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Abstract

When the partitions of [n] = {1, 2, . . . , n} are identified with the restricted growth
functions on [n], under a known bijection, certain enumeration problems for classical
word statistics are formulated for set partitions. In this paper we undertake the enu-
meration of partitions of [n] with respect to the number of occurrences of rises, levels

and descents, of arbitrary integral length not exceeding n. This approach extends
previously known cases. We obtain ordinary generating functions for the number of
partitions with a specified number of occurrences of the three statistics. We also derive
explicit formulas for the number of occurrences of each statistic among all partitions,
besides other combinatorial results.

1 Introduction

This paper is concerned with an aspect of the general enumeration problem for subword
patterns which continues to attract intense research activity. Much of the impetus came
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from Carlitz and collaborators, in the 1970’s, with several papers on rises, levels and descents

in selected classes of words which include permutations and compositions (see, for example,
[3, 4, 6, 5]). Recently, Burstein and Mansour [2] studied the set of k-ary words containing a
specified number of subword partterns. Heubach and Mansour [9] found generating functions
for the number compositions of n according to the number of rises, descents and levels. Later
the authors [8] obtained enumerative results for compositions of n according to the number
of occurrences of a subword of length three. Elizalde and Noy [7] studied the permutations
of length n according to the number occurrences of a fixed word of length three or four. More
recently, Mansour and Sirhan [11, Theorem 2.1] found the following generating function for
the number of k-ary n-words according to the number of t-levels:

Wt(x, y; k) =

(

1 − k(x + x2 + · · · + xt−2 + xt−1/(1 − xy))

1 + x + · · · + xt−2 + xt−1/(1 − xy)

)−1

. (1.1)

In this paper we specialize to set partitions, and extend several of the above results. More
precisely, we find the generating functions for the number of partitions of [n] according to
the number occurrences of t-levels, t-rises and t-descents, defined below.

A partition of [n] = {1, 2, . . . , n} is a decomposition of [n] into non-overlapping subsets
or blocks B1, B2, . . . , Bk, 1 ≤ k ≤ n, which are listed in the increasing order of their least
elements. We will represent a partition π = B1, B2, . . . , Bk in the canonical sequential form
π = π1π2 · · ·πn such that j ∈ Bπj

, 1 ≤ j ≤ n. Thus a sequence π = π1π2 · · ·πn over the
alphabet [k] represents a partition of [n] with k blocks if and only if it is a restricted growth

function on [n] satisfying {π1, π2, · · · , πn} = [k] (see [14] for details). For instance, 12312424
is the canonical sequential form of the partition {1, 4}, {2, 5, 7}, {3}, {6, 8} of [8].

Partitions will be identified with their corresponding canonical sequences throughout,
and this platform will be employed in the study of three word-statistics. We undertake the
enumeration of partitions according to the number of occurrences of rises, levels and descents

by considering t letters at a time, t > 1. This generalizes the work done in an earlier paper
[10] which dealt with the case t = 2.

Let π = π1π2 · · ·πn be any partition represented by its canonical sequence. Given an
integer t > 1 we say that π has a t-rise at i if πi < πi+1 < · · · < πi+t−1, and a t-level if
πi = πi+1 = · · · = πi+t−1. Similarly for a t-descent. For example, if t = 3, then the partition
1211123421 of [10] has two 3-rises (at i = 5 and i = 6), one 3-level (at i = 3) and one
3-descent (at i = 8).

The set of partitions of [n] will be denoted by Pn and the subset of partitions with k
blocks by Pn,k. The cardinality of Pn,k is the Stirling number of the second kind S(n, k), in
the notation of [12].

Our first main result is the ordinary generating function for the number of partitions of
[n] with a given number of t-levels (Theorem 2.1). This is followed shortly by a “generic”
generating function for the number of partitions of [n] with a given number of t-rises (The-
orem 3.3). It is generic in the sense that it yields an explicit ordinary generating function
when t is specified. We illustrate the derivations with t = 2 and t = 3.

Expectedly, an analogous (but simpler) generating function (than that of t-rises) is ob-
tained for the number of t-descents (Theorem 4.1).
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Fundamental to our results is the observation that a partition π of [n] with k blocks, can
be decomposed uniquely as

π = π′kw, (1.2)

where π′ is a partition of [n] with k − 1 blocks and w is a k-ary word, i.e., a word over the
alphabet [k].

Between, the main theorems we provide examples with a few special cases and obtain
some combinatorial results requiring direct proof.

2 Enumeration of partitions by t-levels

Let Lt(x, y) be the ordinary generating function for the number of partitions of [n] according
to the number of t-levels, that is,

Lt(x, y) =
∑

n≥0

∑

π∈Pn

xny#t−levels in π.

