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Abstract

For P € Fa[z] with P(0) = 1 and deg(P) > 1, let A = A(P) be the unique subset of
N such that ) - p(A,n)z" = P(z) (mod 2), where p(A, n) is the number of partitions
of n with parts in A. Let p be an odd prime number, and let P be irreducible of order
p ; i.e., p is the smallest positive integer such that P divides 1+ z? in Fs[z]. N. Baccar
proved that the elements of A(P) of the form 2¢m, where k > 0 and m is odd, are
given by the 2-adic expansion of a zero of some polynomial R,, with integer coefficients.
Let s, be the order of 2 modulo p, i.e., the smallest positive integer such that 2°» =1
(mod p). Improving on the method with which R,, was obtained explicitly only when
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sp = %, here we make explicit R, when s, = Pl For that, we have used the

number of points of the elliptic curve 23 + ay® = 1 modulo p.

1 Introduction.

Let N denote the set of positive integers, and let A = {ay, as, ...} be a non-empty subset of
N. For n € N| let p(A,n) be the number of partitions of n with parts in A, i.e., the number
of solutions of the diophantine equation

G+ agxa+ - =n (1)

in non-negative integers x, xs,.... By convention, p(A,0) = 1 and p(A,n) = 0 for all n < 0.
The generating series of p(A,n) is

_m@yZE)mxmf:IIll | @)

— sa
acA

Let Fy be the field with two elements and P(z) = 1+ ez +---+eyz¥ € Fy[z], N > 1. J.-L.
Nicolas, I. Z. Ruzsa and A. Sarkézy [10] proved that there exists a unique set A = A(P)
satisfying

Fu(z) = P(z) (mod 2), (3)

which means that
p(A,n)=¢, (mod2)forl1<n<N (4)

and p(A,n) is even for all n > N. Indeed, for n = 1,

1, ifle A
MAD:{Q1H¢A

and so, by (4),
le As e = 1.

Further, assume that we Know A,,_; = AN{1,...,n—1}; since there exists only one partition
of n containing the part n, then

p(Au n) = p(Anfla n) + X(A7 n)?
where x(A,.) is the characteristic function of the set A, i.e.,

1, ifne A,
X(An) :{ 0, ifné A,

which with (3) allow one to decide whether n belongs to A.

Let p be an odd prime number, and let s, be the order of 2 modulo p, ie., s, is the
smallest positive integer such that p divides 2% — 1. Let P € Fy[z] be irreducible of order p

2



(ord(P) = p); in other words, p is the smallest positive integer such that P divides 1+ 2? in
F,[z]. N. Baccar and F. Ben Said [2] determined the sets A(P) for all p such that s, = 21
Moreover, they proved that if £ > 0 and m is an odd positive integer, then the elements of
A(P) of the form 2*m are given by the 2-adic expansion of some zero of a polynomial R,
with integer coefficients. N. Baccar [1] extended this last result to any odd prime number
p. Unfortunately, the method used in that paper can make explicit R,, only when s, = £ 21.
In this paper, we will improve on the method given by N. Baccar [1], by introducing elliptic
curves, to make R,, explicit when s, = = 3 . In Section 2, some properties of the polynomial
R,, are exposed. In Section 3, we mtroduce elliptic curves to compute some cardinalities
used in Section 4 to make R; explicit, and in Section 5 to get R,, explicitly for any odd
integer m > 3.

Throughout this paper, p is an odd prime number and P is some irreducible polynomial
in Fy[z] of order p. We also denote by s, the order of 2 modulo p. For a € Z and b € N, we
should write @ mod b for the remainder of the euclidean division of a by b.

