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Abstract

In this paper we present a construction of every k-ary tree using a forest of (k—1)-
ary trees satisfying a particular condition. We use this method recursively for the
construction of the set of k-ary trees from the set of (k—1)-Dyck paths, thus obtaining
a new bijection ¢ between these two sets. Furthermore, we introduce a new order on
[k]* which is used for the full description of this bijection. Finally, we study some
new statistics on k-ary trees which are transferred by ¢ to statistics concerning the
occurrence of strings in (k — 1)-Dyck paths.

1 Introduction

The notion of k-ary trees has been studied extensively in the literature. Some authors
deal with the generation of k-ary trees using some encoding of them as integer sequences,
which are generated in a specific order (see for example [3, 10, 11, 17, 20, 21]). In another
direction k-ary trees are related to other k-Catalan structures such as staircase tilings, the
tennis ball problem, noncrossing contractions and K-trees (see for example [6, 7, 12, 13, 14]).
Finally, there are some papers dealing with the enumeration of k-ary trees according to some
parameters (see for example [5, 19, 22]).

A well known procedure for the study of trees contained in a certain set 7 is to introduce
a decomposition of these trees with respect to the size and then, using this decomposition,
to rebuild 7 from trees of smaller size.

In this paper, we use a different procedure for the construction of the set 7 of all k-
ary trees. First, we present a decomposition of each k-ary tree to a forest of (k — 1)-ary
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trees satisfying certain properties and we show how these trees can be reconstructed from
the associated forest. Next, by introducing an operation on forests, we present a recursive
construction (in terms of k) of 7 using unary trees, thus obtaining a new bijection from
k-ary trees to (k — 1)-Dyck paths.

In Section 2 we give some definitions and preliminary results.

In Section 3 we associate every k-ary tree with a forest of (k — 1)-ary trees such that
the path with ascent sequence consisting of the sizes of the trees in this forest is a Dyck
path. Conversely, every such forest generates the tree uniquely; consequently an algorithmic
construction is given.

In Section 4, the method used in the previous section is applied recursively for every k-ary
tree, and terminates with a forest of unary trees such that the path with ascent sequence
consisting of the sizes of the trees in this forest is a (k — 1)-Dyck path. Conversely, this
forest generates the tree uniquely, so that a new bijection ¢ between 7, and the set of all
(k — 1)-Dyck paths is obtained.

In Section 5 we fully describe ¢, by introducing a new order on the set of maximal paths
of the k-ary tree.

Finally, in Section 6 we enumerate the set 7, according to some parameters related to
the notions of the previous sections.

2 Preliminaries

A k-ary tree, k > 1, is either the empty tree [J or a vertex (or internal node), called the
root of the tree, with k ordered children which are k-ary trees. We define 7} ,, to be the set

of all k-ary trees with n vertices, and 7, = U Ty.n. Thus, every T' € 7; can be uniquely
n>0
decomposed as follows:

T=0 oo T=TTy Ty T,€T, iclk] (1)

(see Figure 1).

/
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Figure 1: The k-ary tree T'=T1T5 - - - T}..

An empty child of a vertex is called a leaf (or external node) of the tree. The size of a
k-ary tree T' is the number of its vertices and it is denoted by s(7'); (see for example Figure
2).

Clearly, every T' € 7y, contains kn + 1 nodes (k children for each of the n internal nodes
plus the root of the tree) and (k — 1)n + 1 leaves.
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Figure 2: A 3-ary tree of size 8.

It is well known (see for example [8], p.589) that |7y ,| is equal to the n-th k-Catalan

number
o) _ 1 kn+1Y\ 1 kn
" kn+1\ n C(k=Dn+1\n )’

We note that C\” are the ordinary Catalan numbers C,, ([15], AO00108).

Furthermore, the generating function Cy(z) = >~ -, CHam of the k-Catalan sequence
satisfies the equation

Cr(z) = 14 2(Cr(2))*,

from which it can be easily shown using the Lagrange inversion formula ([2], Appendix A)
that the coefficients of (Cy(x))*, s € N, are given by the formula

) = 2 (),

:k:n+8 n

Every non-empty (k — 1)-ary tree can be considered as a k-ary tree which has all its k-th
children empty.

