
23 11

Article 09.7.5
Journal of Integer Sequences, Vol. 12 (2009),2

3

6

1

47

Generalized Catalan Numbers:
Linear Recursion and Divisibility

B. Sury
Stat-Math Unit

Indian Statistical Institute
8th Mile Mysore Road

Bangalore 560059
India

sury@isibang.ac.in

Abstract

We prove a linear recursion for the generalized Catalan numbers Ca(n) := 1
(a−1)n+1

(
an
n

)

when a ≥ 2. As a consequence, we show p |Cp(n) if and only if n 6= pk−1
p−1 for all integers

k ≥ 0. This is a generalization of the well-known result that the usual Catalan number
C2(n) is odd if and only if n is a Mersenne number 2k − 1. Using certain beautiful
results of Kummer and Legendre, we give a second proof of the divisibility result for
Cp(n). We also give suitably formulated inductive proofs of Kummer’s and Legendre’s
formulae which are different from the standard proofs.

1 Introduction

The Catalan numbers 1
n+1

(
2n

n

)
arise in diverse situations like counting lattice paths, counting

rooted trees etc. In this note, we consider for each natural number a ≥ 2, generalized Catalan
numbers (referred to henceforth as GCNs) Ca(n) := 1

(a−1)n+1

(
an

n

)
and give a linear recursion

for them. Note that a = 2 corresponds to the Catalan numbers. The linear recursion seems
to be a new observation. We prove the recursion by a suitably formulated induction. This
new recursion also leads to a divisibility result for Cp(n)’s for a prime p and, thus also, to
another proof of the well-known parity assertion for the usual Catalan numbers. The latter
asserts C2(n) is odd if and only if n is a Mersenne number; that is, a number of the form
2k − 1 for some positive integer k. Using certain beautiful results of Kummer and Legendre,
we give a second proof of the divisibility result for Cp(n). We also give suitably formulated
inductive proofs of Kummer’s and Legendre’s formulae mentioned below. This is different
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from the standard proofs [2] and [3]. In this paper, the letter p always denotes a prime
number.

2 Linear recursion for GCNs

Lemma 1. For any a ≥ 2, the numbers Ca(n) = 1
(a−1)n+1

(
an

n

)
can be defined recursively by

Ca(0) = 1

Ca(n) =

⌊
(a−1)n+1

a
⌋

∑

k=1

(−1)k−1

(
(a − 1)(n − k) + 1

k

)

Ca(n − k) , n ≥ 1.

In particular, the usual Catalan numbers C2(n) satisfy the linear recursion

C2(n) =

⌊n+1
2

⌋
∑

k=1

(−1)k−1

(
n − k + 1

k

)

C2(n − k) , n ≥ 1.

2.1 A definition and remarks

Before proceeding to prove the lemma, we recall a useful definition. One defines the forward

difference operator ∆ on the set of functions on R as follows. For any function f , the new
function ∆f is defined by

(∆f)(x) := f(x + 1) − f(x).

Successively, one defines ∆k+1f = ∆(∆kf) for each k ≥ 1. It is easily proved by induction
on n (see, for instance [1, pp. 102–103]) that

(∆nf)(x) =
n∑

k=0

(−1)k

(
n

k

)

f(x + n − k).

We note that if f is a polynomial of degree d, then ∆f is also a polynomial and has degree
d − 1. In particular, ∆Nf ≡ 0, the zero function, when N > d. Therefore, (∆Nf)(0) = 0.

Proof of 1. The asserted recursion can be rewritten as

∑

k≥0

(−1)k

(
n

k

)(
a(n − k)

n − 1

)

= 0.

One natural way to prove such identities is to try and view the sum as (∆nf)(0) for a
polynomial f of degree < n. In our case, we may take f(x) = ax(ax − 1) · · · (ax − n + 2)
which is a polynomial of degree < n. Then,

(∆nf)(x) =
∑

k≥0

(−1)k

(
n

k

)

f(x + n − k) ≡ 0.
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This gives

(∆nf)(0) =
∑

k≥0

(−1)k

(
n

k

)(
a(n − k)

n − 1

)

= 0.

Thus the asserted recursion follows. �

Using this lemma, we have the following:

Theorem 2. The prime p |Cp(n) if and only if n 6= pk−1
p−1

for all integers k ≥ 0. In particular,

C2(n) is odd if and only if n is a Mersenne number 2k − 1.

