replace all summands in
Gn up to gmax with the Fibonacci sequence and replace the remaining summands with gmax.
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m, k → 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1
3 1 1 2 2 2 2 2 2 2 2
4 0 2 2 3 3 3 3 3 3 3
5 1 2 4 4 5 5 5 5 5 5
6 0 3 5 7 7 8 8 8 8 8
7 1 4 8 10 12 12 13 13 13 13
8 0 5 11 16 18 20 20 21 21 21
9 1 7 17 24 29 31 33 33 34 34
10 0 9 24 37 45 50 52 54 54 55

Table 4: Am,k for 1 ≤ m, k ≤ 10, underlined numbers are an upper bound for G11

But how do we find gmax for an arbitrary n? We need to determine which column contains
the largest summand for Gn. In order to do this we must first find an upper bound for φk.

6.2 Upper Bound for φk

Proposition 6.1. For all k,

φ−1
k ≥ 1 + k(k + 2)φ−k−1 −

√
5 − k(k + 2)φ−2k−2 + 2φ−k(k(φ − 3) − 2)

−2 + (k + 1)(k + 2)φ−k
. (6.1)

Proof. As in Proposition 5.3, we will come up with this estimate using a degree 2 Taylor poly-
nomial approximation, pk(x) to fk(x) centered at φ−1. The concavity of the approximation is
p′′k(x) = f ′′

k (φ−1), a constant. The concavity of fk(x) is given by f ′′
k (x) = 2− (k+1)(k+2)xk.

If x > φ−1, then the concavity of fk is less than the concavity of pk. Therefore the slopes of
pk are increasing at a faster rate. Now fk(φ

−1) = pk(φ
−1) < 0, and pk increases faster than

fk, so the zero of pk, φ̃−1
k , will be less than the zero of fk, φ−1

k . The second degree Taylor
polynomial centered at φ−1 is given by

pk(x) =
f ′′

k (φ−1)

2
x2 + x

(
f ′

k(φ
−1) − f ′′

k (φ−1)φ−1
)

+

(
fk(φ

−1) − f ′
k(φ

−1)φ−1 +
f ′′

k (φ−1)

2
φ−2

)

= ax2 + bx + c,

where

a = 1 − (k + 1)(k + 2)

2
φ−k,

b = 1 + k(k + 2)φ−k−1,

c = −1 − k(k + 1)

2
φ−k−2.

The approximation pk(x) will have two roots the positive one is the right hand side of (6.1).
To find the zeros of pk, we use the quadratic formula and much omitted algebra.
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k min n such that An−k,k < An−k−1,k+1

1 2
2 7
3 13
4 24
5 44
6 75
7 125
8 207
9 339
10 551
11 901
12 1462

Table 5: Locating gmax

The upper bound for φk (as well as the lower bound) appear to be artificially complicated.
They are only bounds, after all. Why not find simpler looking bounds? For example, why
not use

φ−1
k ≥ 1 + k(k + 2)φ−k−1 −

√
5

−2 + (k + 1)(k + 2)φ−k
(6.2)

to obtain an upper bound for φk? We will see later that every term in the bounds from
Propositions 5.3 and 6.1 is necessary for later estimates to work out.

6.3 Determing How to Split the Sum

It turns out that when finding an upper bound for Gn, locating the largest summand, gmax

is not crucial. We will estimate Gn by splitting the sum into two pieces. We can split the
sum anywhere as long as the summand before (left and below) the split is larger than any
other summand before the split. In other words, we need to find a number ks such that,
An−ks,ks

> An−k,k for all k < ks. In Table 4 we see that ks for approximating G11 could be
1,2, or 3. Nonetheless, one can still find gmax for some n. Using a computer algebra system,
we obtain Table 5. We can use Table 5 for n ≤ 1462 to determine which summand of Gn is
the largest. For example let n = 200. We can see from Table 5 that An−k,k < An−k−1,k+1 for
all k ≤ 7, but An−8,8 6≤ An−9,9. So the eighth summand of G200 is the largest one. Looking
at Table 5 we observe that the second column seems to grow exponentially. This is verified
in the following proposition.

Proposition 6.2. There exists a K ∈ N such that for all k ≥ K, if n ≥ φk+24
√

5 ln φ, then

φn
k ≤ φn−1

k+1.

Proof. For any given k, φn
k = φn−1

k+1 if n = ln φk+1

ln
φk+1

φk

. Since φk+1 > φk, if n ≥ ln φk+1

ln
φk+1

φk

, then

φn
k ≤ φn−1

k+1 . So we only need find an upper bound for ln φk+1

ln
φk+1

φk

. Let us start by finding a lower
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bound for ln φk+1

φk
. Indeed,

ln
φk+1

φk

= ln

(
1 +

φk+1 − φk

φk

)

≥ 1

2

(
φk+1 − φk

φk

)

≥ 1

2φ
(φk+1 − φk) .

Using Propositions 6.1 and 5.3, and setting

Ak =
√

5 − k(k + 2)φ−2k−2 + 2φ−k(k(φ − 3) − 2),

we have

φk+1 − φk ≥ φ

(√
5φk+2 − (k + 3)√
5φk+2 − (k + 2)

)
− −2 + (k + 1)(k + 2)φ−k

1 + k(k + 2)φ−k−1 − Ak

= φ

(
1 − 1√

5φk+2 − (k + 2)

)
+

2φk − (k + 1)(k + 2)

φk + k(k + 2)φ−1 − Akφk

= − 1√
5φk+2 − (k + 2)

+
2φk − (k + 1)(k + 2) + φk+1 + k(k + 2) − Akφ

k+1

φk + k(k + 2)φ−1 − Akφk

= − 1√
5φk+2 − (k + 2)

+
φk+1(

√
5 − Ak) − (k + 2)

φk + k(k + 2)φ−1 − Akφk

=
−φk+k(k+2)φ−1−Akφk

√
5φk+2−(k+2)

+ φk+1(
√

5 − Ak) − (k + 2)

φk + k(k + 2)φ−1 − Akφk

:=
−Bk + Ck

φk + k(k + 2)φ−1 − Akφk

=
Bk − Ck

−φk − k(k + 2)φ−1 + Akφk
.