In order to evaluate Lt(x, y), we modify the above notation to the case of partitions of
[n] with k blocks, that is, we denote the ordinary generating function for the number of
partitions of [n] with k blocks and t-levels by

Lt(x, y; k) =
∑

n≥0

∑

π∈Pn,k

xny#t−levels in π.

Note that a refinement of (1.1) can be obtained by using [11, Section 2.1] and (1.1) to
prove that the generating function Wt(x, y; k, a) for the number of k-ary words σ of length
n with σ1 = a according to the number of t-levels is given by

Wt(x, y; k, a) =
x + x2 + · · · + xt−2 + xt−1/(1 − xy)

1 + x + · · · + xt−2 + xt−1/(1 − xy)
Wt(x, y; k)

=
x + x2 + · · · + xt−2 + xt−1/(1 − xy)

1 − (k − 1)(x + x2 + · · · + xt−2 + xt−1/(1 − xy))
.

(2.1)

We now obtain an explicit expression for Lt(x, y; k) by means of (2.1) and (1.2). Note
that (1.2) implies Lt(x, y; k) = Lt(x, y; k− 1)Wt(x, y; k, k) for all k ≥ 1 with initial condition
Lt(x, y; 0) = 1. Hence, by (2.1) we obtain, for all k ≥ 1,

Lt(x, y; k) = Lt(x, y; k − 1)
x + x2 + · · · + xt−2 + xt−1/(1 − xy)

1 − (k − 1)(x + x2 + · · · + xt−2 + xt−1/(1 − xy))
,

which implies that

Lt(x, y; k) =
(x + x2 + · · · + xt−2 + xt−1/(1 − xy))k

∏k−1
j=0(1 − j(x + x2 + · · · + xt−2 + xt−1/(1 − xy)))

.

Since Lt(x, y) = 1 +
∑

k≥1 Lt(x, y; k) we obtain the following result.
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Theorem 2.1. The ordinary generating function for the number of partitions of [n] with k
blocks according to the number of t-levels is given by

Lt(x, y; k) =
(x + x2 + · · · + xt−2 + xt−1/(1 − xy))k

∏k−1
j=0(1 − j(x + x2 + · · · + xt−2 + xt−1/(1 − xy)))

.

Moreover, the ordinary generating function for the number of partitions of [n] according to

the number of t-levels is given by

Lt(x, y) = 1 +
∑

k≥1

(x + x2 + · · · + xt−2 + xt−1/(1 − xy))k

∏k−1
j=0(1 − j(x + x2 + · · · + xt−2 + xt−1/(1 − xy)))

.

As a corollary of the above theorem we obtain the following result.

Corollary 2.2. The number of t-levels in all the partitions of [n] with k blocks is given by

k
n+1−t
∑

i=0

S(i, k) +
k
∑

j=2

(j − 1)
n−t
∑

i=0

jn−t−iS(i, k).

Proof. Differentiating the generating function in the statement of Theorem 2.1, and then
substituting y = 1, we have

∑

n≥0

∑

π∈Pn,k

(#t − levels in π)xn =
kxk−1+t

(1 − x)
∏k

j=1(1 − jx)
+

xk+t

(1 − x)
∏k

j=1(1 − jx)

k
∑

j=2

j − 1

1 − jx
,

which is equivalent to (use the fact that xk

Qk
j=0(1−jx)

=
∑

n≥0 S(n, k)xn):

∑

n≥0

∑

π∈Pn,k

(#2 − rises in π)xn

= kxt−1
∑

n≥0

S(n, k)xn
∑

n≥0

xn + xt
∑

n≥0

S(n, k)xn

k
∑

j=2

(j − 1)
∑

n≥0

jnxn.

Thus, by collecting the xn coefficient we obtain the desired result.

2.1 Some Special Cases

It follows from Theorem 2.1 that the ordinary generating function for the number of parti-
tions of [n] with k blocks without t-levels is given by

Lt(x, 0; k) =
(x + x2 + · · · + xt−2 + xt−1)k

∏k−1
j=0(1 − j(x + x2 + · · · + xt−2 + xt−1))

.
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In particular, we obtain for verification,

L2(x, 0; k) =
xk

(1 − x)(1 − 2x) · · · (1 − (k − 1)x)
=
∑

n

S(n − 1, k − 1)xn.

That is (see [10] for a bijective proof), the number of k-partitions of [n] without levels is
given by S(n − 1, k − 1). In a similar manner, it can be shown that

L3(x, 0; k) = L2(x + x2, 0; k) =
∑

n

⌊n/2⌋
∑

r=0

(

n − r

r

)

S(n − 1 − r, k − 1)xn.

