Recursive Generation of k-ary Trees

K. Manes, A. Sapounakis, I. Tasoulas and P. Tsikouras
Department of Informatics
University of Piraeus
18534 Piraeus
Greece
kmanes@unipi.gr
arissap@unipi.gr
jtas@unipi.gr
pgtsik@unipi.gr

Abstract

In this paper we present a construction of every k-ary tree using a forest of (k-1)-ary trees satisfying a particular condition. We use this method recursively for the construction of the set of k-ary trees from the set of (k-1)-Dyck paths, thus obtaining a new bijection ϕ between these two sets. Furthermore, we introduce a new order on $[k]^*$ which is used for the full description of this bijection. Finally, we study some new statistics on k-ary trees which are transferred by ϕ to statistics concerning the occurrence of strings in (k-1)-Dyck paths.

1 Introduction

The notion of k-ary trees has been studied extensively in the literature. Some authors deal with the generation of k-ary trees using some encoding of them as integer sequences, which are generated in a specific order (see for example [3, 10, 11, 17, 20, 21]). In another direction k-ary trees are related to other k-Catalan structures such as staircase tilings, the tennis ball problem, noncrossing contractions and K-trees (see for example [6, 7, 12, 13, 14]). Finally, there are some papers dealing with the enumeration of k-ary trees according to some parameters (see for example [5, 19, 22]).

A well known procedure for the study of trees contained in a certain set \mathcal{T} is to introduce a decomposition of these trees with respect to the size and then, using this decomposition, to rebuild \mathcal{T} from trees of smaller size.

In this paper, we use a different procedure for the construction of the set \mathcal{T}_k of all kary trees. First, we present a decomposition of each k-ary tree to a forest of (k-1)-ary

trees satisfying certain properties and we show how these trees can be reconstructed from the associated forest. Next, by introducing an operation on forests, we present a recursive construction (in terms of k) of \mathcal{T}_k using unary trees, thus obtaining a new bijection from k-ary trees to (k-1)-Dyck paths.

In Section 2 we give some definitions and preliminary results.

In Section 3 we associate every k-ary tree with a forest of (k-1)-ary trees such that the path with ascent sequence consisting of the sizes of the trees in this forest is a Dyck path. Conversely, every such forest generates the tree uniquely; consequently an algorithmic construction is given.

In Section 4, the method used in the previous section is applied recursively for every k-ary tree, and terminates with a forest of unary trees such that the path with ascent sequence consisting of the sizes of the trees in this forest is a (k-1)-Dyck path. Conversely, this forest generates the tree uniquely, so that a new bijection ϕ between \mathcal{T}_k and the set of all (k-1)-Dyck paths is obtained.

In Section 5 we fully describe ϕ , by introducing a new order on the set of maximal paths of the k-ary tree.

Finally, in Section 6 we enumerate the set \mathcal{T}_k according to some parameters related to the notions of the previous sections.

2 Preliminaries

A k-ary tree, $k \geq 1$, is either the empty tree \square or a vertex (or internal node), called the root of the tree, with k ordered children which are k-ary trees. We define $\mathcal{T}_{k,n}$ to be the set of all k-ary trees with n vertices, and $\mathcal{T}_k = \bigcup_{n\geq 0} \mathcal{T}_{k,n}$. Thus, every $T \in \mathcal{T}_k$ can be uniquely decomposed as follows:

$$T = \square \quad \text{or} \quad T = T_1 T_2 \cdots T_k, \quad T_i \in \mathcal{T}_k, \quad i \in [k]$$
 (1)

(see Figure 1).

Figure 1: The k-ary tree $T = T_1 T_2 \cdots T_k$.

An empty child of a vertex is called a *leaf* (or *external node*) of the tree. The *size* of a k-ary tree T is the number of its vertices and it is denoted by s(T); (see for example Figure 2).

Clearly, every $T \in \mathcal{T}_{k,n}$ contains kn+1 nodes (k children for each of the n internal nodes plus the root of the tree) and (k-1)n+1 leaves.

Figure 2: A 3-ary tree of size 8.

It is well known (see for example [8], p.589) that $|\mathcal{T}_{k,n}|$ is equal to the *n*-th *k*-Catalan number

$$C_n^{(k)} = \frac{1}{kn+1} {kn+1 \choose n} = \frac{1}{(k-1)n+1} {kn \choose n}.$$

We note that $C_n^{(2)}$ are the ordinary Catalan numbers C_n ([15], $\underline{A000108}$).

Furthermore, the generating function $C_k(x) = \sum_{n\geq 0} C_n^{(k)} x^n$ of the k-Catalan sequence satisfies the equation

$$C_k(x) = 1 + x(C_k(x))^k,$$

from which it can be easily shown using the Lagrange inversion formula ([2], Appendix A) that the coefficients of $(C_k(x))^s$, $s \in \mathbb{N}$, are given by the formula

$$[x^n](C_k(x))^s = \frac{s}{kn+s} \binom{kn+s}{n}.$$

Every non-empty (k-1)-ary tree can be considered as a k-ary tree which has all its k-th children empty.

A maximal (k-1)-ary subtree of a k-ary tree T is any tree obtained by choosing a k-th child in T (or T itself) and by deleting every k-th child in it. Obviously, two maximal k-1-ary subtrees of T are disjoint; (see for example Figure 3).

Consequently, if T has n vertices, then it contains n+1 maximal (k-1)-ary subtrees.

A (totally ordered) forest of k-ary trees is an element \mathcal{F} of the cartesian product \mathcal{T}_k^{λ} , for some $\lambda \in \mathbb{N}^*$. We denote, for simplicity, the forest which consists of a single tree T by T. The concatenation of the forests $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{\rho}$ is a new forest which consists of the trees of each \mathcal{F}_j , $j \in [\rho]$, ordered by extending the orders of every \mathcal{F}_j , preserving at the same time their natural order. The length and the size of a forest $\mathcal{F} = (T_1, T_2, \ldots, T_{\lambda})$ are defined respectively by

$$|\mathcal{F}| = \lambda$$
 and $s(\mathcal{F}) = \sum_{i=1}^{\lambda} s(T_i)$.

A non-empty i-path, $i \in \mathbb{N}^*$, is a lattice path starting at the point (0,0) and consisting of steps $u_i = (1,i)$ (rises) and d = (1,-1) (falls). The empty path ε is the path with no steps.

Figure 3: The 3-ary tree of Figure 2 and all its binary maximal subtrees.