2 Some results on the polynomial R,

Let p be an odd prime. We denote by (Z/pZ)* the group of invertible elements modulo p
and by < 2 > its subgroup generated by 2. We consider the action x of < 2 > on the set
Z/pZ given by axn = an for all a €< 2 > and all n € Z/pZ. The quotient set will be
denoted by (Z/pZ)/ -2~ and the orbit of some n € Z/pZ by O(n). So, we can write

Z/pZ = 0(1)U O(g)U---UO(g" ") U O(p),
where ¢ is some generator of (Z/pZ)*, r = ps;pl is the number of invertible orbits of Z/pZ,

O(g") = {2g'modp: 0<j<s,—1}, 0<i<r—1, (5)

O(p) = {0}
Note that for any integer t,
O(g") = O(g"™"). (6)

The orbits O(n) are defined as parts of Z/pZ; however, by extension, they are also consid-
ered as parts of N.

If ¢, is the cyclotomic polynomial over [Fy of index p, then
14+ 2 = (14 2)y(2).

Moreover, one has
¢p(2) = Po(2)Pi(z) - - - Proa(2),

where Py, Py, ... and P,_; are the only distinct irreducible polynomials in Fs [2] of the same
degree s, and all of which are of order p. For all [, 0 <1 <r —1, let A, = A(P,) be the set



obtained from (3). If m is an odd positive integer, we define the 2—adic integer y;(m) by
yi(m) = x(A,m) + 2x(A1,2m) + A (A, 4m) + - = > x(A;, 28m)2", (7)
k=0

By computing y;(m) mod 2! one can deduce x(A;,2/m) for all j, 0 < j < k, and obtain
all the elements of A; of the form 2/m. In [3], some necessary conditions on integers to be
in A; were given. For instance:

pn¢ A, YneN, 8)

if ¢ is an odd prime in O(1),then gn ¢ A;, Vn € N. (9)

Let K be some field, and let u(z) = >77"_ju;2’ and v(z) = Zz‘:o v;27 be polynomials in
K[z]. We denote the resultant of u and v with respect to z by res,(u(z),v(z)), and recall the
following well known result

Lemma 1. (i) The resultant res.(u(z),v(2)) is a homogeneous multivariate polynomial with
integer coefficients, of degree n +t in the n 4t + 2 variables u;, v;.

(i) If u(z) is written as u(z) = u,(z — 1) (z — ag) - - - (2 — ) in the splitting field of u over
K then

n

res.(u(z),v(z)) = u’, H v(ay). (10)

i=1

N. Baccar proved [1] that, for all I, 0 < [ < r—1, the 2-adic integers y;(m) defined by (7)
are the zeros of some polynomial R,, with integer coefficients and which can be written as
the resultant of two polynomials. We mention here that the expressions given in that paper
to R,,, for m =1 and m > 3, can be encoded in only one. So that we have

Theorem 2. ([1]) 1) Let m be an odd positive integer such that m ¢ O(p) (i.e., gcd(m,p) =
1), and let § = 6(m) be the unique integer in {0,1,...,r — 1} such that m € O(g°). We
define the polynomial A,, by

r—1

Am(2) = an(m)By(2), (11)

h=0

where for all h, 0 < h <r—1,

ap(m)= Yy pu(d), (12)

d|m, deO(g")

m = Hq prime qlm 4 1S the radical of m with 1 = 1, p is the Mébius function and By, is the

polynomial
sp—1

Bi(2) = Bu(z) = Y 2201 modn, (13)

=0
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Then, the 2-adic integers yo(m),y1(m), ... and y,—1(m) are the zeros of the polynomial R, (y)
of Z[y] defined by the resultant

R (y) = res:(0p(2), my + Ap(2)) (14)

and we have

Ro(y) =m"  ((y — yo(m))(y — ya(m)) -+ (y — yr—1(m))) ™. (15)

2) The 2-adic integers yo(p), y1(p), - .. and y,._1(p) are the zeros of the polynomial Ry (—py —
Sp); while if m = pm/, m’ > 3 and ged(m/,p) = 1, then yo(m),y1(m),... and y,_1(m) are
the zeros of the polynomial R, (—py) defined by (14).