A maximal (k — 1)-ary subtree of a k-ary tree T' is any tree obtained by choosing a
k-th child in T (or T itself) and by deleting every k-th child in it. Obviously, two maximal
k — l-ary subtrees of T" are disjoint; (see for example Figure 3).

Consequently, if 7" has n vertices, then it contains n + 1 maximal (k — 1)-ary subtrees.

A (totally ordered) forest of k-ary trees is an element F of the cartesian product 7, for
some A € N*. We denote, for simplicity, the forest which consists of a single tree T" by T
The concatenation of the forests Fi,Fs,...,F, is a new forest which consists of the trees
of each F;, j € [p], ordered by extending the orders of every Fj, preserving at the same
time their natural order. The length and the size of a forest F = (13,5, ..., T) are defined

respectively by
A

|Fl=X and s(F)= ZS(TZ)
i=1
A non-empty i-path, i € N*, is a lattice path starting at the point (0,0) and consisting of
steps u; = (1,4) (rises) and d = (1, —1) (falls). The empty path ¢ is the path with no steps.
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Figure 3: The 3-ary tree of Figure 2 and all its binary maximal subtrees.

For every i-path P we denote by r(P) (respectively f(P)) the number of rises (respectively
falls) of P. An i-Dyck path is an i-path that never falls below the x axis and ends at the z
axis. If P is an i-Dyck path, then f(P) =i-r(P) and P ends at the point ((¢+1)r(P),0). We
will refer to a 1-path (respectively a 1-Dyck path) as a path (respectively a Dyck path); in
this case we write u instead of u;. The set of all --Dyck paths with n rises is denoted by Dg)
and D = U DY In particular, we write D (respectively D,,) instead of DM (respectively
n>0

D,(Ll)) for the ordinary Dyck paths.

Every non empty i-Dyck path P is written in the following form, called the first return
decomposition (for i = 1, see [2]):

P = u;(Q1dQad - - - Q;d Qi1 (2)

where @); € DU, j € [i + 1]. Using this decomposition and the Lagrange inversion formula,

it can be easily obtained that -Dyck paths with n rises are counted by Cr(fﬂ). A simple
bijection 0 between the k-ary trees and the (k — 1)-Dyck paths is given as follows:

00)=c and O(TTy- - Th) = uprO(T1)dO(To)d - - - O(Ti_1)dO(Ty,).

Another well known decomposition of non-empty -Dyck paths which will be used in this
paper is based on the length of the first ascent, i.e.,

P = ufdQdQzd -~ Qp (3)

where Q; € D@ and j € [pi].

Every i-path P is uniquely determined by its sequence of ascents (ln)mepy, 1 € N,
according to the formula P = u/*du2d - - -ui“_ldui“, where u! = w;u; - - - u; (j times). Clearly,
if P ends at the x axis (as in the case of --Dyck paths), then [, = 0. The sum of the elements
of this sequence equals the number of rises in the path and the number of its elements is one
more than the number of falls; (see for example Figure 4).

We note that the path P = u!'dul*d-- -ui“_ldui“ is an (i — 1)-Dyck path if and only if



Figure 4: The Dyck path having ascent sequence (4,0,0,2,0,1,0,1,0).

the following two conditions hold:
m o
z—lz >m, forallme [p—1] and 2—12

For every forest F we denote by P;(F) the i-path with ascent sequence the sequence
of sizes of the trees in F. If i = 1 we write P(F) instead of P;(F). It is evident that
r(P(F)) = s(F) and f(P(F)) = |F] - 1.

We note that if F is the concatenation of the forests F, F, ..., F,, then

Bi(F) = P(F)dP,(F2)d- - - P(F,1)dBi(Fp). (4)

3 Generation of k-ary trees from (k — 1)-ary trees

For every non-empty 7' € Ty, k > 2, we denote by F(T') the forest consisting of all maximal
(k — 1)-ary subtrees of T, ordered according to the first time visit (in preorder) of the trees
of F(T') in T and by T™* the first component of F(T'); (see for example Figure 5).
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Figure 5: The forest F(T') and its corresponding path P(F(T)) for the tree T' of Figure 2.