That is, the number of k-partitions of [n] without 3-levels is given by

⌊n/2⌋
∑

r=0

(

n − r

r

)

S(n − 1 − r, k − 1).

And so forth.
Direct special cases of Theorem 2.1 can also be explicitly stated. For instance,

L2(x, y; k) =
(x/(1 − xy))k

∏k−1
j=0(1 − j(x/(1 − xy)))

=
∑

n

∑

r

(

n − 1

r

)

S(n − 1 − r, k − 1)xnyr.

So the number of partitions of [n] with k blocks and r occurrences of 2-levels is given by
(

n−1
r

)

S(n − 1 − r, k − 1). Similarly we have

L3(x, y; k) =
(x + x2/(1 − xy))k

∏k−1
j=0(1 − j(x + x2/(1 − xy)))

.

It is a routine exercise to show that the coefficient of xnyr in the expansion of L3(x, y; k),
and hence the number of k-partitions of [n] with r occurrences of 3-levels, is given by

r
∑

v=1

⌊(n−r)/2⌋
∑

j=v

(

r − 1

v − 1

)(

j

r

)(

n − r − j

j

)

S(n − r − j − 1, k − 1).

Analogous formulas for higher values of t are clearly possible. Table 1 shows the numbers
of 2-levels and 3-levels in the partitions of [n] for n = 0, 1, . . . , 10. The sequence numbers in
the encyclopedia of integer sequences are given in the last column, except where a sequence
is “new”, that is, not presently in [13].

3 Enumeration of partitions by t-rises

In this section we consider the generating function for the number of partitions of [n] ac-
cording to the number of t-rises,

Rt(x, y) =
∑

n≥0

∑

π∈Pn

xny#t−rises in π.
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2-levels\n 0 1 2 3 4 5 6 7 8 9 Sequence in [13]

0 1 1 1 2 5 15 52 203 877 4140 A000110
1 0 0 1 2 6 20 75 312 1421 7016 A052889
2 0 0 0 1 3 12 50 225 1092 5684 A105479
3 0 0 0 0 1 4 20 100 525 2912 A105480
4 0 0 0 0 0 1 5 30 175 1050 A105481

3-levels\n 0 1 2 3 4 5 6 7 8 9 Sequence in [13]

0 1 1 2 4 12 41 159 685 3233 16534 “new”
1 0 0 0 1 2 8 32 141 672 3451 A105483
2 0 0 0 0 1 2 9 38 177 882 A105484
3 0 0 0 0 0 1 2 10 44 215 A105485
4 0 0 0 0 0 0 1 2 11 50 A105486

Table 1: Number of partitions of [n] with 2-levels and 3-levels

as well as the generating function for the number of partitions of [n] with k blocks according
to the number of t-rises,

Rt(x, y; k) =
∑

n≥0

∑

π∈Pn,k

xny#t−rises in π.

For rises the decomposition (1.2) gives

Rt(x, y; k) = xR
(1)
t (x, y; k − 1)Ut(x, y; k) =

∑

n≥0

∑

π∈Pn,k−1

xny#t−rises in (πk)Ut(x, y; k), (3.1)

where Ut(x, y; k) is the ordinary generating function for the number of k-ary words of length

n according to the number of t-rises, that is, Ut(x, y; k) =
∑

n≥0

∑

w xny#t−rises in w such
that the internal sum is over all k-ary words w of length n.

Lemma 3.1. The ordinary generating function U
(s)
t (x, y; k) for the number of (k + s)-ary

words w(k + 1)(k + 2) · · · (k + s), w is k-ary word, of length n + s according to number of

t-rises is given by

U
(s)
t (x, y; k) =

U
(s)
t (x, y; k − 1) + xU

(s+1)
t (x, y; k − 1) − xU

(1)
t (x, y; k − 1)

1 − xU
(1)
t (x, y; k − 1)

for all s = 0, 1, . . . , t − 1,

U
(t)
t (x, y; k) = yU

(t−1)
t (x, y; k) and U

(0)
t (x, y; k) = Ut(x, y; k),

with the initial condition U
(s)
t (x, y; k) = 1

1−kx
for all s + k ≤ t − 1.
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Proof. The equalities

U
(t)
t (x, y; k) = yU

(t−1)
t (x, y; k), U

(0)
t (x, y; k) = Ut(x, y; k), and U

(s)
t (x, y; k) =

1

1 − kx
,

with s + k ≤ t− 1, hold from the definitions. Assume 0 ≤ s ≤ t− 1. We derive a functional
equation for U

(s)
t (x, y; k). Let w be any k-ary word w contains the letter k exactly m times,

and let us consider the following cases:

• The case m = 0. The contribution in this case is U
(s)
t (x, y; k − 1).