3) If m is divisible by p* or by some prime q belonging to O(1) then we extend the definition
(14) to R, (y) = mP~ly®*; so that yo(m),yi(m),... and y,_1(m) remain zeros of R, since,
from (8) and (9), they all vanish.

Remark 3.  Explicit formulas to the polynomials R,, defined by (14), when s, = 21, are

- 2
given in [1]. Moreover in that paper, it is shown that if 6 is a certain primitive p-th root of
unity over the 2-adic field Q,, then for all [, 0 <[ <r —1,

where, for all [ € Z,
sp—1
711 = Emod?y = Z 62kgl = Z Qj_ (17)
k=0 J€0(g")

We also mention here that N. Baccar [1] proved that for all m € N,

r—1

Bonly) = [T (my + An(6")) " (18)

=0

3 Orbits and elliptic curves.

From now on, we keep the above notation and assume that the prime number p is such that
Sp = p%l (the first ones up to 1000 are: p = 43,109, 157,229, 277,283,307, 499, 643, 691, 733, 739,
811,997 ). So the number of invertible orbits is r = 3 and

Z/pZ = 0(1)U O(g) U O(g*) U O(p), (19)

where g is some generator of the cyclic group (Z/pZ)*. The order of 2 is s, = ;%1; if 2 were

a square modulo p, its order should divide p%l, which is impossible. Hence 2 cannot be a

square modulo p, and by Euler criterion, p has to satisfy p = +3 (mod 8), and, as p = 1
(mod 3), p =13, 19 (mod 24).



Lemma 4. For alli, 0 <1 <2, let O(g") be the orbit of g' defined by (5). Then
0(g") ={—=9',=2¢",...,=27"'¢'} = {g',g"* ... .g"*V}. (20)

In particular, 2 is a cube modulo p and the sub-group generated by 2 is the sub-group of cubes
(generated by g°) and contains —1.

Proof. To get the first equality of (20), it suffices to show that —1 € O(1). This follows from
—1= (%) =2"7 (mod p).
To prove the second equality of (20), one just use the fact that (cf. (6)) ¢* € O(1). O

Let us define the integers ¢; ;, 0 <14, j <2, by
Gi={t: 0<t<s,—1, 144 € 0(g")}]. (21)

Remark 5. As shown just above, —1 € O(1), so that there exists one and only one
t € {0,1,...,s, — 1} such that 1+ ¢* € O(p). Moreover, for all t € {0,1,...,s, — 1} and
Jj€{1,2}, 14+ ¢’*3 ¢ O(p). Hence the integers ¢, ; defined by (21) satisfy

2
Z Ei,j = Sp — (5073‘, (22)
i=0

where 0; ; is the Kronecker symbol given by

5@]':{ 1, ifi=y;

0, otherwise.

The integers ¢; ; defined above are cardinalities of some curves. Indeed, let us consider the
curve over [, ‘ '
Cij: 1+ FX*=gY?

and denote by ¢; ; its cardinality, ¢; ; =| C;; |. Since —1 is a cube modulo p, it is clear that
Cji = Cij.
Using (21) it follows that
Gii=HX3Y?): X#0,Y#0and (X,Y) €Ci i}l

Therefore,

Note that, (X3,Y3) = (X?,Y”) if and only if X’ = Xg" and Y’ = Yg“* for some
v,w € {0,1,2}. Moreover, if i # 0 (resp. j # 0), no point on the curve C;; can be of the
form (0,Y) (resp. (X,0)). But if ¢ = 0 (resp. j = 0), we obtain three points on the curve
C;; with X =0 (resp. Y = 0). Consequently, we obtain the relation

Cij = 9&'0‘ + 3(51'7() + 350,]'. (24)
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Now, let us consider the projective plane cubic curve
5i,j . Z3 + g]X3 — gzy3

and e; ; =| & ; | its cardinality. If ¢ # j, & ; has no points at infinity; whereas if ¢ = j, it has
three points at infinity. Hence
€ij = Cij + 351‘7]'. (25)