Clearly, T™ is rooted at the root of T" and can be obtained by deleting every k-th child
of T. If T is empty then 7™ is empty and F(O) = [O. It is clear that the last tree of F(T')
is always the empty tree.

Using decomposition (1), we can easily check that F(T') is the concatenation of 1™,
F(Tl) ]:(Tg) . ]-"(Tk 1), F(Ty), where T* = TyTy --- T | and f(]}), j € [k—1],is
F(T;) excluding T]*

We have the following result.



Proposition 1. For every T =T 15 --- T}, € 7}, we have

i) s(T") =1+ Iés(@%).

iv) P(F(T)) = wdP(F(T)))dP(F(13)) - - - dP(F(Tj_1))dP(F(T})), where v = s(T*).
v) P(F(T)) is a Dyck path.

Proof. The proof of (i) is obvious, whereas the proof of (iv) follows immediately from relation
(4). The proofs of (i7), (i77) and (v) use induction as follows:

s(F(T)) = s(T") + Z(s(f(Tj)) —s(17)) + s(F(Tx))
= () YO(T) — Y s(T) = 14 D0 s(T) =
|F(T)| = (yf( D — 1)+ | F(T)| = 1—|—Z$ )+ 1+5(T) =1+ s(T).

Finally, since each P(F(T;)),i € [k] is a Dyck path, it follows that the path
uP(F(Th))P(F(T2)) - - - P(F(Th-1))dP(F(Tk))

is also a Dyck path and hence, using the equalities P(F(T})) = uS(T;)dP(.%(Tj)), j € k—1],
and (i), (iv), we obtain that P(F(T)) is a Dyck path. O

In the sequel we will show that k-ary trees can be generated by certain forests of (k—1)-
ary trees. For this, we will introduce a new decomposition of k-ary trees. For T € 7, we
denote by Z; the k-th child in T" of the i-th (in postorder) vertex of 7. Clearly, 7" can be
uniquely recovered by attaching each Z; as the k-th child to the i-th (in postorder) vertex
of T*. The trees T*, Zy, Zs, ..., Z,, where v = s(T*), form a decomposition of T" called the
first component decomposition; (see for example Figure 6).

Proposition 2. For every T € Ty, the forest F(T) is the concatenation of the forests
T F(Zy), F(Z3),...,F(Z,).
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Figure 6: The first component decomposition of the tree of Figure 2.

Proof. 1t is enough to show that if XY are two trees in F(Z;), F(Z;) respectively then X
precedes Y in F(T) if and only if i < j or i = j and X precedes Y in F(Z;).

We will prove this using induction on the size of the tree 7.

If T =1T\T,--- Tk, then it is evident that Z, = Tj.

Clearly, each Z;, i € [v — 1] is a subtree of a unique Tg,, & € [k — 1], such that & < ¢;
whenever ¢ < j. Then X,Y belong to F(T,), F(T,) respectively and X # T¢, Y # T¢.
We consider two cases:

1. If & # & then X precedes Y in F(T') if and only if & < &; or equivalently ¢ < j.

2. If § = & then X precedes Y in F(T) if and only if X precedes Y in F(Tg,) or
equivalently, by the induction hypothesis i < j or i = j and X precedes Y in F(Z;).

Hence, in every case X precedes Y in F(T) if and only if i < j or i = j and X precedes
Y in F(Z;). O

From Proposition 2 and relation (4) we obtain a new, simpler expression for P(F(T)),
using the Dyck paths P(F(Z;)), j € [v].

P(F(T)) = w”dP(F(Z,))dP(F(Zy))...dP(F(Z,)), wherev = s(T"). (5)

Proposition 3. The mapping T — F(T) is a size preserving bijection between Ty, and the
set of forests F of (k — 1)-ary trees with P(F) € D.

Proof. Given a forest F of (k — 1)-ary trees such that P(F) € D, we will show by induction
that there exists a unique tree T € 7, such that F = F(T).