For every *i*-path P we denote by r(P) (respectively f(P)) the number of rises (respectively falls) of P. An *i-Dyck path* is an *i*-path that never falls below the x axis and ends at the x axis. If P is an *i*-Dyck path, then $f(P) = i \cdot r(P)$ and P ends at the point ((i+1)r(P), 0). We will refer to a 1-path (respectively a 1-Dyck path) as a path (respectively a Dyck path); in this case we write u instead of u_1 . The set of all *i*-Dyck paths with n rises is denoted by $\mathcal{D}_n^{(i)}$ and $\mathcal{D}^{(i)} = \bigcup_{n>0} \mathcal{D}_n^{(i)}$. In particular, we write \mathcal{D} (respectively \mathcal{D}_n) instead of $\mathcal{D}^{(1)}$ (respectively

 $\mathcal{D}_n^{(1)}$) for the ordinary Dyck paths.

Every non empty i-Dyck path P is written in the following form, called the first return decomposition (for i = 1, see [2]):

$$P = u_i Q_1 dQ_2 d \cdots Q_i dQ_{i+1} \tag{2}$$

where $Q_j \in \mathcal{D}^{(i)}$, $j \in [i+1]$. Using this decomposition and the Lagrange inversion formula, it can be easily obtained that *i*-Dyck paths with *n* rises are counted by $C_n^{(i+1)}$. A simple bijection θ between the *k*-ary trees and the (k-1)-Dyck paths is given as follows:

$$\theta(\Box) = \varepsilon$$
 and $\theta(T_1 T_2 \cdots T_k) = u_{k-1} \theta(T_1) d\theta(T_2) d \cdots \theta(T_{k-1}) d\theta(T_k)$.

Another well known decomposition of non-empty i-Dyck paths which will be used in this paper is based on the length of the first ascent, i.e.,

$$P = u_i^{\mu} dQ_1 dQ_2 d \cdots Q_{\mu i} \tag{3}$$

where $Q_j \in \mathcal{D}^{(i)}$ and $j \in [\mu i]$.

Every *i*-path P is uniquely determined by its sequence of ascents $(l_m)_{m\in[\mu]}$, $\mu\in\mathbb{N}^*$, according to the formula $P=u_i^{l_1}du_i^{l_2}d\cdots u_i^{l_{\mu-1}}du_i^{l_{\mu}}$, where $u_i^j=u_iu_i\cdots u_i$ (j times). Clearly, if P ends at the x axis (as in the case of i-Dyck paths), then $l_{\mu}=0$. The sum of the elements of this sequence equals the number of rises in the path and the number of its elements is one more than the number of falls; (see for example Figure 4).

We note that the path $P=u_i^{l_1}du_i^{l_2}d\cdots u_i^{l_{\mu-1}}du_i^{l_{\mu}}$ is an (i-1)-Dyck path if and only if

Figure 4: The Dyck path having ascent sequence (4, 0, 0, 2, 0, 1, 0, 1, 0).

the following two conditions hold:

$$(i-1)\sum_{j=1}^{m} l_j \ge m$$
, for all $m \in [\mu-1]$ and $(i-1)\sum_{j=1}^{\mu} l_j = \mu-1$.

For every forest \mathcal{F} we denote by $P_i(\mathcal{F})$ the *i*-path with ascent sequence the sequence of sizes of the trees in \mathcal{F} . If i = 1 we write $P(\mathcal{F})$ instead of $P_1(\mathcal{F})$. It is evident that $r(P_i(\mathcal{F})) = s(\mathcal{F})$ and $f(P_i(\mathcal{F})) = |\mathcal{F}| - 1$.

We note that if \mathcal{F} is the concatenation of the forests $\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_{\rho}$, then

$$P_i(\mathcal{F}) = P_i(\mathcal{F}_1) dP_i(\mathcal{F}_2) d \cdots P_i(\mathcal{F}_{\rho-1}) dP_i(\mathcal{F}_{\rho}). \tag{4}$$

3 Generation of k-ary trees from (k-1)-ary trees

For every non-empty $T \in \mathcal{T}_k$, $k \geq 2$, we denote by $\mathcal{F}(T)$ the forest consisting of all maximal (k-1)-ary subtrees of T, ordered according to the first time visit (in preorder) of the trees of $\mathcal{F}(T)$ in T and by T^* the first component of $\mathcal{F}(T)$; (see for example Figure 5).

Figure 5: The forest $\mathcal{F}(T)$ and its corresponding path $P(\mathcal{F}(T))$ for the tree T of Figure 2.

Clearly, T^* is rooted at the root of T and can be obtained by deleting every k-th child of T. If T is empty then T^* is empty and $\mathcal{F}(\Box) = \Box$. It is clear that the last tree of $\mathcal{F}(T)$ is always the empty tree.

Using decomposition (1), we can easily check that $\mathcal{F}(T)$ is the concatenation of T^* , $\widetilde{\mathcal{F}}(T_1)$, $\widetilde{\mathcal{F}}(T_2)$, ..., $\widetilde{\mathcal{F}}(T_{k-1})$, $\mathcal{F}(T_k)$, where $T^* = T_1^*T_2^* \cdots T_{k-1}^*$ and $\widetilde{\mathcal{F}}(T_j)$, $j \in [k-1]$, is $\mathcal{F}(T_j)$ excluding T_j^* .

We have the following result.

Proposition 1. For every $T = T_1T_2 \cdots T_k \in \mathcal{T}_k$ we have

$$i) \ s(T^*) = 1 + \sum_{j=1}^{k-1} s(T_j^*).$$

$$ii)$$
 $s(\mathcal{F}(T)) = s(T).$

$$iii)$$
 $|\mathcal{F}(T)| = s(T) + 1$

iv)
$$P(\mathcal{F}(T)) = u^{\nu} dP(\widetilde{\mathcal{F}}(T_1)) dP(\widetilde{\mathcal{F}}(T_2)) \cdots dP(\widetilde{\mathcal{F}}(T_{k-1})) dP(\mathcal{F}(T_k)), \text{ where } \nu = s(T^*).$$

v) $P(\mathcal{F}(T))$ is a Dyck path.

Proof. The proof of (i) is obvious, whereas the proof of (iv) follows immediately from relation (4). The proofs of (ii), (iii) and (v) use induction as follows:

$$s(\mathcal{F}(T)) = s(T^*) + \sum_{j=1}^{k-1} (s(\mathcal{F}(T_j)) - s(T_j^*)) + s(\mathcal{F}(T_k))$$
$$= s(T^*) + \sum_{j=1}^{k} (s(T_j)) - \sum_{j=1}^{k-1} s(T_j^*) = 1 + \sum_{j=1}^{k} s(T_j) = s(T).$$

$$|\mathcal{F}(T)| = 1 + \sum_{j=1}^{k-1} (|\mathcal{F}(T_j)| - 1) + |\mathcal{F}(T_k)| = 1 + \sum_{j=1}^{k-1} s(T_j) + 1 + s(T_k) = 1 + s(T).$$

Finally, since each $P(\mathcal{F}(T_i)), i \in [k]$ is a Dyck path, it follows that the path

$$uP(\mathcal{F}(T_1))P(\mathcal{F}(T_2))\cdots P(\mathcal{F}(T_{k-1}))dP(\mathcal{F}(T_k))$$

is also a Dyck path and hence, using the equalities $P(\mathcal{F}(T_j)) = u^{s(T_j^*)} dP(\widetilde{\mathcal{F}}(T_j)), j \in [k-1],$ and (i), (iv), we obtain that $P(\mathcal{F}(T))$ is a Dyck path.