By multiplying the equation Z3 + ¢X3 = ¢Y? by ¢2, we get the curve ¢2Z3 + X”* = Y”°.
So, by permuting the variables, we deduce that e; ; = ey. Similarly, we obtain ess = €5 .
Hence, by (25) and (24) we find that

b = Lo, (26)
6272 = 6170. (27)

Therefore, from (22), it follows that
loy = Lo+ 1. (28)

Furthermore, from (25) and (24) we have for all 4, 0 <1i < 2,

9@,0 = G — 351‘,0 -3
= €0 — 651‘,0 — 3. (29)

Hence, to get all the numbers ¢; ;, 0 <4, 7 < 2, it suffices to know the values of ¢; 9, 0 <@ < 2.

Computation of ¢, i € {0,1,2}.
Here, we are interested with the curve & : Z° + X® = ¢'Y3. By setting X = 9¢°z + 2y,
Y = 6z and Z = 9¢g’z — 2y, we get the Weierstrass’s form

zy? = 2® — (27/4) g% 2%,
which, when divided by 23, gives the form
y* =1’ — (27/4)g*.

Let
v =1+ ar+

be the equation of an elliptic curve £ defined over [F,,. It is well known that the number of

points of £ is equal to
3
|g]:p+1+2(w+?++ﬁ)’ (30)
zelF,

where (>) is the Legendre’s symbol. For o = 0, the sum Z%Fp (MTHB

by S. A. Katre [8]. He obtained:

> was investigated



Lemma 6. Let p be a prime number such that p =1 (mod 3). Then there exist a unique L,
L =1 (mod3) and a unique M up to a sign such that 4p = L? + 2TM?*. Moreover, if (3 is
an integer # 0 then

X (g)L, if 46 is a cube modulo p;
Z (Jlj +ﬁ) — —%(%)(L +9M), otherwise, where M is chosen uniquely
p p—1
ocFF, by (43)% = £ (mod p) .

Thanks to Lemma 6, we can give the values of e; ¢ for 0 <1 < 2.
Computation of ¢py. From (30), since —27 is a cube , by using Lemma 6 with § = —27/4,

we obtain
—27/4
€00 = p—|—1+( p/ )L

—27
= p+1+(—)L
p
—3\?
= p+1+(—) L.
p

Since p = 1 (mod 3) then, by the quadratic reciprocity law, —3 is a quadratic residue modulo
p. Hence,

€00 = P + 1+ L. (31)

Computation of e;o. If § = —27¢?/4 then 43 = —27¢* is not a cube modulo p. Hence,
by using Lemma 6 again, it follows that

1 [ —27¢%/4
mp:=p+1——<—JDL)@+9M)
2 p
1
= p+1-(L+9M), (32)

where the sign of M is given by

—-1)/3 _
(_2792)@ )3 (92)(]) 1)/3 (mod p)
L+9M
L—9M

(mod p).

Computation of ey,. Let M be fixed by last congruence, and let 3 = —27¢*/4. Since

(94)(10—1)/3 = (92)(10_1)/3 (mod p), Lemma 6 implies that

1
e20 =p+1—5(L—9M). (33)



4 The explicit form of R, when s, = pl

3
First, we remark that the polynomial R;(y) given by (14) can also be defined (cf. (15), (16))
by
) = T (v+7). 34
1€{0,1,2}

where 6 # 1 is some p-th root of unity.

Theorem 7. Let p be an odd prime such that s, = 2L Then the polynomial Ry given by

3
(14) or (34) is equal to
Ri(y) = (4" =" = sy + 0) 7,
with
p(L+3)—-1

Ap = 27 ’

where L is the unique integer satisfying 4p = L* + 27TM? and L =1 (mod 3).

Remark 8.  p(L +3) =1 (mod 27) follows easily from the congruences L = 1 (mod 3)
and p = L? (mod 27).