• The case m > 0. In this case w can be decomposed as w = w(1)kw(2)k · · ·w(m)kw(m+1).
By considering the two cases, with w(m+1) being either empty or nonempty, we obtain
that the contribution of this case equals

xm(U
(1)
t (x, y; k−1))m−1U

(s+1)
t (x, y; k−1)+xm(U

(1)
t (x, y; k−1))m(U

(s)
t (x, y; k−1)−1).

Summing over all possible values of m ≥ 0 we obtain that

U
(s)
t (x, y; k) = U

(s)
t (x, y; k − 1) +

∑

m≥1

xm(U
(1)
t (x, y; k − 1))m−1U

(s+1)
t (x, y; k − 1)

+
∑

m≥1 xm(U
(1)
t (x, y; k − 1))m(U

(s)
t (x, y, k − 1) − 1)

= U
(s)
t (x, y; k − 1) +

xU
(s+1)
t (x,y;k−1)+xU

(1)
t (x,y;k−1)(U

(s)
t (x;y,k−1)−1)

1−xU
(1)
t (x,y;k−1)

=
U

(s)
t (x,y;k−1)+xU

(s+1)
t (x,y;k−1)−xU

(1)
t (x,y;k−1)

1−xU
(1)
t (x,y;k−1)

,

as claimed.

Lemma 3.2. The ordinary generating function R
(s)
t (x, y; k) for the number of partitions

π(k + 1)(k + 2) · · · (k + s), π a partition of [n] with k blocks, of length n + s according to

number of t-rises is given by

R
(s)
t (x, y; k) = xR

(s+1)
t (x, y; k − 1) + xR

(1)
t (x, y; k − 1)(U

(s)
t (x, y; k) − 1),

for all s = 1, 2, . . . , t − 1,
R

(t)
t (x, y; k) = yR

(t−1)
t (x, y; k),

with the initial condition R
(s)
t (x, y; k) = xk

(1−x)(1−2x)···(1−kx)
for all s + k ≤ t − 1.

Proof. The equality R
(t)
t (x, y; k) = yR

(t−1)
t (x, y; k) and R

(s)
t (x, y; k) = xk

(1−x)(1−2x)···(1−kx)
with

s + k ≤ t − 1 hold from the definitions. Assume 0 ≤ s ≤ t − 1. Let us write an equation for
R

(s)
t (x, y; k). Let π be any partition with k blocks, then π(k + 1) · · · (k + s) can be written

as π′kπ′′(k + 1) · · · (k + s), where π′ is a partition with k − 1 blocks and π′′ is a k-ary word.
By considering the cases that π′′ is empty or nonempty, we obtain that

R
(s)
t (x, y; k) = xR

(s+1)
t (x, y; k − 1) + xR

(1)
t (x, y; k − 1)(U

(s)
t (x, y; k) − 1),

as requested.
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Now we solve the system of recurrence relations in the statement of Lemma 3.1. It is not
hard to see by induction on s that there exists a solution of the following form

U
(s)
t (k) = U

(s)
t (x, y; k) =

U
′(s)
t (x, y; k)

U
′′(1)
t (x, y; k)

,

where
{

U
′(s)
t (k) = U

′(s)
t (k − 1) + xU

′(s+1)
t (k − 1) − xU

′(1)
t (k − 1),

U
′′

t (k) = U
′′

t (k − 1) − xU
′(1)
t (k − 1).

(3.2)

Hence, for all k ≥ 0

U
(s)
t (k) =

U
′(s)
t (k)

1 − x
∑k−1

j=0 U
′(1)
t (j)

. (3.3)

In order to get an explicit formula for U
′(s)
t (k), we rewrite the recurrence relations in Lem-

mas 3.1-3.2 and (3.2) in terms of matrices. Define

U′
t(k) =











U
′(1)
t (k)

U
′(2)
t (k)

...

U
′(t−1)
t (k)











and Rt(k) =











R
(1)
t (k)

R
(2)
t (k)

...

R
(t−1)
t (k)











.

Then Lemmas 3.1-3.2 and (3.2) can be reformulated as follows.

Theorem 3.3. Let t ≥ 1. Then

U′
t(k) = Ak · 1 and Rt(k) = xk

(

k
∏

j=1

Bj

)

· 1,

where 1 = (1, 1, · · · , 1)T is a vector with t − 1 coordinates,

A = I + x















−1 1 0 · · · 0
−1 0 1 · · · 0
...