Proof. We shall apply induction on n. The result holds for n = 1 since Cp(1) = 1. Assume
n > 1 and that the result holds for all m < n. Let pr ≤ n ≤ pr+1 − 1. Let us read the right
hand side of

Cp(n) =

⌊
(p−1)n+1

p
⌋

∑

k=1

(−1)k−1

(
(p − 1)(n − k) + 1

k

)

Cp(n − k)

modulo p. We use the induction hypothesis that for m < n, Cp(m) is a multiple of p whenever
(p− 1)m + 1 is not a power of p. Modulo p, the terms in the above sum which are non-zero

are those for which n − k is of the form pN−1
p−1

. But, since pr ≤ n < pr+1, the only non-zero

term modulo p is the one corresponding to the index k for which (p − 1)(n − k) = pr − 1 if

n ≤ pr+1−1
p−1

(respectively, (p − 1)(n − k) = pr+1 − 1 if n > pr+1−1
p−1

). This term is, to within

sign,
(

pr

n− pr
−1

p−1

)
Cp(

pr−1
p−1

) if n ≤ pr+1−1
p−1

(respectively,
( pr+1

n− pr+1
−1

p−1

)
Cp(

pr+1−1
p−1

) if n > pr+1−1
p−1

). As

the binomial coefficient
(

pr

s

)
is a multiple of p if and only if 0 < s < pr, the above term is a

multiple of p if and only if 0 < n− pr−1
p−1

< pr if n ≤ pr+1−1
p−1

(respectively, 0 < n− pr+1−1
p−1

< pr+1

if n > pr+1−1
p−1

). This is equivalent to pr < (p − 1)n + 1 < pr+1 if n ≤ pr+1−1
p−1

(respectively,

pr+1 < (p − 1)n + 1 < pr+2 if n > pr+1−1
p−1

), which means that (p − 1)n + 1 is not a power of
p. The theorem is proved.

3 Another proof of Theorem using Kummer’s algo-

rithm

Kummer proved that, for r ≤ n, the p-adic valuation vp(
(

n

r

)
) is simply the number of carries

when one adds r and n − r in base-p. We give another proof of Theorem 2 now using
Kummer’s algorithm.

3.1 Another proof of Theorem 2

Write the base-p expansion of (p − 1)n + 1 as

(p − 1)n + 1 = as · · · ar+10 · · · 0
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say, where ar+1 6= 0, s ≥ r + 1 and r ≥ 0. Evidently, vp((p − 1)n + 1) = r. Thus, unless
(p − 1)n + 1 is a power of p, the base-p expansion of (p − 1)n will have the same number of
digits as above. It is of the form

(p − 1)n = ∗ · · · ∗ (ar+1 − 1) (p − 1) · · · (p − 1)
︸ ︷︷ ︸

r times

where ar+1 − 1 is between 0 and p − 2. So, the base-p expansion of n itself looks like

n = ∗ · · · ∗ 1 · · · 1

with r ones at the right end. Also, there are at least r carries coming from the right end
while adding the base-p expansions of n and (p − 1)n. Moreover, unless (p − 1)n + 1 is a
power of p, consider the first non-zero digit to the left of the string of (p− 1)’s at the end of
the expansion of (p− 1)n. If it is denoted by u, and the corresponding digit for n is v, then
(p − 1)v ≡ u (mod p); that is, u + v is a non-zero multiple of p (and therefore ≥ p). Thus,
there are at least r + 1 carries coming from adding the base-p expansions of n and (p − 1)n
unless (p − 1)n + 1 is a power of p. This proves Theorem 2 again. �

4 Kummer and Legendre’s formulae inductively

Legendre observed that vp(n!) is n−s(n)
p−1

where s(n) is the sum of the digits in the base-

p expansion of n. In [2], Honsberger deduces Kummer’s theorem (used in the previous
section) from Legendre’s result and refers to Ribenboim’s book [3] for a proof of the latter.
Ribenboim’s proof is by verifying that Legendre’s base-p formula agrees with the standard
formula

vp (n!) =

⌊
n

p

⌋

+

⌊
n

p2

⌋

+

⌊
n

p3

⌋

+ · · · . (1)

Surprisingly, it is possible to prove Legendre’s formula without recourse to the above
formula and that the standard formula follows from such a proof. What is more, Kummer’s
formula also follows without having to use Legendre’s result.