In the sequel we will show that k-ary trees can be generated by certain forests of (k-1)ary trees. For this, we will introduce a new decomposition of k-ary trees. For $T \in \mathcal{T}_k$, we
denote by Z_i the k-th child in T of the i-th (in postorder) vertex of T^* . Clearly, T can be
uniquely recovered by attaching each Z_i as the k-th child to the i-th (in postorder) vertex
of T^* . The trees $T^*, Z_1, Z_2, \ldots, Z_{\nu}$, where $\nu = s(T^*)$, form a decomposition of T called the
first component decomposition; (see for example Figure 6).

Proposition 2. For every $T \in \mathcal{T}_k$, the forest $\mathcal{F}(T)$ is the concatenation of the forests $T^*, \mathcal{F}(Z_1), \mathcal{F}(Z_2), \ldots, \mathcal{F}(Z_{\nu})$.

Figure 6: The first component decomposition of the tree of Figure 2.

Proof. It is enough to show that if X, Y are two trees in $\mathcal{F}(Z_i), \mathcal{F}(Z_j)$ respectively then X precedes Y in $\mathcal{F}(T)$ if and only if i < j or i = j and X precedes Y in $\mathcal{F}(Z_i)$.

We will prove this using induction on the size of the tree T.

If $T = T_1 T_2 \cdots T_k$, then it is evident that $Z_{\nu} = T_k$.

Clearly, each Z_i , $i \in [\nu - 1]$ is a subtree of a unique T_{ξ_i} , $\xi_i \in [k - 1]$, such that $\xi_i \leq \xi_j$ whenever i < j. Then X, Y belong to $\mathcal{F}(T_{\xi_i})$, $\mathcal{F}(T_{\xi_j})$ respectively and $X \neq T_{\xi_i}^*$, $Y \neq T_{\xi_j}^*$. We consider two cases:

- 1. If $\xi_i \neq \xi_j$ then X precedes Y in $\mathcal{F}(T)$ if and only if $\xi_i < \xi_j$ or equivalently i < j.
- 2. If $\xi_i = \xi_j$ then X precedes Y in $\mathcal{F}(T)$ if and only if X precedes Y in $\mathcal{F}(T_{\xi_i})$ or equivalently, by the induction hypothesis i < j or i = j and X precedes Y in $\mathcal{F}(Z_i)$.

Hence, in every case X precedes Y in $\mathcal{F}(T)$ if and only if i < j or i = j and X precedes Y in $\mathcal{F}(Z_i)$.

From Proposition 2 and relation (4) we obtain a new, simpler expression for $P(\mathcal{F}(T))$, using the Dyck paths $P(\mathcal{F}(Z_i))$, $j \in [\nu]$.

$$P(\mathcal{F}(T)) = u^{\nu} dP(\mathcal{F}(Z_1)) dP(\mathcal{F}(Z_2)) \dots dP(\mathcal{F}(Z_{\nu})), \text{ where } \nu = s(T^*).$$
 (5)

Proposition 3. The mapping $T \to \mathcal{F}(T)$ is a size preserving bijection between \mathcal{T}_k and the set of forests \mathcal{F} of (k-1)-ary trees with $P(\mathcal{F}) \in \mathcal{D}$.

Proof. Given a forest \mathcal{F} of (k-1)-ary trees such that $P(\mathcal{F}) \in \mathcal{D}$, we will show by induction that there exists a unique tree $T \in \mathcal{T}_k$ such that $\mathcal{F} = \mathcal{F}(T)$.

Using the first ascent decomposition (3) we have $P(\mathcal{F}) = u^{\nu} dQ_1 dQ_2 \cdots dQ_{\nu}$, where ν is the size of the first element S of \mathcal{F} and $Q_j \in \mathcal{D}$, for all $j \in [\nu]$. Since

$$\sum_{j=1}^{\nu} (r(Q_j) + 1) = \sum_{j=1}^{\nu} r(Q_j) + \nu = r(P(\mathcal{F})) = s(\mathcal{F}) = |\mathcal{F}| - 1,$$

it follows that there exists a sequence of forests (\mathcal{F}_j) , $j \in [\nu]$, such that \mathcal{F} is the concatenation of $S, \mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{\nu}$ and $|\mathcal{F}_j| = r(Q_j) + 1$,

It follows from relation (4) that $P(\mathcal{F}_j) = Q_j$ and hence it is a Dyck path, for every $j \in [\nu]$. Thus, by the induction hypothesis, there exists $Z_j \in \mathcal{T}_k$, $j \in [\nu]$, such that $\mathcal{F}_j = \mathcal{F}(Z_j)$. Then T is the tree constructed by attaching Z_j to the j-th (in postorder) vertex of S as its k-th child; from Proposition 2 it follows immediately that $\mathcal{F} = \mathcal{F}(T)$.

For the proof of the uniqueness, let $\mathcal{F}(X) = \mathcal{F}(T)$; then $T^* = X^*$. If $T^*, Z_1, Z_2, \ldots, Z_{\nu}$ and $T^*, Y_1, Y_2, \ldots, Y_{\nu}$ are the first component decompositions of T and X respectively, then since $P(\mathcal{F}(T)) = P(\mathcal{F}(X))$, by relation (5) it follows that $P(\mathcal{F}(Z_i)) = P(\mathcal{F}(Y_i))$, for every $i \in [\nu]$. Furthermore, since $|\mathcal{F}(Z_i)| = f(P(\mathcal{F}(Z_i))) + 1 = f(P(\mathcal{F}(Y_i))) + 1 = |\mathcal{F}(Y_i)|$ for every $i \in [\nu]$, by Proposition 2 we obtain that $\mathcal{F}(Z_i) = \mathcal{F}(Y_i)$, for every $i \in [\nu]$. Thus, by the induction hypothesis, $Z_i = Y_i$ for each $i \in [\nu]$, so that T = X.

We close this section with the following algorithmic construction of the tree $T \in \mathcal{T}_k$ such that $\mathcal{F}(T) = \mathcal{F}$, where \mathcal{F} is a given forest of (k-1)-ary trees with $P(\mathcal{F}) \in \mathcal{D}$:

We start with the first tree of \mathcal{F} . At each step, we add as the k-th child of the first (in postorder) vertex which does not have a k-th child, the first tree of \mathcal{F} that has not already been used. For example, the tree T of Figure 2 can be constructed from the forest of Figure 5 as shown in Figure 7.