−1 0 0 1
−1 0 0 y















, Bj =

















U
(1)
t (j) − 1 1 0 · · · 0

U
(2)
t (j) − 1 0 1 · · · 0

...

U
(t−2)
t (j) − 1 0 0 · · · 1

U
(t−1)
t (j) − 1 0 0 · · · y

















,

and I the unit matrix of order t − 1 with U
(s)
t (j) =

U
′(s)
t (j)

1−x
Pk−1

i=0 U
′(1)
t (i)

for all j = 1, 2, . . . , k.

Proof. Rewriting Lemma 3.1 together with (3.2) in terms of matrices, we obtain that U′
t(k) =

A · U′
t(k − 1), for all k ≥ 1. Rewriting Lemma 3.2 in matrices forms, we obtain that

Rt(k) = Bk ·Rt(k − 1), for all k ≥ 1. Thus, Rt(k) = xk
(

∏k
j=1 Bj

)

·Rt(0). Using the initial

condition U′
t(0) = Rt(0) = 1, we arrive at U′

t(k) = Ak · 1 and Rt(k) = xk
(

∏k
j=1 Bj

)

· 1, as

claimed.
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3.1 The case t = 2

Now let us consider the case t = 2. Theorem 3.3 for t = 2 gives U
′(1)
2 (x, y; k) = (1−x + xy)k

for all k ≥ 0. Thus, by (3.3) we have that

U
(1)
2 (x, y; k) =

(1 − x + xy)k

1 − x
∑k−1

j=0(1 − x + xy)j
,

which is equivalent to

U
(1)
2 (x, y; k) =

(1 − x + xy)k

1 − 1−(1−x+xy)k

1−y

=
(1 − y)(1 − x + xy)k

(1 − x + xy)k − y
. (3.4)

This implies that (see Lemma 3.1 for s = 0)

U2(x, y; k) =
U2(x, y; k − 1)

1 − x(1−y)(1−x+xy)k−1

(1−x+xy)k−1−y

and U2(x, y; 1) = 1
1−x

, thus we obtain that

U2(x, y; k) =
1

∏k−1
j=0

(

1 − x(1−y)(1−x+xy)j

(1−x+xy)j−y

) . (3.5)

On the other hand, Theorem 3.3 for t = 2 gives R
(1)
2 = xk

∏k
j=1(U

(1)
t (x, y; j)− 1+ y), and

by (3.4) we get that

R
(1)
2 (x, y; k) =

xkyk(1 − y)k

∏k
j=1(1 − x + xy)j − y

.

Thus using (3.1) with (3.5) we obtain the following result.

Theorem 3.4. The ordinary generating function for the number of partitions of [n] with k
blocks according to the number of 2-rises is given by

xkyk−1(1 − y)k

∏k
j=1 ((1 − x + xy)j − y)

.

From the above theorem we deduce the number of the 2-rises in all the partitions of [n]
with k blocks, as follows:

Corollary 3.5. The number of 2-rises in all the partitions of [n] with k blocks is given by

(k − 1)S(n, k) +
k
∑

j=2

(

j

2

) n−2
∑

i=k

jn−2−iS(i, k).

9



Proof. Differentiating the generating function in the statement of Theorem 3.4 and then
substituting y = 1 we get that

∑

n≥0

∑

π∈Pn,k

(#2 − rises in π)xn =
xk

∏k
j=1 1 − jx

(

k − 1 + x2

k
∑

j=2

(

j
2

)

1 − jx

)

,

which is equivalent (use the fact that xk

Qk
j=0 1−jx

=
∑

n≥0 Sn,kx
n) to

∑

n≥0

∑

π∈Pn,k

(#2 − rises in π)xn = (k − 1)
∑

n≥0

S(n, k)xn +
∑

n≥2

xn

k
∑

j=2

(

j

2

) n−2
∑

i=0

jn−2−iS(i, k).

Thus, by collecting the xn coefficient we obtain the desired result.

3.2 The case t = 3

Theorem 3.3 for t = 3 gives

U
′

3(k) =

(

1 − x x
−x 1 + xy

)k (
1
1

)

.