4.1 Legendre’s formula:

Lemma 3. Let n = (ak · · · a1a0)p and s(n) =
∑k

r=0 ar. Then,

vp (n!) =
n − s(n)

p − 1
(2)

Proof. The formulae are evidently valid for n = 1. We shall show that if Legendre’s formula
vp (n!) = n−s(n)

p−1
holds for n, then it also holds for pn + r for any 0 ≤ r < p. Note that the

base-p expansion of pn + r is
ak · · · a1a0 r.
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Let f(m) = m−s(m)
p−1

, where m ≥ 1. Evidently,

f(pn + r) =
pn −

∑k

i=0 ai

p − 1
= n + f(n).

On the other hand, it follows by induction on n that

vp ((pn + r)!) = n + vp(n!). (3)

For, if it holds for all n < m, then

vp((pm + r)!) = vp(pm) + vp((pm − p)!)

= 1 + vp(m) + m − 1 + vp((m − 1)!) = m + vp(m!).

Since it is evident that f(m) = 0 = vp(m!) for all m < p, it follows that f(n) = vp(n!) for
all n. This proves Legendre’s formula.

Note also that the formula

vp(n!) =

⌊
n

p

⌋

+

⌊
n

p2

⌋

+

⌊
n

p3

⌋

+ · · ·

follows inductively using Legendre’s result.

4.2 Kummer’s algorithm:

Lemma 4. For r, s ≥ 0, let g(r, s) be the number of carries when the base-p expansions of r

and s are added. Then, for k ≤ n,

vp

((
n

k

))

= g(k, n − k). (4)

Proof. Once again, this is clear if n < p, as both sides are then zero. We shall show that if
the formula holds for all integers 0 ≤ j ≤ n (and every 0 ≤ k ≤ j), it does so for pn + r for
0 ≤ r < p (and any k ≤ pn + r). This would prove the result for all natural numbers.

Consider a binomial coefficient of the form
(

pn+r

pm+a

)
, where 0 ≤ a < p.

First, suppose a ≤ r.
Write m = bk · · · b0 and n−m = ck · · · c0 in base-p. Then the base-p expansions of pm+a

and p(n − m) + (r − a) are, respectively,

pm + a = bk · · · b0 a

p(n − m) + (r − a) = ck · · · c0 r − a.

Evidently, the corresponding number of carries is

g(pm + a, p(n − m) + (r − a)) = g(m,n − m).
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By the induction hypothesis, g(m,n − m) = vp(
(

n

m

)
). Now vp

((
pn + r

pm + a

))

is equal to

vp((pn + r)!) − vp((pm + a)!) − vp((p(n − m) + r − a)!)

= n + vp(n!) − m − vp(m!) − (n − m) − vp((n − m)!) = vp

((
n

m

))

.

Thus, the result is true when a ≤ r.

Now suppose that r < a. Then vp

((
pn + r

pm + a

))

is equal to

vp((pn + r)!) − vp((pm + a)!) − vp((p(n − m − 1) + (p + r − a))!)

= n + vp(n!) − m − vp(m!) − (n − m − 1) − vp((n − m − 1)!)

= 1 + vp(n) + vp((n − 1)!) − vp(m!) − vp((n − m − 1)!)

= 1 + vp(n) + vp

((
n − 1

m

))

.

We need to show that

g(pm + a, p(n − m − 1) + (p + r − a)) = 1 + vp(n) + g(m,n − m − 1). (5)

Note that m < n. Write n = ak · · · a0, m = bk · · · b0 and n − m − 1 = ck · · · c0 in base-p. If
vp(n) = d, then ai = 0 for i < d and ad 6= 0. In base-p, we have

n = ak · · · ad 0 · · · 0

and, therefore,
n − 1 = ak · · · ad+1(ad − 1) (p − 1) · · · (p − 1).

Now, the addition m + (n − m − 1) = n − 1 gives bi + ci = p − 1 for i < d (since they must
be < 2p − 1). Moreover, bd + cd = ad − 1 or p + ad − 1.

Note the base-p expansions

pm + a = bk · · · b0 a

p(n − m − 1) + (p + r − a) = ck · · · c0 (p + r − a).

We add these using that fact that there is a carry-over in the beginning and that 1+bi+ci = p

for i < d. Since there is a carry-over at the first step as well as at the next d steps, we have

pn + r = ∗ ∗ · · · ad 0 · · · 0
︸ ︷︷ ︸

d times

r

and
g(pm + a, p(n − m − 1) + (p + r − a)) = 1 + d + g(m,n − m − 1).

This proves Kummer’s assertion also.
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