Figure 7: Construction of T from \mathcal{F} .

4 Generation of k-ary trees from unary trees

In this section we show how every k-ary tree can be uniquely decomposed into a forest of unary trees which leads to a new bijection between the sets \mathcal{T}_k and $\mathcal{D}^{(k-1)}$. For this, we first introduce a mapping on forests denoted by ()'.

For every forest $\mathcal{F} = (T_1, T_2, \dots, T_{\lambda})$ of k-ary trees, we define the forest \mathcal{F}' of (k-1)-ary trees to be the concatenation of the forests $\mathcal{F}(T_1), \mathcal{F}(T_2), \dots, \mathcal{F}(T_{\lambda})$. Using Proposition 1 (ii), (iii), we deduce the following equalities:

$$s(\mathcal{F}') = s(\mathcal{F})$$
 and $|\mathcal{F}'| = s(\mathcal{F}) + |\mathcal{F}|$. (6)

Furthermore, it can be easily checked that if \mathcal{F} is the concatenation of the forests $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{\rho}$, then \mathcal{F}' is the concatenation of the forests $\mathcal{F}'_1, \mathcal{F}'_2, \ldots, \mathcal{F}'_{\rho}$.

The following two results establish additional properties of ()'.

Proposition 4. For any pair of forests \mathcal{F}, \mathcal{G} , we have that if $\mathcal{F}' = \mathcal{G}'$ then $\mathcal{F} = \mathcal{G}$.

Proof. Since $|\mathcal{F}| = |\mathcal{F}'| - s(\mathcal{F}') = |\mathcal{G}'| - s(\mathcal{G}') = |\mathcal{G}|$, we can write

$$\mathcal{F} = (T_1, T_2, \dots, T_{\lambda})$$
 and $\mathcal{G} = (X_1, X_2, \dots, X_{\lambda})$.

We assume that $\mathcal{F} \neq \mathcal{G}$ and we choose ρ to be the least element of $[\lambda]$ such that $T_{\rho} \neq X_{\rho}$. Since $\mathcal{F}' = \mathcal{G}'$ and $\mathcal{F}(T_{\rho}) \neq \mathcal{F}(X_{\rho})$, it follows that $|\mathcal{F}(T_{\rho})| \neq |\mathcal{F}(X_{\rho})|$; without loss of generality we assume that $|\mathcal{F}(T_{\rho})| < |\mathcal{F}(X_{\rho})|$. Then, there exists a forest \mathcal{H} such that $\mathcal{F}(X_{\rho})$ is the concatenation of $\mathcal{F}(T_{\rho})$ and \mathcal{H} . It follows that $P(\mathcal{F}(X_{\rho})) = P(\mathcal{F}(T_{\rho}))dP(\mathcal{H})$ which is not a Dyck path, giving the required contradiction.

Proposition 5. For every forest \mathcal{F} , we have that $P_{i-1}(\mathcal{F}) \in \mathcal{D}^{(i-1)}$ if and only if $P_i(\mathcal{F}') \in \mathcal{D}^{(i)}$.

Proof. Let $\mathcal{F} = (T_1, T_2, \dots, T_{\lambda})$; then

$$P_{i-1}(\mathcal{F}) = u_{i-1}^{s(T_1)} du_{i-1}^{s(T_2)} d \cdots u_{i-1}^{s(T_{\lambda-1})} du_{i-1}^{s(T_{\lambda})}$$

and by relation (4)

$$P_i(\mathcal{F}') = P_i(\mathcal{F}(T_1))dP_i(\mathcal{F}(T_2))d\cdots P_i(\mathcal{F}(T_{\lambda-1}))dP_i(\mathcal{F}(T_{\lambda})).$$

Clearly, since for every $j \in [\lambda]$ the path $P(\mathcal{F}(T_j))$ is a Dyck path, the path $P_i(\mathcal{F}(T_j))$ lies above the x axis and ends at height $(i-1)s(T_j)$. Furthermore, the fall following $P_i(\mathcal{F}(T_j))$ in the path $P_i(\mathcal{F}')$ is at the same height as the fall following the ascent $u_{i-1}^{s(T_j)}$ in the path $P_{i-1}(\mathcal{F})$, for all $j \in [\lambda - 1]$, giving the required result.

We now have the following result.

Proposition 6. For every forest of (k-1)-ary trees \mathcal{F} such that $P_i(\mathcal{F}) \in \mathcal{D}^{(i)}$, there exists a unique forest \mathcal{G} of k-ary trees such that $\mathcal{G}' = \mathcal{F}$ and $|\mathcal{G}| = 1 + (i-1)s(\mathcal{F})$.

Proof. Clearly, if $\mathcal{F} = \square$, the result holds for $\mathcal{G} = \square$, while, if i = 1 the result follows from Proposition 3. Otherwise, since $P_i(\mathcal{F}) \in \mathcal{D}^{(i)}$, the path $P(\mathcal{F})$ starts at the origin with a rise and ends at a point below the x-axis attaining the least possible height; so, there exists a sequence $(Q_i)_{i \in [\lambda]}$ of Dyck paths, such that

$$P(\mathcal{F}) = Q_1 dQ_2 d \cdots Q_{\lambda - 1} dQ_{\lambda}$$

and $Q_1 \neq \varepsilon$. Then, since

$$|\mathcal{F}| = 1 + f(P(\mathcal{F})) = 1 + \lambda - 1 + \sum_{j=1}^{\lambda} f(Q_j) = \sum_{j=1}^{\lambda} (r(Q_j) + 1),$$

there exists a unique sequence $(\mathcal{F}_j)_{j\in[\lambda]}$ of forests of (k-1)-ary trees such that $|\mathcal{F}_j| = r(Q_j)+1$, for all $j\in[\lambda]$ and \mathcal{F} is the concatenation of the forests $\mathcal{F}_1,\mathcal{F}_2,\ldots,\mathcal{F}_{\lambda}$. Then, by relation (4), it follows that

$$P(\mathcal{F}) = P(\mathcal{F}_1)dP(\mathcal{F}_2)d\cdots P(\mathcal{F}_{\lambda-1})dP(\mathcal{F}_{\lambda}).$$

Since for all $j \in [\lambda]$ we have that $f(P(\mathcal{F}_j)) = |\mathcal{F}_j| - 1 = f(Q_j)$, from the above two expressions of $P(\mathcal{F})$ it follows that $P(\mathcal{F}_j) = Q_j$. Thus, $P(\mathcal{F}_j)$ is a Dyck path and by Proposition 3 there exists a unique $T_j \in \mathcal{T}_k$ such that $\mathcal{F}_j = \mathcal{F}(T_j)$. Then, for $\mathcal{G} = (T_1, T_2, \dots, T_{\lambda})$, we obtain $\mathcal{G}' = \mathcal{F}$.