Using the decomposition

A =

(

1 − x x
−x 1 + xy

)

= PDP−1, P =

(

1 1
λ1−1

x
+ 1 λ2−1

x
+ 1

)

, D =

(

λ1 0
0 λ2

)

with

λ1 = 1 +
x

2
(y − 1 +

√

(y − 1)(y + 3)) and λ2 = 1 +
x

2
(y − 1 −

√

(y − 1)(y + 3)), (3.6)

we obtain that

U
′

3(k) =
1

√

(y − 1)(y + 3)

(

λ1−1
x

λk
2 − λ2−1

x
λk

1
λ1−1

x
λk

1 − λ2−1
x

λk
2

)

,

which implies that







U
′(1)
3 (k) = 1

x
√

(y−1)(y+3)

(

(λ1 − 1)λk
2 − (λ2 − 1)λk

1

)

,

U
′(2)
3 (k) = 1

x
√

(y−1)(y+3)

(

(λ1 − 1)λk
1 − (λ2 − 1)λk

2

)

.

Using (3.3) we obtain that

U
(1)
3 (k) =

U
′(1)
t (k)

1 − x
∑k−1

j=0 U
′(1)
t (j)

=
(1 − λ2)λ

k
1 − (1 − λ1)λ

k
2

x
(

1−λ2

1−λ1
λk

1 − 1−λ1

1−λ2
λk

2

) , (3.7)

10



and

U
(2)
3 (k) =

U
′(2)
t (k)

1 − x
∑k−1

j=0 U
′(1)
t (j)

=
(1 − λ2)λ

k
2 − (1 − λ1)λ

k
1

x
(

1−λ2

1−λ1
λk

1 − 1−λ1

1−λ2
λk

2

) , (3.8)

Thus, Lemma 3.1 for s = 0 gives that

U3(x, y; k) =
1

∏k−1
j=0(1 − xU

(1)
3 (x, y; j))

,

which is equivalent to

U3(x, y; k) =
1

∏k−1
j=0(1 − (1−λ2)λj

1−(1−λ1)λj
2

1−λ2
1−λ1

λj
1−

1−λ1
1−λ2

λj
2

)
=

k−1
∏

j=0

1−λ2

1−λ1
λj

1 − 1−λ1

1−λ2
λj

2

1−λ2

1−λ1
λj+1

1 − 1−λ1

1−λ2
λj+1

2

.

Thus, Theorem 3.3 for t = 3 gives the following result.

Theorem 3.6. The ordinary generating function R3(x, y; k) for the number of partitions of

[n] with k blocks according to the number 3-rises is given by

xR
(1)
3 (x, y; k − 1)U3(x, y; k) = xR

(1)
3 (x, y; k − 1)

k−1
∏

j=0

1−λ2

1−λ1
λj

1 − 1−λ1

1−λ2
λj

2

1−λ2

1−λ1
λj+1

1 − 1−λ1

1−λ2
λj+1

2

,

where
(

R
(1)
3 (x, y; k)

R
(2)
3 (x, y; k)

)

= xk

(

k
∏

j=1

Bj

)

· 1

with Bj =

(

U
(1)
3 (x, y; j) − 1 1

U
(2)
3 (x, y; j) − 1 y

)

.

In order to find an explicit formula for R3(x, y; k) we need the following notation and
two further lemmas. The set of all the solutions of the equation i1 + i2 + · · · + im = n with
i1, i2, . . . , im ∈ {1, 2} is denoted by Fn,m. Define Fn = ∪n

m=1Fn,m.

Lemma 3.7. Let {an}n≥0 be any sequence that satisfies an+2 = αn+1an+1 + βn+1an with

a0 = 0 and a1 = α0. Then

an = α0

∑

(i1,i2,...,im)∈Fn−1





∏

ij=1

αi1+i2+···+ij

∏

ij=2

βi1+i2+···+ij



 .

Proof. The proof can be obtained by induction on n. It is trivial to check the lemma for
n = 0, 1. Let n ≥ 0, then by the induction hypothesis for n + 1 and n we obtain that

an+2 = αn+1α0

∑

Fn

(

∏

ij=1 αi1+i2+···+ij

∏

ij=2 βi1+i2+···+ij

)

+βn+1α0

∑

Fn−1

(

∏

ij=1 αi1+i2+···+ij

∏

ij=2 βi1+i2+···+ij

)

= α0

∑

Fn+1

(

∏

ij=1 αi1+i2+···+ij

∏

ij=2 βi1+i2+···+ij

)

,

which completes the proof.
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Lemma 3.8. Let {Qn}n≥1 be any sequence of matrices of order two, where Qn is defined by
(

αn 1
βn y

)

. Then

n
∏

j=1

Qj = Q1Qj · · ·Qn =

(

an bn

cn dn

)

,

where

bn =
∑

(i1,i2,...,im)∈Fn−1

(

∏

ij=1(αi1+i2+···+ij + y)
∏

ij=2(βi1+i2+···+ij − αi1+i2+···+ijy)
)

,

dn =
∑

(i1,i2,...,im)∈Fn

(

∏

ij=1(αi1+i2+···+ij−1 + y)
∏

ij=2(βi1+i2+···+ij−1 − αi1+i2+···+ij−1y)
)

,

an = bn+1 − ybn and cn = dn+1 − ydn.

