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Abstract

We prove a linear recursion for the generalized Catalan numbers C,(n) := m (ag)

when a > 2. As a consequence, we show p | Cp(n) if and only if n # 1;“%11 for all integers
k > 0. This is a generalization of the well-known result that the usual Catalan number
Co(n) is odd if and only if n is a Mersenne number 2% — 1. Using certain beautiful
results of Kummer and Legendre, we give a second proof of the divisibility result for
Cp(n). We also give suitably formulated inductive proofs of Kummer’s and Legendre’s
formulae which are different from the standard proofs.

1 Introduction

The Catalan numbers n+r1 (2:) arise in diverse situations like counting lattice paths, counting
rooted trees etc. In this note, we consider for each natural number a > 2, generalized Catalan
numbers (referred to henceforth as GCNs) C,(n) := m(ag) and give a linear recursion
for them. Note that a = 2 corresponds to the Catalan numbers. The linear recursion seems
to be a new observation. We prove the recursion by a suitably formulated induction. This
new recursion also leads to a divisibility result for C),(n)’s for a prime p and, thus also, to
another proof of the well-known parity assertion for the usual Catalan numbers. The latter
asserts Cy(n) is odd if and only if n is a Mersenne number; that is, a number of the form
2% — 1 for some positive integer k. Using certain beautiful results of Kummer and Legendre,
we give a second proof of the divisibility result for C,(n). We also give suitably formulated

inductive proofs of Kummer’s and Legendre’s formulae mentioned below. This is different


mailto:sury@isibang.ac.in

from the standard proofs [2] and [3]. In this paper, the letter p always denotes a prime
number.

2 Linear recursion for GCNs

Lemma 1. For any a > 2, the numbers C,(n) = m(?) can be defined recursively by
Ca(0) =1
e a-Dm -k 41
Cy(n) = ; (—1) ( . >C’a(n—k) n > 1.

In particular, the usual Catalan numbers Cy(n) satisfy the linear recursion

(n—k—i—l

f )CQ(n—k),nzl.

k=1

2.1 A definition and remarks

Before proceeding to prove the lemma, we recall a useful definition. One defines the forward
difference operator A on the set of functions on R as follows. For any function f, the new
function Af is defined by

(Af)(x) = flz+1) = f(2).

Successively, one defines AF1f = A(A*f) for each k > 1. Tt is easily proved by induction
on n (see, for instance [1, pp. 102-103]) that

n

@ 1)) = S 0F () ot =),

k=0

We note that if f is a polynomial of degree d, then Af is also a polynomial and has degree
d — 1. In particular, AN f = 0, the zero function, when N > d. Therefore, (AN f)(0) = 0.

Proof of 1. The asserted recursion can be rewritten as
n\ (a(n — k)
—1)k = 0.
() (o)) -
k>0

One natural way to prove such identities is to try and view the sum as (A"f)(0) for a
polynomial f of degree < m. In our case, we may take f(z) = ax(az —1)---(ax —n + 2)
which is a polynomial of degree < n. Then,

@ 1)) = 0¥ () ) s n -0 =0

k>0



This gives

o =0 ()) () o

k>0

Thus the asserted recursion follows. H
Using this lemma, we have the following:

Theorem 2. The prime p|C,(n) if and only if n # p fm’ all integers k > 0. In particular,
Cy(n) is odd if and only if n is a Mersenne number 2’“ — 1.

Proof. We shall apply induction on n. The result holds for n = 1 since C,(1) = 1. Assume
n > 1 and that the result holds for all m < n. Let p” <n < p"*' — 1. Let us read the right
hand side of

L(F*1>n+1j

d L f(p—=D(n—Fk)+1
G = Y o (PTH Cyln— k)
k=1
modulo p. We use the induction hypothesis that for m < n, C,(m) is a multiple of p whenever
(p—1)m + 1 is not a power of p. Modulo P, the terms in the above sum which are non-zero

"+1 the only non-zero

are those for which n — £ is of the form ppT But, since p" <n <p
term modulo p is the one corresponding to the index k for which (p — 1)(n — k) =p" — 1 if

= ;%11_1 (respectively, (p — 1)(n — k) = p™*' —1if n > pr;—l1_1> This term is, to within
sign, (n_Z:;l)Cp(%) if n < 1%11_1 (respectively, (n_&)cp(l’r;_l—l) ifn > PT“—I) As
p1 e

the binomial coefficient (’;T) is a multiple of p if and only if 0 < s < p", the above term is a
pT;_III (respectively,

. . . r_q ros
multiple ofp if and only if 0 < n— ppTl <plifn < 1
o — L), This is equivalent to p" < (p — D)n + 1 < p'*if n < pT;_l_l (respectively,
ptt < ( —Dn+1<pt?ifn> prﬂfl), which means that (p — 1)n + 1 is not a power of
p. The theorem is proved. O

1fn>p

3 Another proof of Theorem using Kummer’s algo-
rithm

Kummer proved that, for 7 < n, the p-adic valuation vp(( )) is simply the number of carries
when one adds r» and n — r in base-p. We give another proof of Theorem 2 now using
Kummer’s algorithm.