Now, since $P_i(\mathcal{F}) \in \mathcal{D}^{(i)}$ and $Q_j \in \mathcal{D}$ for each $j \in [\lambda]$, we have that

$$ir(P_i(\mathcal{F})) = f(P_i(\mathcal{F})) = f(P(\mathcal{F})) = \lambda - 1 + \sum_{j=1}^{\lambda} f(Q_j) = \lambda - 1 + \sum_{j=1}^{\lambda} r(Q_j) = \lambda - 1 + r(P(\mathcal{F})).$$

Furthermore, since $r(P_i(\mathcal{F})) = r(P(\mathcal{F})) = s(\mathcal{F})$ and $|\mathcal{G}| = \lambda$, it follows that $|\mathcal{G}| = 1 + (i-1)s(\mathcal{F})$.

The uniqueness of \mathcal{G} follows from Proposition 4.

The next result follows directly from Propositions 5 and 6.

Proposition 7. The mapping ()' from the set of forests of (k-i+1)-ary trees with $P_{i-1}(\mathcal{F}) \in \mathcal{D}^{(i-1)}$ to the set of forests of (k-i)-ary trees with $P_i(\mathcal{F}) \in \mathcal{D}^{(i)}$ where $i \geq 2$, is a bijection.

Using the mapping ()', for every $T \in \mathcal{T}_k$ and $i \in [k-1]$, we define recursively the forest $\mathcal{F}^i(T)$ by the relations

$$\mathcal{F}^0(T) = T$$
 and $\mathcal{F}^i(T) = (\mathcal{F}^{i-1}(T))'$.

For example, for the tree T of Figure 2 for which $\mathcal{F}(T)$ has been already constructed (see Figure 5), we can easily obtain that $\mathcal{F}^2(T)$ is the forest of Figure 8.

Clearly, the forest $\mathcal{F}^i(T)$ consists of (k-i)-ary trees. Furthermore, from (6) we obtain inductively the following generalization of equalities (ii), (iii) of Proposition 1:

$$s(\mathcal{F}^i(T)) = s(T)$$
 and $|\mathcal{F}^i(T)| = is(T) + 1$.

Figure 8: The forest $\mathcal{F}^2(T)$.

In particular, the second equality for i = k - 1 shows that we have a 1-1 correspondence between the leaves of the tree T and the unary trees of $\mathcal{F}^{k-1}(T)$.

Using Propositions 5 and 6 we can easily show by induction that $P_i(\mathcal{F}^i(T)) \in \mathcal{D}^{(i)}$, for every $i \in [k-1]$. Furthermore, using Proposition 7 we deduce by induction the following result which is a generalization of Proposition 3.

Proposition 8. For every $i \in [k-1]$, the mapping $T \to \mathcal{F}^i(T)$ is a size preserving bijection between \mathcal{T}_k and the set of forests \mathcal{F} of (k-i)-ary trees with $P_i(\mathcal{F}) \in \mathcal{D}^{(i)}$.

An application of the previous result for i = k-1 gives that the mapping $\mathcal{T} \to \mathcal{F}^{k-1}(\mathcal{T})$ is a size preserving bijection between \mathcal{T}_k and the set of forests \mathcal{F} of unary trees with $P_{k-1}(\mathcal{F}) \in \mathcal{D}^{(k-1)}$. Clearly, since any such forest \mathcal{F} can be identified with the associated path $P_{k-1}(\mathcal{F})$, we obtain the following result.

Proposition 9. The mapping $\phi : \mathcal{T}_k \to \mathcal{D}^{(k-1)}$ with $\phi(T) = P_{k-1}(\mathcal{F}^{k-1}(T))$ is a bijection such that $s(T) = r(\phi(T))$.

Notice that the classical bijection θ mentioned in Section 2 is different from the bijection ϕ of the previous Proposition. For example, for the tree T of Figure 2 we have

$$\theta(T) = u_2 u_2 du_2 dd dd u_2 dd u_2 u_2 dd dd u_2 dd du_2 dd,$$

whereas

$$\phi(T) = u_2 u_2 du_2 ddu_2 dddu_2 u_2 ddddu_2 dddu_2 dd.$$

Both bijections use recursion, θ with respect to the size, whereas ϕ with respect to k.

5 Maximal paths of k-ary trees

In this section we show that every k-ary tree can be uniquely expressed by the set of its maximal paths. Furthermore, using this expression, we give an equivalent simple formula for the bijection ϕ .

Let \mathcal{A}_k be the set of all subsets A of $[k]^*$ (the set of all words on the alphabet [k]) satisfying the following two conditions:

- i) If $x = \rho \alpha \in A$, where $\rho, \alpha \in [k]^*$ and $\alpha \neq \varepsilon$, then, for all $i \in [k]$, the set A contains at least one word of the form $\rho i \gamma_i$, where $\gamma_i \in [k]^*$.
- ii) If $\rho \in A$ and $\alpha \in [k]^*$, then $\rho \alpha \in A$ if and only if $\alpha = \varepsilon$.

From the above two conditions, it follows easily that $\{\varepsilon\} \in \mathcal{A}_k$ and $\varepsilon \notin A$ for all $A \in \mathcal{A}_k$ with $A \neq \{\varepsilon\}$.

We define recursively the mapping $\psi: \mathcal{T}_k \to \mathcal{A}_k$ by

$$\psi(\Box) = \{\varepsilon\}$$
 and $\psi(T_1 T_2 \cdots T_k) = \{i\alpha : \alpha \in \psi(T_i), i \in [k]\}.$

For example, for the tree T of Figure 2 we have

$$\psi(T) = \{11, 121, 122, 123, 13, 21, 22, 2311, 2312, 2313, 232, 2331, 2332, 2333, 31, 32, 33\}.$$

It is easy to check that ψ is a bijection, such that $|\psi(T)| = (k-1)s(T)+1$, for all $T \in \mathcal{T}_k$. Furthermore, the elements of $\psi(T)$ code the maximal paths of T. In fact, the maximal path $S = v_1 v_2 \cdots v_{\ell+1}$ of T or, equivalently, its associated leaf $v_{\ell+1}$, is coded by the word $\alpha = a_1 a_2 \cdots a_\ell \in \psi(T)$ if and only if v_{i+1} is the a_i -th child of v_i , for all $i \in [\ell]$.