Let’s investigate Bk and Ck closer by computing the limit of each as k → ∞. We see

lim
k→∞

Bk = lim
k→∞

−Akφ
k + φk + k(k + 2)φ−1

√
5φk+2 − (k + 2)

=
1 −

√
5√

5φ2
.

In addition,

lim
k→∞

Ck = lim
k→∞

(φk+1(
√

5 − Ak) − (k + 2))

= lim
k→∞

(
√

5φk+1 − (k + 2))2 − (φk+1Ak)
2

φk+1Ak +
√

5φk+1 − (k + 2)
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= lim
k→∞

(
5φ2k+2 − 2φk+1

√
5(k + 2) + (k + 2)2

φk+1Ak +
√

5φk+1 − (k + 2)

− φ2k+2(5 − k(k + 2)φ−2k−2 + 2φ−k(kφ − 3k − 2))

φk+1Ak +
√

5φk+1 − (k + 2)

)

= lim
k→∞

φk+1(2 − 2
√

5) + (k + 2)(2k + 2)

φk+1Ak +
√

5φk+1 − (k + 2)

=
1 −

√
5√

5

So limk→∞(Bk − Ck) =
√

5−1
φ
√

5
. Therefore there exists a K ∈ N such that for all k > K,

Bk − Ck ≥ 1
2

√
5−1

φ
√

5
.

Finally we return to estimating φk+1 − φk as follows:

φk+1 − φk ≥

√
5−1

2φ
√

5

−φk − k(k + 2)φ−1 + Aφk

≥

√
5−1

2φ
√

5

(
√

5 − 1)φk

=
1

2
√

5φk+1
.

All the pieces fit together to provide:

ln φk+1

ln φk+1

φk

≤ ln φk+1

1
2φ

(φk+1 − φk)

≤ ln φk+1

1
2φ

· 1
2
√

5φk+1

≤ φk+24
√

5 ln φ

provided k > K.

Note that if we had used (6.2) to obtain our upper bound on φk, that would make
Ak =

√
5 for all k and limk→∞ Ck would not exist.

6.4 Proof of Theorem 3.2

The previous proposition would be perfect for our purposes if it were not for the fact that
the estimate only works beyond an unspecified term K. In fact, we know the lower bound
used in the proof is only valid for k > 8. Computer algebra systems can be used to verify
that K = 12. However, Table 5 can be used for small k. Proposition 6.2 not only verifies
that the growth of the terms in the second column of Table 5 are exponential but it also
allows us to locate a splitting point, ks, for the sum determining Gn even for large n.

We are now ready to prove Theorem 3.2
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Proof. Let ks = ⌊logφ
n

8φ2
√

5 ln φ
⌋. For all 12 ≤ k ≤ ks, we have

φk+24
√

5 ln φ ≤φks+24
√

5 ln φ

≤n

2
≤n − ks

≤n − k.

Therefore by Proposition 6.2, we have for all 12 ≤ k ≤ ks,

φn−k
k ≤ φn−k−1

k+1 . (6.3)

Also by Table 5 we have for all k < min(12, ks),

φn−k
k ≤ φn−k−1

k+1 . (6.4)

Putting (6.3) and (6.4) together we have for all k ≤ ks,

φn−k
k ≤ φn−k−1

k+1 . (6.5)

Now we split the sum determing Gn and apply (6.5) to obtain

Gn =
ks∑

k=1

An−k,k +
n−1∑

k=ks+1

An−k,k

≤
ks∑

k=1

An−k,k +
n−ks−1∑

k=1

fk

≤
ks∑

k=1

An−k,k + fn−ks+1

≤ K1

ks∑

k=1

φn−k
k + fn−ks+1

≤ K1ksφ
n−ks + K1φ

n−ks+1

= K1φ
n−ks(ks + φ)

≤ K1φ
n−logφ

n

8φ2
√

5 ln φ

(
logφ

n

8φ2
√

5 ln φ
+ 1 + φ

)

≤ K18φ
2
√

5
φn

n
(ln n),

where K1 = maxk≤ks
{bk|Am,k < bkφ

m
k }.

7 Conclusion

Putting Theorem 3.1 and Theorem 3.2 together we have

φn

n
. Gn .

ln nφn

n
.
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Since the total number of sequences in a puzzle with n columns is Fn+2 ≈ φn+2, the ratio of
forceless sequences to total sequences satisfies

1

φ2n
.

Gn

Fn+2

.
ln n

φ2n
.

So we see in the limit, as the number of rows goes to infinity, the ratio of forceless sequences
to total sequences goes to zero. We can conclude that for very large puzzles there are very
few forceless sequences.

This paper dealt only with an individual row sequence isolated from the rest of the puzzle.
Many questions about how the row and column sequences interact are left to be answered.
For example, given an arbitrary list of row sequences, which column sequences are permitted
to create a puzzle with a solution? Certainly, one must obtain the same value when adding
all the terms from the row sequences as one does when adding all the terms from the column
sequences, but there are many other more subtle connections. One could also extend the
puzzle to higher dimensions and more colors. There is much more to be learned about these
puzzles. The title of the paper itself begs more research to determine just when there is a
unique solution to a Paint by Numbers puzzle.
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