Using the first ascent decomposition (3) we have P(F) = u’dQ1dQs - - - dQ,, where v is
the size of the first element S of F and @); € D, for all j € [v]. Since

v v

D (r(Q) +1) = r(@y) + v =r(P(F)) = s(F) = |F| - 1,

7=1 7=1



it follows that there exists a sequence of forests (F;), j € [v], such that F is the concatenation
of S,:Fl,fg, e ,Fy and |.’F]| = T(Qj) + 1,

It follows from relation (4) that P(F;) = (); and hence it is a Dyck path, for every j € [v].
Thus, by the induction hypothesis, there exists Z; € 7y, j € [v], such that F; = F(Z;). Then
T is the tree constructed by attaching Z; to the j-th (in postorder) vertex of S as its k-th
child; from Proposition 2 it follows immediately that F = F(T).

For the proof of the uniqueness, let F(X) = F(T); then T* = X*. f T*, 7, Z5,...,Z,
and T*,Y7,Ys, ..., Y, are the first component decompositions of 7" and X respectively, then
since P(F(T)) = P(F(X)), by relation (5) it follows that P(F(Z;)) = P(F(Y;)), for every
i € [v]. Furthermore, since |F(Z;)| = f(P(F(Z))) +1 = f(P(F(Y;))) +1 = |F(Y;)]| for
every i € [v], by Proposition 2 we obtain that F(Z;) = F(Y;), for every i € [v]. Thus, by
the induction hypothesis, Z; = Y; for each i € [v], so that T' = X. O

We close this section with the following algorithmic construction of the tree T" € 7}, such
that F(T') = F, where F is a given forest of (k — 1)-ary trees with P(F) € D:

We start with the first tree of F. At each step, we add as the k-th child of the first (in
postorder) vertex which does not have a k-th child, the first tree of F that has not already
been used. For example, the tree T of Figure 2 can be constructed from the forest of Figure
5 as shown in Figure 7.

A1 A A
P!
/

F

" I

71

N RN
TN O TN O
/o N LA\D /i N 'LA\.:

Figure 7: Construction of T from F.



4 Generation of k-ary trees from unary trees

In this section we show how every k-ary tree can be uniquely decomposed into a forest of
unary trees which leads to a new bijection between the sets 7, and D%*~1. For this, we first
introduce a mapping on forests denoted by ().

For every forest F = (11, T3, ..., Ty) of k-ary trees, we define the forest 7’ of (k — 1)-ary
trees to be the concatenation of the forests F(13), F(1%),...,F(T). Using Proposition 1
(12), (7i1), we deduce the following equalities:

s(F)=s(F) and  [F|=s(F)+|F]. (6)

Furthermore, it can be easily checked that if F is the concatenation of the forests 71, Fs, ..., F),
then F' is the concatenation of the forests F7, 75, ..., F).
The following two results establish additional properties of ( ).

Proposition 4. For any pair of forests F,G, we have that if F' = G' then F = G.
Proof. Since |F| = |F'| — s(F') = |G'| — s(G') = |G|, we can write
F=(T\,Ts,....,T) and G=(X1,Xs,...,X)).

We assume that F # G and we choose p to be the least element of [A] such that 7, # X,,.
Since ' = G" and F(T,) # F(X,), it follows that |F(7,)| # |F(X,)|; without loss of
generality we assume that |F(7),)| < |F(X,)|. Then, there exists a forest H such that F(X,)
is the concatenation of F(7,) and H. It follows that P(F(X,)) = P(F(1,))dP(H) which is
not a Dyck path, giving the required contradiction. O

Proposition 5. For every forest F, we have that P;_1(F) € DY if and only if P,(F') €
2108

Proof. Let F = (T1,Ts,...,T)); then
P () = D
and by relation (4)
F(F') = P(F(T0)dB(F(T2))d - - - P(F(Taa))dP(F(T)))-

Clearly, since for every j € [A] the path P(F(T})) is a Dyck path, the path P;(F(7})) lies
above the z axis and ends at height (i — 1)s(7}). Furthermore, the fall following P;(F(1}))

in the path P;(F’) is at the same height as the fall following the ascent ufg” ) in the path
P,_1(F), for all j € [\ — 1], giving the required result. O

We now have the following result.