Additionally, since $|\mathcal{F}^{k-1}(T)| = |\psi(T)|$, there exists a 1-1 correspondence between the sequences of $\psi(T)$ and the trees of $\mathcal{F}^{k-1}(T)$ such that every $x \in \psi(T)$ corresponds to a unique unary tree T_x of $\mathcal{F}^{k-1}(T)$, which is the left path of the leaf which is coded by x. For example, the word x = 2311 of $\psi(T)$ in the tree T of Figure 2 corresponds to the 8-th element of the forest $\mathcal{F}^2(T)$ of Figure 8.

Using the above expression of k-ary trees, we will give a method for the construction of a (k-1)-Dyck path from a set $A \in \mathcal{A}_k$ endowed with a total order. Firstly, for each $x \in [k]^*$, we set l(x) to be the number of trailing 1's of x. Clearly, $l(x) = s(T_x)$, for every $x \in \psi(T)$.

Proposition 10. Let \leq be a partial order on $[k]^*$ satisfying the following conditions:

- 1. the restriction of \leq on A is a total order and min A is the element of A which contains only 1's,
- 2. $i\alpha \leq i\beta$ if and only if $\alpha \leq \beta$, for all $\alpha, \beta \in A$ and $i \in [k]$,

for each $A \in \mathcal{A}_k$. Then we have that

$$u_{k-1}^{l(\alpha_1)} du_{k-1}^{l(\alpha_2)} d \cdots u_{k-1}^{l(\alpha_{\mu-1})} du_{k-1}^{l(\alpha_{\mu})} \in \mathcal{D}^{(k-1)}$$

for all $A \in \mathcal{A}_k$, where $A = \{\alpha_1, \alpha_2, \dots, \alpha_{\mu}\}$ and $\alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_{\mu}$.

Proof. In order to prove that the above path is a (k-1)-Dyck path, it suffices to prove that

$$(k-1)\sum_{\substack{x\in A\\x\preceq y}} l(x) \ge |\{x\in A: x\preceq y\}|,$$
 and $(k-1)\sum_{x\in A} l(x) = |A|-1,$

where $y \in A \setminus \{\alpha_{\mu}\}$. We will use induction with respect to the cardinality of $A \in \mathcal{A}_k$.

For $A = \{\varepsilon\}$, the result is true. For $A \neq \{\varepsilon\}$ we will prove only the inequality, since the equality can be proved analogously.

We define $A_i = \{\alpha \in [k]^* : i\alpha \in A\}$, for each $i \in [k]$. It is easy to check that $A_i \in \mathcal{A}_k$, for every $i \in [k]$. Furthermore, we define $I = \{i \in [k] : i\alpha \leq y \text{ for some } \alpha \in A_i\}$. Obviously, $1 \in I$. For each $i \in I$, we denote by α_i the maximum element of A_i with $i\alpha_i \leq y$. Then, we have

$$(k-1)\sum_{\substack{x\in A\\x\preceq y}}l(x) = (k-1)\sum_{i\in I}\sum_{\substack{\alpha\in A_i\\i\alpha\preceq y}}l(i\alpha) = (k-1)\sum_{i\in I}\sum_{\substack{\alpha\in A_i\\\alpha\preceq \alpha_i}}l(\alpha) + (k-1)(1+\sum_{\substack{\alpha\in A_1\\\alpha\preceq \alpha_1}}l(\alpha))$$

$$= \sum_{i\in I}(k-1)\sum_{\substack{\alpha\in A_i\\\alpha\preceq \alpha_i}}l(\alpha) + (k-1)$$

$$= \sum_{i\in I}(k-1)\sum_{\substack{\alpha\in A_i\\\alpha\preceq \alpha_i}}l(\alpha) + (k-1)$$

$$\geq \sum_{i\in I\setminus\{k\}}(|\{\alpha\in A_i:\alpha\preceq \alpha_i\}|-1) + \sum_{i\in I\cap\{k\}}|\{\alpha\in A_i:\alpha\preceq \alpha_i\}|+(k-1)$$

$$= \sum_{i\in I}|\{\alpha\in A_i:\alpha\preceq \alpha_i\}|-|I\setminus\{k\}|+k-1\geq |\{x\in A:x\preceq y\}|.$$

From the previous proposition, it follows that given a partial order " \leq " on [k]* satisfying conditions 1, 2, we have that

$$(k-1)\sum_{j=1}^{m} l(\alpha_j) \ge m$$
, for every $m \in [\mu - 1]$ and $(k-1)\sum_{j=1}^{\mu} l(\alpha_j) = \mu - 1$,

for every set $A = \{\alpha_1, \alpha_2, \dots, \alpha_{\mu}\} \in \mathcal{A}_k$ with $\alpha_t \leq \alpha_s$ if and only if $t \leq s$. Thus, the mapping χ on \mathcal{A}_k defined by

$$\chi(\{\varepsilon\}) = \varepsilon, \qquad \chi(A) = u_{k-1}^{l(\alpha_1)} du_{k-1}^{l(\alpha_2)} d \cdots u_{k-1}^{l(\alpha_{\mu-1})} d$$

takes values in $\mathcal{D}^{(k-1)}$.

Clearly, this mapping depends on the choice of the partial order " \leq ". If " \leq " is the lexicographic order on $[k]^*$ (which obviously satisfies the conditions of Proposition 10), then the resulting mapping χ may be used in order to give an explicit formula of the bijection θ .

In order to describe the bijection ϕ using the above equivalent expression of k-ary trees, we need an ordering for the elements of each $A \in \mathcal{A}_k$. Thus we define a partial order on $[k]^*$, denoted by " \leq ", as follows: If $x = \rho \alpha$ and $y = \rho \beta$, where ρ is the maximal common initial part (possibly empty) of x and y, then

$$x \leq y \Leftrightarrow \begin{cases} \alpha = \beta = \varepsilon, \text{ or } \\ \max \alpha < \max \beta, \text{ or } \\ \max \alpha = \max \beta \text{ and first element of } \alpha < \text{ first element of } \beta. \end{cases}$$

Clearly, from condition ii) in the definition of \mathcal{A}_k , it follows that " \preceq " is a total order on each $A \in \mathcal{A}_k$.

For example, the elements of $\psi(T)$ for the tree T of Figure 2 are ordered as follows:

$$11 \leq 121 \leq 122 \leq 21 \leq 22 \leq 123 \leq 13 \leq 2311$$

 $\leq 2312 \leq 232 \leq 2313 \leq 2331 \leq 2332 \leq 2333 \leq 31 \leq 32 \leq 33.$

So, for the set $A = \psi(T)$, we have the following 2-Dyck path:

$$\chi(A) = u_2^2 du_2 ddu_2 dddu_2^2 ddddu_2 dddu_2 dd.$$

Proposition 11. For every $k \in \mathbb{N}^*$ and $T \in \mathcal{T}_k$, we have that

$$\chi(\psi(T)) = \phi(T).$$

Proof. Using the first component decomposition $T^*, Z_1, \ldots, Z_{\nu}$, where $\nu = s(T^*)$, of a tree $T \in \mathcal{T}_k$, it follows inductively using Proposition 2 that $\mathcal{F}^{k-1}(T)$ is the concatenation of the forests $\mathcal{F}^{k-2}(T^*), \mathcal{F}^{k-1}(Z_1), \ldots, \mathcal{F}^{k-1}(Z_{\nu})$. We will show by induction with respect to k and to the size of the tree, that if $x, y \in \psi(T)$ and T_x, T_y are their associated trees in $\mathcal{F}^{k-1}(T)$, then T_x precedes T_y in $\mathcal{F}^{k-1}(T)$ if and only if $x \leq y$.