Proof of Theorem 7. From (34), we have

Ri(y) = ((y +To)(y +T1)(y + T2)>Sp.

This can be written as s
Ri(y) = (y3 + Ny Ny + Ap> :

with
Ay = To TV T, (35)

)\; =ToTy + TyTs + T T5, (36)
)\Z:TO+T1+T2
We begin by calculating \”. It follows immediately from (17) and (19) that
p
Ny = To+T+ T

2 sp—1

- Sy

i=0 k=0
p—1

=27
Jj=1

— -1, (37)



since cf. Remark 3, # is a primitive p-th root of unity.

Now, let us prove that \) = —s,. From (36) and (17), we have

D DR D DI CE e S G (38)

0<k,k'<sp—1 0<k,k'<sp—1 0<k k' <sp—1

To treat the last sum in (38), let us fix & and k" in {0,1,...,s, —1}. We have pro+2t =

62" (1429 Since 25-¥g € O(g) then, from the second equality in (20), there exists a
unique ¢ € {0,1,...,s, — 1} such that 27 g = ¢!*+3*. Hence, the last sum in (38) becomes

Z 62k9+2k/ _ Z 92k/(1+g1+3t) . (39)
0<k,k/ <sp—1 0<K/ t<sp—1
For the first and second sums in (38), arguing as above, we get

Z 02kg2+2kl _ Z 62k/(1+2k_k/g2)

0<k,k' <sp—1 0<k,k'<sp—1

_ Z 92k/(1+g2+3t) <40)

0<k t<sp—1

and

’ !
Z g2rat2¥g® Z 92" (g+2F ~Fg%)

0<k,k/<sp—1 0<k,k/<sp—1
k 243t
= ) T (41)
0<k,t<sp—1

Now, from (21), (26), (27), (17) and Remark 5, we obtain

2
2k, 1+ 143t o
S e = Sy
0<k/ t<sp—1 i=0

= U100+ lo T + lon T (42)

and

2
Z g () Z lioT;
0<K/ t<sp—1 i=0

= Ly oTo+ lanTh + 1 0T5. (43)
On the other hand, since for all v > 0, 0 <4, 5 < 2,

1 +gj+3t c O(g’) — gv +gv+j+3t c O(gv-i-i)7
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again by (21), (26), (17) and Remark 5, we get

2
Z g2 o+’ Z&JTHz‘
i=0

0<k,t<sp—1
= Uy To+ Ui o1 + o oTs.

Clearly, from (22) and (28), one can deduce that
bio+lag+Llay = s
which, by (38)-(44) and (37), gives
N, = sy (To+ T+ To)

p—1
_ J
= spg 0

Jj=1

= —5,.
Finally, let us calculate A,. From (35) and (17), we have

wm Y e

0< e,k k" <sp—1
Sy ey e
0<k<sp—1 0<k! k" <sp—1
Hence, by (41), (44) and (17), we get

o= Y 07 |y Z O+l > P +by Y &

0<k<sp—1 jeo( j€0(g) Jj€0(g?)

(46)

(47)

= hy Y P +£1,O S e, S e

0<k,k/ <sp—1 0<k,k'<sp—1 0<k,k'<sp—1

Consequently, from (39), (42), (40) and (43), it happens that

A = Lo Z 6+ 4 (5%,0 + gao)To + (£1,0€2,0 + lo,0l21)Th

0<k,k'<sp—1

+(ly 0la1 + C10l20)T5

Since 2¥ % € O(1) = O(g?) then, cf. (20), there exists a unique t € {0,1,...,

that 2% = ¢%. Hence

Z 62k+2k’ _ Z 62k(1+2k’—k)

0<k,k/<sp—1 0<k,k/<sp—1
_ Z 92k(1+g3t)
0<k,t<sp—1

11

(48)

s, — 1} such



Now, we recall that cf. Remark 5 there exists one and only one ¢ € {0,1,...,s, — 1}
satisfying 1+ ¢* € O(p). Consequently, by (21) and (17), we get