Proposition 6. For every forest of (k — 1)-ary trees F such that P;(F) € DY, there exists
a unique forest G of k-ary trees such that G' = F and |G| =14 (i — 1)s(F).



Proof. Clearly, if F = [, the result holds for G = U, while , if 2 = 1 the result follows from
Proposition 3. Otherwise, since P;(F) € D, the path P(F) starts at the origin with a rise
and ends at a point below the z-axis attalmng the least possible height; so, there exists a
sequence (Q;)jep of Dyck paths, such that

P(F) = Q1dQ2d - - - Qx—1dQ

and ()1 # €. Then, since

>

FI=14 f(PF) =1+A=1+3 f(Q) =D (r(@;) +1)

j=1

there exists a unique sequence (F;) e of forests of (k—1)-ary trees such that |F;| = 7(Q;)+1,
for all j € [A] and F is the concatenation of the forests Fi, Fa, ..., Fx. Then, by relation
(4), it follows that

P(F) = P(F1)dP(F2)d- - P(Fx-1)dP(Fy).

Since for all j € [A] we have that f(P(F;)) = |F;| —1 = f(Q;), from the above two
expressions of P(F) it follows that P(F;) = Q;. Thus, P(F;) is a Dyck path and by Propo-
sition 3 there exists a unique 7; € 7 such that F; = .7-"(Tj) Then, for G = (T}, Ts, ..., T)),
we obtain G’ = F

Now, since P;(F) € D® and Q; € D for each j € [A], we have that

ir(P(F)) = f(P(F)) = f(P(F)) = A-1 Zf Q;) = A= Z r(Qy) = A=147r(P(F)).

Furthermore, since r(P;(F)) = r(P(F)) = s(F) and |G| = A, it follows that |G| =
1+ (i —1)s(F).
The uniqueness of G follows from Proposition 4. O]

The next result follows directly from Propositions 5 and 6.

Proposition 7. The mapping ()’ from the set of forests of (k— i—i—l) -ary trees with P;_1(F) €
DUV to the set of forests of (k —i)-ary trees with Pi(F) € D@ where i > 2, is a bijection.

Using the mapping ( ), for every T' € 7}, and i € [k — 1], we define recursively the forest
FY(T) by the relations

F(T)y=T and  FY(T)=(FYT)).

For example, for the tree T" of Figure 2 for which F(7") has been already constructed (see
Figure 5), we can easily obtain that F2(7T') is the forest of Figure 8.

Clearly, the forest F*(T) consists of (k — i)-ary trees. Furthermore, from (6) we obtain
inductively the following generalization of equalities (i7), (ii7) of Proposition 1:

s(FY(T)) = s(T) and | FY(T)| = is(T) + 1.

10
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Figure 8: The forest F2(T).

In particular, the second equality for ¢ = £ — 1 shows that we have a 1-1 correspondence
between the leaves of the tree T' and the unary trees of F*~1(T).

Using Propositions 5 and 6 we can easily show by induction that P;(F*(T)) € D, for
every ¢ € [k — 1]. Furthermore, using Proposition 7 we deduce by induction the following
result which is a generalization of Proposition 3.

Proposition 8. For every i € [k — 1], the mapping T — F'(T) is a size preserving bijection
between Tp, and the set of forests F of (k — i)-ary trees with Py(F) € DY,

An application of the previous result for i = k—1 gives that the mapping 7 — F*~1(7) is
a size preserving bijection between 7, and the set of forests F of unary trees with P,_1(F) €
D=1 Clearly, since any such forest F can be identified with the associated path Py_;(F),
we obtain the following result.

Proposition 9. The mapping ¢ : T, — D*=Y with ¢(T) = Po_(F*1(T)) is a bijection
such that s(T) = r(¢(T)).