We consider the following cases:

- 1. T_x, T_y are in $\mathcal{F}^{k-2}(T^*)$. Then $x, y \in \psi(T^*)$ and hence, using the induction hypothesis (with respect to k), we deduce that $x \leq y$.
- 2. T_x is in $\mathcal{F}^{k-2}(T^*)$ and T_y is in $\mathcal{F}^{k-1}(Z_i)$, for some $i \in [\nu]$. Then $x \prec y$, since $\max x < k = \max y$.
- 3. T_x, T_y are in $\mathcal{F}^{k-1}(Z_i)$, for some $i \in [\nu]$. Then $x = \rho k \alpha$ and $y = \rho k \beta$, where $\rho \in [k-1]^*$ and $\alpha, \beta \in [k]^*$. It follows that $\alpha, \beta \in \psi(Z_i)$ and hence, using the induction hypothesis (with respect to the size of the tree), we deduce that $\alpha \leq \beta$ and therefore $x \leq y$.
- 4. T_x is in $\mathcal{F}^{k-1}(Z_i)$ and T_y is in $\mathcal{F}^{k-1}(Z_j)$, where $i, j \in [\nu]$ and $i \neq j$. Then i < j, so that the parent of Z_i precedes the parent of Z_j (in postorder). Thus, $x = \rho \alpha$ and $y = \rho \beta$, $\rho \in [k-1]^*$ (where ρ is the initial common part of x and y) and $\alpha, \beta \in [k]^*$. It follows that $\max \alpha = \max \beta = k$ and first element of α < first element of β , and hence $x \leq y$.

This shows that in all cases, $x \leq y$.

The converse now follows obviously, since $\mathcal{F}^{k-1}(T)$ is totally ordered.

Finally, since $l(x) = s(T_x)$, for every $x \in \psi(T)$, the (k-1)-paths $\chi(\psi(T))$ and $\phi(T)$ have the same ascent sequence and therefore they are identical.

6 Enumerations

In this section, we study some statistics on k-ary trees related to the notions studied in the previous sections.

6.1 Enumeration of \mathcal{T}_k according to the number of non-empty trees of $\mathcal{F}^i(T)$

Given $i, k \in \mathbb{N}^*$ with $i \leq k - 1$ and $T \in \mathcal{T}_k$, we denote by $p_{i,k}(T)$ the number of non-empty trees of $\mathcal{F}^i(T)$ and by $F_{i,k}$ the generating function

$$F_{i,k}(x,y) = \sum_{T \in \mathcal{T}_k} x^{s(T)} y^{p_{i,k}(T)}.$$

It follows that

$$p_{i,k}(\square) = 0$$
 and $p_{i,k}(T_1 T_2 \cdots T_k) = 1 + \sum_{j=1}^k p_{i,k}(T_j) - \sum_{j=1}^{k-i} [T_j \neq \square],$

where [P] is the well known Iverson notation defined by $[P] = \begin{cases} 1, & \text{if } P \text{ is true;} \\ 0, & \text{if } P \text{ is false.} \end{cases}$

The above equality can be proved by induction (with respect to k). Indeed, since the forest $\mathcal{F}(T)$ is the concatenation of $T^*, \widetilde{\mathcal{F}}(T_1), \widetilde{\mathcal{F}}(T_2), \ldots, \widetilde{\mathcal{F}}(T_{k-1}), \mathcal{F}(T_k)$, where $T^* = T_1^*T_2^* \cdots T_{k-1}^*$, we can easily check that the forest $\mathcal{F}^i(T)$ is the concatenation of

$$\mathcal{F}^{i-1}(T^*), \widetilde{\mathcal{F}}^i(T_1), \widetilde{\mathcal{F}}^i(T_2), \ldots, \widetilde{\mathcal{F}}^i(T_{k-1}), \mathcal{F}^i(T_k).$$

Furthermore, using the induction hypothesis for the tree $T^* \in \mathcal{T}_{k-1}$, we obtain that

$$\begin{aligned} p_{i,k}(T) &= p_{i-1,k-1}(T^*) + \sum_{j=1}^{k-1} (p_{i,k}(T_j) - p_{i-1,k-1}(T_j^*)) + p_{i,k}(T_k) \\ &= 1 + \sum_{j=1}^{k-1} p_{i-1,k-1}(T_j^*) - \sum_{j=1}^{k-1-(i-1)} [T_j^* \neq \Box] + \sum_{j=1}^{k-1} p_{i,k}(T_j) - \sum_{j=1}^{k-1} p_{i-1,k-1}(T_j^*) + p_{i,k}(T_k) \\ &= 1 + \sum_{j=1}^{k} p_{i,k}(T_j) - \sum_{j=1}^{k-i} [T_j \neq \Box]. \end{aligned}$$

From the above relation, it follows that the generating function $F_{i,k}(x,y)$ satisfies the following equation:

$$F_{i,k}(x,y) = 1 + xy(F_{i,k}(x,y))^{i} \left(1 + \frac{1}{y}(F_{i,k}(x,y) - 1)\right)^{k-i}.$$

Using the Lagrange inversion formula, we obtain the following result.

Proposition 12. The number of all k-ary trees of size n for which the forest $\mathcal{F}^i(T)$, $i \in [k-1]$, contains exactly j non-empty trees is equal to

$$[x^n y^j] F_{i,k} = \frac{1}{n} \binom{ni}{j-1} \binom{(k-i)n}{n-j}.$$

The above result is of special interest for the cases i = k-1 and i = 1. In particular, using the bijection φ , we can easily check that $p_{k-1,k}(T) = N_{ud}(\phi(T))$, where $N_{ud}(\phi(T))$ denotes the number of ud's (peaks) in $\phi(T)$; thus the above two parameters are equidistributed, which implies that the number of (k-1)-Dyck paths having n rises and j peaks is equal to $\frac{1}{n}\binom{(k-1)n}{j-1}\binom{n}{j}$.