3.1 Another proof of Theorem 2
Write the base-p expansion of (p — 1)n + 1 as

p—1n+1l=as - a410---0



say, where a,41 # 0,5 > r+ 1 and » > 0. Evidently, v,((p — 1)n + 1) = r. Thus, unless
(p—1)n+ 1 is a power of p, the base-p expansion of (p — 1)n will have the same number of
digits as above. It is of the form

(=D = s (@ =D (= 1) (p—1)

. /
-~

r times

where a,.1 — 1 is between 0 and p — 2. So, the base-p expansion of n itself looks like

with r ones at the right end. Also, there are at least r carries coming from the right end
while adding the base-p expansions of n and (p — 1)n. Moreover, unless (p — 1)n + 1 is a
power of p, consider the first non-zero digit to the left of the string of (p — 1)’s at the end of
the expansion of (p — 1)n. If it is denoted by w, and the corresponding digit for n is v, then
(p — 1)v = u (mod p); that is, u + v is a non-zero multiple of p (and therefore > p). Thus,
there are at least r + 1 carries coming from adding the base-p expansions of n and (p — 1)n
unless (p — 1)n + 1 is a power of p. This proves Theorem 2 again. B

4 Kummer and Legendre’s formulae inductively

Legendre observed that v,(n!) is %(1") where s(n) is the sum of the digits in the base-
p expansion of n. In [2], Honsberger deduces Kummer’s theorem (used in the previous
section) from Legendre’s result and refers to Ribenboim’s book [3] for a proof of the latter.

Ribenboim’s proof is by verifying that Legendre’s base-p formula agrees with the standard

formula s () = {%J N L%J n L%J TR (1)

Surprisingly, it is possible to prove Legendre’s formula without recourse to the above
formula and that the standard formula follows from such a proof. What is more, Kummer’s
formula also follows without having to use Legendre’s result.

4.1 Legendre’s formula:

Lemma 3. Let n = (ay - - - ajag), and s(n) = SF o @r. Then,

n— s(n)
vp (n!) = o1 (2)
Proof. The formulae are evidently valid for n = 1. We shall show that if Legendre’s formula
v, (n!) = %(1") holds for n, then it also holds for pn + r for any 0 < r < p. Note that the
base-p expansion of pn + r is
Qa1 T.



Let f(m) = m;f(lm ) where m > 1. Evidently,

k
flpn+r) :% =n+ f(n).

On the other hand, it follows by induction on n that
v, ((pn 4+ 1)) = n + vy(n!). (3)
For, if it holds for all n < m, then
vplpm +1)1) = wp(pm) + vp((pm — p)!)
= 1+v,(m)+m—1+4+v,((m—=1)") = m+v,(m!).

Since it is evident that f(m) = 0 = v,(m!) for all m < p, it follows that f(n) = v,(n!) for
all n. This proves Legendre’s formula.
Note also that the formula

w33 -

follows inductively using Legendre’s result. O

4.2 Kummer’s algorithm:

Lemma 4. Forr,s >0, let g(r, s) be the number of carries when the base-p expansions of r
and s are added. Then, for k <n,

w((1)) = athn-n, (1)

Proof. Once again, this is clear if n < p, as both sides are then zero. We shall show that if
the formula holds for all integers 0 < j < n (and every 0 < k < j), it does so for pn + r for
0 <r <p (and any k < pn + r). This would prove the result for all natural numbers.

Consider a binomial coefficient of the form (5:;2), where 0 < a < p.

First, suppose a < r.

Write m = by - - - by and n —m = ¢, - - - ¢o in base-p. Then the base-p expansions of pm+a
and p(n —m) + (r — a) are, respectively,

pm+a = by---bya

p(n—m)+(r—a) = c--cor—a.
Evidently, the corresponding number of carries is

glpm +a,p(n —m) + (r —a)) = g(m,n —m).



By the induction hypothesis, g(m,n —m) = v,((")). Now v, ((pn —:_r)) is equal to
pm +a

vp((pn +1)1) = vp((pm + a)l) = v ((p(n —m) +7 = a)!)

= bl = m =) (= m) = (- m)) = 5 (1)),

m

Thus, the result is true when a < r.

Now suppose that r < a. Then v, ((pn + T)) is equal to
pm—+a

vp((pn +1)1) = vp((pm + a)l) = op((p(n —m = 1) + (p +7 — a))!)
n+uvy(n!) —m—uv,(m!) —(n—m—1) —v,((n —m —1)!)
= 1+v,(n)+v,((n—1)!) —v,(m!) —v,((n—m—1)!)

= 1+v,(n)+uv, ((n;t 1))

We need to show that
glpm +a,p(n —m —=1)+ (p+r—a)) =1+v,(n) +glmn—m—1). (5)

Note that m < n. Write n = ap---ag, m =bg---bg and n —m — 1 = ¢ - - - ¢y in base-p. If
vp(n) = d, then a; = 0 for i < d and ayq # 0. In base-p, we have

n:ak"adO'O

and, therefore,
n—l:ak..-adJrl(ad—l) (p_l) (p_l)

Now, the addition m 4+ (n —m — 1) =n — 1 gives b; + ¢; = p — 1 for i < d (since they must
be < 2p —1). Moreover, by +cg =aq— 1 or p+ag — 1.
Note the base-p expansions

pm+a = by---bya
pln—m—-1)+((p+r—a) = cx-co(p+r—a).

We add these using that fact that there is a carry-over in the beginning and that 1+b;+c¢; = p
for i < d. Since there is a carry-over at the first step as well as at the next d steps, we have

pn+r:* k.- adO"'O r

—
d times
and
glpm+a,p(n —m—1)+(p+r—a))=1+d+g(mn—m—1).
This proves Kummer’s assertion also. ]
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