Z g2i+2t Z p2* (1+4°)

0<k,k' <sp—1 0<k,t<sp—1

= go’oTo + gl,OTl + EQ’OTQ + Sp. (49)
Hence, (48) gives
/\p = (gio + 6370 + 60706271)1—’0 -+ (€170£270 + 6270€271 + 61706271)7—'1
+(l10la0 + l10la1 + laolan) Ty + Lo Sp. (50)

On the other hand, from (47), by changing the order of summation, A\, can be written as

)\p _ Z ezk’g Z 92k+2k” g2

0<k/<sp—1 0<k,k”<sp—1
and we get in the way as above
Ap = (lrolag+Liolag + laplar)Ty + (@70 + 43,0 + loolan)Ty
+(£170€2,0 + 52,06271 + 617052,1>TQ + gQJSp (51)

Whereas, if we write )\, in the form

k2 k_ ok’
)\p — § 92 g § 62 +2% g ’

0<k”<sp—1 0<k,k/<sp—1
we get

Ny = (lrolog + loolan + b olan)To + (C10la0 + L1l + Loplaq)Th
+(F o+ 050+ Logla)To + la15,. (52)

By summing (50), (51) and (52), we obtain
3\p = ((1g+ 050+ 2010bo0 4 2010ls1 + 2020021 + Logla) X
(To + T + 1) + 303,15,
But, according to (37), Ty + 11 + 1> = —1. Hence,
3Ny = —(1g+ 050+ 2010log + 201 0loy + 20a00s 1 + Loglay) + 3la1s,
= - ((21,0 + a0)* + l1,9la1 + logloq + la1 (oo + lio + 52,0)) + 3ly18p.
So that, from (45) and (22), we obtain
3Ny = —(8p — lo1)* — lo1(5) — lo1) — Lo (sp — 1) + 3lo 15,

which gives )\, = (Bsp +1¥2,1—812, =2 62’3_55. Finally, using the value of (5 ;:
1
by = §(p +1+4+1L) (53)
which follows from (28), (29) and (31), we complete the proof of Theorem 7. O
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In the following table we give L, g, M and R;(y) when p < 1000.

p |L |g | M| Rly)
43 | -8 |3 |-2 | (yP—y*— 14y —8)1
1092 |6 |4 | (5 —y®—36y+4)
157 [-14 |5 |4 | (= 2 — 52y — 64)7
220 (22 |6 |4 | (y°— y2 — 76y + 212)7
277 | 26 | 5 | 4 | (% — y% — 92y — 236)™
283 [ 32 [3 |2 | (y° — 42— 9dy — 304"
307 | 16 |5 |6 | (4 —y® — 102y + 216)1%
499 | 3217 |6 | (47— y%— 166y — 536)100
643 [40 | 11]6 | (4 — 2 — 214y + 1024)2™
6918 |3 |10 | (41— 2 — 230y — 128)%%0
733506 |4 | (45— 2 — 244y — 1276)?H
739116 |3 |10 | (5 — y2 — 246y + 520)%%
811 |-56 | 3 | -2 | (y°—y?— 270y — 1592)?™
997 | 10 |7 |-12 | (v° — 2 — 332y + 480)3%
XXXX

5 The explicit form of R,, when s, = ]%1 and m > 3.

We remind that if m € O(p) or m is divisible by some prime ¢ belonging to O(1), then the
polynomial R,, is given by Theorem 2, 2) and 3). Let m be an odd integer > 3 such that
all its prime divisors are in O(g) U O(g?). For i € {1,2}, we denote by w; the arithmetic
function which counts the number of distinct prime divisors belonging to O(g*) of an integer,

ie.,
wi(n) = Z L. (54)
q prime, ¢€0(g%), q|n
Let the decomposition of m into irreducible factors be

V1,1 V1,2 Mwyr V2,2 72,2 V2,wo

m=aq1 ¢z Qe 91902 " PBuw > (55)

where w; = w;(m), w = w(m) =w; +wy and ¢;; € O(g").