We note that since the number $p_{k-1,k}(T)-1$, which counts the non-empty trees in $\mathcal{F}^{k-1}(T)$ other than the first one, is equal to $N_{du}(\phi(T))$ we can easily deduce that the number of (k-1)-Dyck paths with n rises and j valleys is equal to $\frac{1}{n}\binom{(k-1)n}{j}\binom{n}{j+1}$.

Furthermore, since $|\mathcal{F}^{k-1}(T)| = (k-1)s(T)+1$, we obtain that the number of empty trees in $\mathcal{F}^{k-1}(T)$ other than the last one (which is always empty) is equal to $(k-1)s(T)-p_{k-1,k}(T)$. Since we can easily check that this number is equal to $N_{dd}(\phi(T))$, we deduce that the number of (k-1)-Dyck paths having n rises and j doublefalls is equal to $\frac{1}{n}\binom{(k-1)n}{j+1}\binom{n}{(k-1)n-j}$.

On the other hand, using a variation θ' of θ defined by

$$\theta'(\Box) = \varepsilon$$
 and $\theta'(T_1 T_2 \cdots T_k) = u \theta'(T_k) d\theta'(T_{k-1}) \cdots d\theta'(T_2) d\theta'(T_1),$

we can easily check by induction that $N_{uu}(\theta'(T)) = p_{1,k}(T) - [T \neq \square]$, for every $T \in \mathcal{T}_k$. From this equality, it follows easily that the number of all (k-1)-Dyck paths having n rises and j doublerises is equal to $\frac{1}{n} \binom{n}{j} \binom{(k-1)n}{n-j-1}$.

S. Heubach et al. [6] give analogous results on similar generalized Dyck paths.

6.2 Enumeration according to the size of the first element of $\mathcal{F}^i(T)$

For every $T \in \mathcal{T}_k$ we denote by $q_{i,k}(T)$, $i \in [k-1]$, the size of the first element of $\mathcal{F}^i(T)$ and $G_{i,k}(x,y)$ the generating function

$$G_{i,k}(x,y) = \sum_{T \in \mathcal{T}_k} x^{s(T)} y^{q_{i,k}(T)}.$$

It follows that

$$q_{i,k}(\Box) = 0$$
 and $q_{i,k}(T_1 T_2 \cdots T_k) = 1 + \sum_{j=1}^{k-i} q_{i,k}(T_j).$

The above equality can be proved easily by induction (with respect to k), using the equality $q_{i,k}(T) = q_{i-1,k-1}(T^*)$.

From the above relation, it follows that the generating function $G_{i,k}(x,y)$ satisfies the following equation:

$$G_{i,k}(x,y) = 1 + xy(G_{i,k}(x,1))^i (G_{i,k}(x,y))^{k-i} = 1 + xy(C_k(x))^i (G_{i,k}(x,y))^{k-i}.$$

Using the Lagrange inversion formula, we obtain the following result.

Proposition 13. The number of all k-ary trees T of size n, for which the first element of $\mathcal{F}^i(T)$, $i \in [k-1]$, has size j is equal to

$$[x^n y^j]G_{i,k}(x,y) = \frac{i}{(n-j)k+ij} \binom{(n-j)k+ij}{n-j} \binom{(k-i)j}{j-1}.$$

For the case i = k - 1, using the bijection φ , we can easily check that $q_{k-1,k}(T)$ is the length of the first ascent of $\phi(T)$, thus the number of (k-1)-Dyck paths having n rises and length of first ascent equal to j is $\frac{(k-1)j}{kn-j}\binom{kn-j}{n-j}$.

References

- [1] H. Ahrabian and A. Nowzari-Dalini, Parallel generation of t-ary trees in A-order, Computer J. **50** (2007), 581–588.
- [2] E. Deutsch, Dyck path enumeration, Discrete Math. 204 (1999), 167–202.
- [3] M. C. Er, Lexicographic listing and ranking of t-ary trees, Computer J. **30** (1987), 569–572.
- [4] M. C. Er, Efficient generation of k-ary trees in natural order, Computer J. **35** (1992), 306–308.
- [5] I. M. Gessel and S. Seo, A refinement of Cayley's formula for trees, *Electron. J. Combin.* 11 (2006), #R2.
- [6] S. Heubach, N. Y. Li and T. Mansour, Staircase tilings and k-Catalan structures, Discrete Math. 308 (2008), 5954–5964.
- [7] M. Jani, R. G. Rieper, and M. Zeleke, Enumeration of K-trees and applications, *Ann. Comb.* **6** (2002), 375–382.
- [8] D. E. Knuth. The Art of Computer Programming. Fundamental Algorithms, Vol. 1, Addison-Wesley, 3rd edition, 1997.
- [9] J. F. Korsh, A-order generation of k-ary trees with 4k-4 letter alphabet, J. Inform. Opt. Sci. 16 (1995), 557–567.
- [10] J. F. Korsh and P. LaFollette, Loopless generation of Gray codes for k-ary trees, Inform. Process. Lett. 70 (1999), 7–11.
- [11] J. F. Korsh and S. Lipschutz, Shifts and loopless generation of k-ary trees, *Inform. Process. Lett.* **65** (1998), 235–240.
- [12] T. Mansour, M. Schork and S. Severini, Noncrossing normal ordering for functions of boson operators, *Internat. J. Theoret. Phys.* 47 (2008), 832–849.
- [13] D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, *J. Combin. Theory Ser. A* **99** (2002), 307–344.
- [14] A. Mier and M. Noy, A solution to the tennis ball problem, *Theoret. Comput. Sci.* **346** (2005), 254–264.
- [15] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2009.
- [16] J. Pallo, Generating trees with n nodes and m leaves, Int. J. Comput. Math. 21 (1987), 133–144.
- [17] D. Roelants van Baonaigien and F. Ruskey, Generating t-ary trees in A-order, *Inform. Process. Lett.* **27** (1988), 205–213.

- [18] F. Ruskey, Generating t-ary trees lexicographically, SIAM J. Comput. 7 (1978), 424–439.
- [19] G. Seroussi, On the number of t-ary trees with a given path length, Algorithmica 46 (2006), 557–565.
- [20] L. Xiang, K. Ushijima and C. Tang, On generating k-ary trees in computer representation, *Inform. Process. Lett.* **77** (2001), 231–238.
- [21] S. Zaks, Generation and ranking of k-ary trees, Inform. Process. Lett. 14 (1982), 44–48.
- [22] M. Zeleke and M. Jani, k-trees and Catalan identities, Congr. Numer. 165 (2003), 39–49.

2000 Mathematics Subject Classification: Primary 05A15; Secondary 05A19. Keywords: Generalized Dyck words, k-ary trees, k-Catalan numbers.

(Concerned with sequence <u>A000108</u>.)

Received July 14 2009; revised version received November 3 2009. Published in *Journal of Integer Sequences*, November 4 2009.

Return to Journal of Integer Sequences home page.