Proof. Define Pn =
∏n

j=1 Qj =

(

an bn

cn dn

)

. From the definitions, the sequences {an}n≥0,

{bn}n≥0, {cn}n≥0 and {dn}n≥0 satisfy















an+1 = αn+1an + βn+1bn,
bn+1 = an + ybn,
cn+1 = αn+1cn + βn+1dn,
dn+1 = cn + ydn.

This implies that
bn+2 = (αn+1 + y)bn+1 + (βn+1 − αn+1y)bn.

The initial conditions b0 = 0 and b1 = 1 hold from the definitions. Thus, Lemma 3.7 gives

bn =
∑

(i1,i2,...,im)∈Fn−1





∏

ij=1

(αi1+i2+···+ij + y)
∏

ij=2

(βi1+i2+···+ij − αi1+i2+···+ijy)



 .

Similarly, we have
dn+2 = (αn+1 + y)dn+1 + (βn+1 − αn+1y)dn

with the initial conditions d0 = 1 and d1 = y, which implies by Lemma 3.7 that

dn =
∑

(i1,i2,...,im)∈Fn





∏

ij=1

(αi1+i2+···+ij−1 + y)
∏

ij=2

(βi1+i2+···+ij−1 − αi1+i2+···+ij−1y)



 .

The rest holds from the recurrence relations of the sequences {cn}n≥0 and {an}n≥0.

Theorem 3.6 and Lemma 3.8 give the following result.
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Theorem 3.9. The ordinary generating function R3(x, y; k) for the number of partitions of

[n] with k blocks according to the number of 3-rises is given by

xk(Y (x, y; k) − (1 − y)Y (x, y; k − 1))
k−1
∏

j=0

1−λ2

1−λ1
λj

1 − 1−λ1

1−λ2
λj

2

1−λ2

1−λ1
λj+1

1 − 1−λ1

1−λ2
λj+1

2

,

where λi, i = 1, 2, is defined in (3.6), and

Y (x, y; k) =
∑

(i1,i2,...,im)∈Fk−1





∏

ij=1

(αi1+i2+···+ij + y)
∏

ij=2

(βi1+i2+···+ij − αi1+i2+···+ijy)



 ,

αj = U
(1)
3 (x, y; j) − 1 and βj = U

(2)
3 (x, y; j) − 1, see (3.7) and (3.8).

Some enumerative results for t-rises, t = 2, 3, are given in Table 2. We remark that all
the row sequences in Table 2 are not presently in [13].

2-rises\n 0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 3 6 10 15 21 28 36 45
2 0 0 0 1 7 26 71 161 322 588 1002
3 0 0 0 0 1 14 89 380 1268 3571 8878
4 0 0 0 0 0 1 26 267 1709 8136 31532

3-rises\n 0 1 2 3 4 5 6 7 8 9 10

0 1 1 2 4 10 27 82 268 950 3595 14512
1 0 0 0 1 4 19 79 350 1558 7256 34851
2 0 0 0 0 1 5 35 191 1114 6260 36246
3 0 0 0 0 0 1 6 60 410 3045 20914
4 0 0 0 0 0 0 1 7 99 821 7613

Table 2: Number of partitions of [n] with 2-rises and 3-rises

4 Enumeration of partitions by t-descents

In this section we obtain the generating function for the number of partitions of [n] with k
blocks according to number of t-descents, that is,

Dt(x, y; k) =
∑

n≥0

∑

π∈Pn,k

xny#t−descents in π.

13



For descents the decomposition (1.2) immediately implies

Dt(x, y; k) = Dt(x, y; k − 1)Vt(x, y; k),

where Vt(x, y; k) is the ordinary generating function for the number k-ary words kπ of length
n according to the number of t-descents. Each k-ary word kπ can be decomposed as kπ =
kπ(1)kπ(2) · · · kπ(m) with m ≥ 1. Thus the occurrence of t-descents are exactly the occurrences
of t-rises in the reversal word of kπ. Thus, by the definition of U

(s)
t (x, y; k) we obtain that

Vt(x, y; k) =
xU

(1)
t (x, y; k − 1)

1 − xU
(1)
t (x, y; k − 1)

.

Hence, we can state the following result.

Theorem 4.1. Let t ≥ 1. Then the ordinary generating function for the number of partitions

of [n] with k blocks according to the number of t-descents is given by

Dt(x, y; k) = xk

k−1
∏

j=0

U
(1)
t (x, y; j)

1 − xU
(1)
t (x, y; j)

.