Notice that the classical bijection # mentioned in Section 2 is different from the bijection
¢ of the previous Proposition. For example, for the tree T' of Figure 2 we have

Q(T) = UQUQdU,QddddUQddUQUQddddUQdddUQdd,

whereas

qb (T) = UgUgdUg ddUQddddUQ (5 ddddUQ dddUQ dd.

Both bijections use recursion, # with respect to the size, whereas ¢ with respect to k.

5 Maximal paths of k-ary trees

In this section we show that every k-ary tree can be uniquely expressed by the set of its
maximal paths. Furthermore, using this expression, we give an equivalent simple formula
for the bijection ¢.

Let Ay be the set of all subsets A of [k]* (the set of all words on the alphabet [£])
satisfying the following two conditions:

i) If z = pa € A, where p,a € [k]* and « # ¢, then, for all i € [k], the set A contains at

*

least one word of the form piv;, where v; € [k]*.

ii) If p € A and « € [k]*, then pa € A if and only if a = ¢.

11



From the above two conditions, it follows easily that {¢} € A and € ¢ A for all A € A,
with A # {e}.
We define recursively the mapping ¢ : 7, — Ay by

»(O) ={e} and V(T Ty) = {ia: a € Y(T;),i € [k]}.
For example, for the tree T' of Figure 2 we have
W(T) ={11,121,122,123,13, 21, 22,2311, 2312, 2313, 232, 2331, 2332, 2333, 31, 32, 33}.

It is easy to check that 1 is a bijection, such that [¢)(T)| = (k—1)s(T)+1, for all T € 7.
Furthermore, the elements of ¥ (7") code the maximal paths of 7. In fact, the maximal
path § = vjvy---vpy of T or, equivalently, its associated leaf vy, 1, is coded by the word
a=ajag---a; € Y(T) if and only if v,y is the a;-th child of v;, for all ¢ € [¢].

Additionally, since |F*~1(T)| = [1(T)|, there exists a 1-1 correspondence between the
sequences of 1(T) and the trees of F*~1(T) such that every z € ¢(T) corresponds to a
unique unary tree T}, of F*~1(T), which is the left path of the leaf which is coded by z.
For example, the word = = 2311 of ¥ (7T') in the tree T of Figure 2 corresponds to the 8-th
element of the forest F*(T) of Figure 8.

Using the above expression of k-ary trees, we will give a method for the construction of a
(k — 1)-Dyck path from a set A € A, endowed with a total order. Firstly, for each x € [k]*,
we set [(x) to be the number of trailing 1’s of z. Clearly, {(x) = s(T}), for every x € ¥(T).

Proposition 10. Let < be a partial order on [k]* satisfying the following conditions:

1. the restriction of = on A is a total order and min A is the element of A which contains
only 1’s,

2. ia <40 if and only if « X 3, for all a,B € A and i € [k],
for each A € Ay. Then we have that
Y d - ") € DAY,
for all A € Ay, where A= {aq,9,...,0,} and a; 2oy < -+ <.

Proof. In order to prove that the above path is a (k — 1)-Dyck path, it suffices to prove that

(k—=1)> l@)>{zreA:x =y}, and (k-1 Il(x)=]A]-1,
z€A z€A
T2y
where y € A\ {a,}. We will use induction with respect to the cardinality of A € Aj.

For A = {e}, the result is true. For A # {e} we will prove only the inequality, since the
equality can be proved analogously.

We define A; = {« € [k]* : i € A}, for each i € [k]. Tt is easy to check that A; € Ay,
for every ¢ € [k]. Furthermore, we define I = {i € [k] : iav < y for some a € A;}. Obviously,
1 € I. For each i € I, we denote by a; the maximum element of A; with ia; < y. Then, we
have

12



(k=1 lx)=(k=-1)> > )= (k-1 Y i(ia)

T€EA el acA; icl acA;

Ty a=xy aza;
=(k=1) > D la)+(k-11+ ) Uw)
’iEI\{l} OcEAi OcEAl
a=<a; azay
=> (k=1)) l(a)+ (k—1)
el a€A;
a=a;
> Z (Hao€ A a2y — 1)+ Z Hoe Aita 2o} +(k—1)
iel\{k} ieIn{k}
=Y Hfoedia=a}—|[I\{k}+k—1>{ze Az =<y}
el

O

From the previous proposition, it follows that given a partial order “<” on [k]* satisfying
conditions 1, 2, we have that

(k—1) Zl(aj) >m, for every m € [u— 1] and (k—1) Zl(aj) =pn—1,

J=1 Jj=1

for every set A = {1, aq,...,0,} € A with o, < o if and only if ¢ < s. Thus, the mapping
x on Aj, defined by

a «a l(ap—1
(e =2 x(A) =V du*Vd- - Vd

takes values in D¢,

Clearly, this mapping depends on the choice of the partial order “=<”. If “<” is the
lexicographic order on [k]* (which obviously satisfies the conditions of Proposition 10), then
the resulting mapping x may be used in order to give an explicit formula of the bijection 6.

In order to describe the bijection ¢ using the above equivalent expression of k-ary trees,
we need an ordering for the elements of each A € A;. Thus we define a partial order on [k]*,
denoted by “=<” as follows: If z = pa and y = pB, where p is the maximal common initial
part (possibly empty) of x and y, then

a=[p=¢, or
T 2y & {maxa < max /3, or

max o = max [ and first element of a < first element of j3.

Clearly, from condition ii) in the definition of Ay, it follows that “<” is a total order on
each A € Aj.
For example, the elements of ¢)(T') for the tree T of Figure 2 are ordered as follows:
11 X121 <122 <21 <22 <123 <13 <2311
<2312 <232 <2313 <2331 <2332 <2333 <31 <32 <X 33.
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So, for the set A = (T), we have the following 2-Dyck path:
x(A) = uidusdduydddduiddddusdddusdd.

Proposition 11. For every k € N* and T € T}, we have that
xX((T)) = o(T).

Proof. Using the first component decomposition 7%, 7, ..., Z,, where v = s(T%), of a tree
T € Ty, it follows inductively using Proposition 2 that F*~1(T') is the concatenation of the
forests F*=2(T*), F*~1(Z,),..., F*1(Z,). We will show by induction with respect to k and
to the size of the tree, that if x,y € ¥(T) and T}, T, are their associated trees in F*~(T),
then 7, precedes T, in F*~1(T) if and only if z < y.

We consider the following cases:

1. T,,T, are in F*=2(T*). Then z,y € ¥(T*) and hence, using the induction hypothesis
(with respect to k), we deduce that x < y.

2. T, is in F*72(T*) and T, is in F*"1(Z;), for some i € [v]. Then x < y, since maxz <
k = maxy.

3. T, T, are in F*~1(Z;), for some i € [v]. Then z = pka and y = pk/3, where p € [k—1]*
and «, B € [k]*. It follows that «, 5 € (Z;) and hence, using the induction hypothesis
(with respect to the size of the tree), we deduce that a < 3 and therefore x < y.

4. T, is in F*=1(Z;) and T, is in F*~1(Z;), where i,j € [v] and i # j. Then i < j, so that
the parent of Z; precedes the parent of Z; (in postorder). Thus, z = pa and y = pf,
p € [k — 1]* (where p is the initial common part of z and y) and «, 5 € [k]*. It follows
that max a = max § = k and first element of o < first element of 3, and hence x < y.

This shows that in all cases, z < y.

The converse now follows obviously, since F*~(T) is totally ordered.

Finally, since I(z) = s(T%), for every x € (T, the (k — 1)-paths x(/(T")) and ¢(T) have
the same ascent sequence and therefore they are identical. O]

6 Enumerations

In this section, we study some statistics on k-ary trees related to the notions studied in the
previous sections.

6.1 Enumeration of 7, according to the number of non-empty trees
of F(T)

Given i,k € N* with ¢ < k — 1 and T € 7, we denote by p; x(T") the number of non-empty
trees of F'(T') and by Fj}, the generating function

kay 5 x pzk

TeTy,
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It follows that

k—i

k
pir(@) =0 and  pp(TiTo---Ti) =1+ > pis(Ty) = Y [T # 0,

Jj=1

1, if P is true;
0, if P is false.