4.1 The case t = 2

Using Theorem 4.1 for t = 2 together with (3.4) we obtain the following result.

Corollary 4.2. The ordinary generating function for the number of partitions of [n] with k
blocks according to the number of 2-descents is given by

xk

k−1
∏

j=0

(1 − y)(1 − x + xy)j

(1 − x + xy)j+1 − y
.

Again, from the above corollary we can obtain the number of 2-descents in all the parti-
tions of [n] with k blocks, as follows.

Corollary 4.3. The number of 2-descents in all the partitions of [n] with k blocks is given

by
(

k

2

)

S(n − 1, k) +
k
∑

j=2

j − 1

2

n−2
∑

i=0

jn−1−iS(i, k).

Proof. Differentiating the generating function in the statement of Corollary 4.2 and then
substituting y = 1 we get that

∑

n≥0

∑

π∈Pn,k

(#2-descents in π)xn =
xk+1

∏k
j=1(1 − jx)

k
∑

j=2

(j − 1) −
(

j
2

)

x

1 − jx
,

14



2-descents\n 0 1 2 3 4 5 6 7 8 9 10

0 1 1 2 4 8 16 32 64 128 256 512
1 0 0 0 1 7 32 121 411 1304 3949 11567
2 0 0 0 0 0 4 49 360 2062 10163 45298
3 0 0 0 0 0 0 1 42 624 6042 45810
4 0 0 0 0 0 0 0 0 22 730 12170

3-descents\n 0 1 2 3 4 5 6 7 8 9 10

0 1 1 2 5 15 51 192 789 3504 16689 84717
1 0 0 0 0 0 1 11 87 616 4199 28465
2 0 0 0 0 0 0 0 1 20 257 2729
3 0 0 0 0 0 0 0 0 0 2 64

Table 3: Number partitions of [n] with 2-descents and 3-descents

which is equivalent (use the fact that xk

Qk
j=0(1−jx)

=
∑

n≥0 S(n, k)xn) to

∑

n≥0

∑

π∈Pn,k

(#2-descents in π)xn = x
∑

n≥0

S(n, k)xn

(

1

2

(

k

2

)

+
1

2

k
∑

j=2

(j − 1)
∑

n≥0

jnxn

)

.

Thus, by collecting the xn coefficient we obtain the desired result.

4.2 The case t = 3

Theorem 4.1 for t = 2 together with (3.7) we obtain the following result.

Corollary 4.4. The ordinary generating function for the number of partitions of [n] with k
blocks according to the number of 3-descents is given by

xk

k−1
∏

j=0

(1 − λ2)λ
j
1 − (1 − λ1)λ

j
2

1−λ2

1−λ1
λj+1

1 − 1−λ1

1−λ2
λj+1

2

,

where λ1 = 1 + x
2
(y − 1 +

√

(y − 1)(y + 3)) and λ2 = 1 + x
2
(y − 1 −

√

(y − 1)(y + 3)).

Some specific enumeration of t-descents, t = 2, 3, are given in Table 3. The row sequences
in Table 3 are not yet in the database in [13].

5 Concluding remarks

Special cases of the results obtained in previous sections include the generating functions
for the numbers of k-ary words according to both t-rises and t-descents, which complete the
solution of a class of enumeration problems described by Burstein and Mansour (see [2]).
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Combinatorial proofs are solicited for the formulas enumerating the occurrences of lev-
els, rises and descents, among all partitions of [n], obtained in Corollaries 2.2, 3.5 and 4.3
respectively.

There are several ways in which one could extend our research. For example, one can
study the following problems.

• It would be interesting to find explicit formulas for the generating functions Rt(x, y; k)
and Dt(x, y; k) which evaluate directly for each integer t ≥ 2, (in the spirit of the “nice”
result Lt(x, y; k)).

• Consider two words, σ ∈ [k]n and τ ∈ [ℓ]m. In other words, σ is an k-ary word of
length n and τ is an ℓ-ary word of length m. Assume additionally that τ contains
all letters 1 through ℓ. We say that σ contains an occurrence of τ , or simply that σ
contains τ , if σ has a subword order-isomorphic to τ , i.e., if there exists 1 ≤ i ≤ n−m
such that, for any relation φ ∈ {<, =, >} and indices 1 ≤ a, b ≤ m, σi+aφσi+b if and
only if τaφτb. In this situation, the word τ is called a subword pattern. One may be
interested in generalizing our results to study the number of partitions that avoid a
subword pattern τ .
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