The above equality can be proved by induction (with respect to k). Indeed, since

the forest F(T) is the concatenation of T*, F(T}), F(T), ..., F(Th_1), F(T}), where T* =
TiTy ---T;_,, we can easily check that the forest F'(T) is the concatenation of

where [P] is the well known Iverson notation defined by [P] =

flil(T*%%(Tl)?%(,Ié)?7ﬁ(Tk*1>’fz(Tk)

Furthermore, using the induction hypothesis for the tree T* € 7;_;, we obtain that

N

-1

Pik(T) = pici 1 (T7) + ) Pin(T)) — Pic1p—1(T})) + pin(Th)

<.
Il

k—1—(i—1)

1)
_1-|_sz1,€1 Z [T7 # 0] +me szlkl ) + pig(Tk)

7j=1
k—i
j=1

From the above relation, it follows that the generating function F,j(z,y) satisfies the
following equation:

Fou(a,y) = L+ oy(Fule, y)i(1 + im,k(x,y) 1))

Using the Lagrange inversion formula, we obtain the following result.

Proposition 12. The number of all k-ary trees of size n for which the forest F'(T),i €
[k — 1], contains exactly j non-empty trees is equal to

e (1) (G27)

The above result is of special interest for the cases i = k—1 and ¢ = 1. In particular, using
the bijection ¢, we can easily check that py_1 x(T) = Nyui(¢(T)), where Nyq(¢(7T')) denotes
the number of ud’s (peaks) in ¢(7'); thus the above two parameters are equidistributed,
which implies that the number of (k — 1)-Dyck paths having n rises and j peaks is equal to
ASIH

We note that since the number py_1 (7)—1, which counts the non-empty trees in F*~1(T')
other than the first one, is equal to Ny, (¢(T)) we can easﬂy deduce that the number of
(k — 1)-Dyck paths with n rises and j valleys is equal to + ((k Jl)") (jil).
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Furthermore, since | F*~1(T)| = (k—1)s(T)+1, we obtain that the number of empty trees
in F*71(T') other than the last one (which is always empty) is equal to (k—1)s(T") —pg_1.4(T).
Since we can easily check that this number is equal to Ngq(¢(T)), we deduce that the number

of (k — 1)-Dyck paths having n rises and j doublefalls is equal to %((k]:rll)") ((k_l’;n_j).

On the other hand, using a variation ¢’ of # defined by
9/(|:|) =& and el(TlTQ cee Tk) = UG/(Tk)dQ/(Tk_l) s d@l(T2>d9/(T1),

we can easily check by induction that N, (0'(T)) = p1x(T) — [T" # O], for every T € 7.
From this equality, it follows easily that the number of all (k — 1)-Dyck paths having n rises

and j doublerises is equal to %(?) (g:l_)’f)

S. Heubach et al. [6] give analogous results on similar generalized Dyck paths.
6.2 Enumeration according to the size of the first element of F*(T)

For every T' € T;, we denote by ¢;x(T),i € [k — 1], the size of the first element of F*(T") and
Gik(x,y) the generating function

Gik(w,y) = ) a@ysrD),
TeT,

It follows that
k—i
¢ix() =0 and  gp(TVTr---Ti) =1+ Z ik (T5)-
=1

The above equality can be proved easily by induction (with respect to k), using the equality

Gik(T) = qi—1p—1(T").
From the above relation, it follows that the generating function Gj(x,y) satisfies the
following equation:

Gip(z,y) =1+ 2y(Gip(z, 1) (Ginl(z,9)" " = 1+ 2y(Cr(2)) (Gin(z, y))* .
Using the Lagrange inversion formula, we obtain the following result.

Proposition 13. The number of all k-ary trees T of size n, for which the first element of
FUT),i € [k —1], has size j is equal to

(2" |Gy p (2, y) = T ((n R ij) ((k ] i)j)'

(n—J)k+1ij n—j J—1

For the case i = k — 1, using the bijection ¢, we can easily check that gz x(7") is the

length of the first ascent of ¢(7'), thus the number of (k — 1)-Dyck paths having n rises and

length of first ascent equal to j is %(T:j)
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