We shall begin with some result concerning binomial coefficients:

Lemma 9. Foralln e N and all j ,0< 5 <2,

3 ( n ) (—1)*7 — 2,35~ COS(% + 2‘%). (56)

= 3k +

Proof. Let z; = /3 and z, = e*™/3 be the two cubic primitive roots of unity, and let
f(2) =2 is0 az* be some convergent power series. Since for all j, 0 < j < 2,

142077 4 2077 _{1, ifn=j (mod 3);
2 —

0, otherwise ,
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it follows that i) . Fa2) ) F2)
z) + i 212 + i 292 )
2] ; 25 _ Z a3k+j23k+J-

k>0

Hence, defining ¢;(2), 0 < j <2, by

and taking f(z) = (14 2)", we get

1)+ 2 (212) + L1 (222)

9i(2) = —
By making the substitution z = —1, we obtain
_ n ktj
01 = (")
= 3k +
L1—a)+ 30—
- 3
1)1 (3-iv3 L1 3+1iV3
3|4 2 2 2 '
To get (56), we need only transform the right hand-side of the last equality. O

Corollary 10. Let m be an odd integer > 3 of the form (55), and let a,(m) be the quantity
defined by (12). For all h, 0 < h <2, we have

ap(m) =n(m) cos <(w2 - wl)% + 4hg> (57)

where
n(m) = 23271, (58)

Proof. From (12), for all h, 0 < h < 2, we have

am) = Y uld).

d|m, deO(g")

First, let us suppose that w; # 0 and wy # 0. By (54) and (55), we obtain that for all h,

0<h<2, ) )
i =Yoo (V) (),

, : 12
11=0 12=0
i9=i1+2h (mod 3)

14



So that, by (56), we get

o) = 351 ()2 o (25 4 2200

i1=0 11 6 3
2 . w1
B w2y wor  2(5 + 2h)w o (wi
= 232 E cos ( 6 + 3 g (—1)" i)
j:() 11=0
i1=j (mod 3)

which, by (56) again, gives

2 , .
w 2 2h 2
ap(m) = 4.3272 jEO cos (wéﬁ + U +3 >7r) cos (% + %) .

Consequently, to get (57), one need only use the elementary trigonometric formulas

1
cosacosb = 5 (cos(a + b) + cos(a — b)) for all a and bin R

and
2 4
cos ¢ + cos(c + %) + cos(c+ ?ﬂ) =0, for all c € R.

In case w; = or wy = 0, (57) follows immediately from (56). O

Theorem 11. Let m be an odd integer > 3 of the form (55). Let n(m) be as defined in (58),
and let R, be the polynomial given by (14). Then

3 o
o) = (1 = Sy +,) (59
with o
s(=1) 72 ppP(m)L, if wg —wy 1S even
vy = (60)

—wp—1

BB (1) P (m)M, if wy — wy s odd,

where L and M are the unique integers satisfying 4p = L* + 2TM?, L = 1 (mod 3) and
(7)1 = 25838 (mod p).

Proof. From (18), we have

2
Rm(y) = H (my + Am<ggl)> P
1=0
= (M’ +m*)y? +mvy +1,)7 (61)

where

V! = Ap(0) + A (09) + A (67), (62)
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V= A(0) A (07) + A (0)Am(07) + A (09) A (67) (63)
and .
vy = Am(0) A (69) A, (677). (64)
Recall that cf. Theorem 2, § is the unique integer in {0,1,2} such that m € O(g°). So that
from (11)-(13) and (17), we get for i € {0, 1,2}

2

A (07) = Z an(m)Ts—pyi- (65)

h=0

Computation of v].
From (65) and (62) we deduce that

v, = (ao(m) + oy (m) + ag(m)) (To + 17 + T2)~
Since ged(m, p) = 1 and m # 1, it follows immediately from (12) and (19) that

an(m) + ax(m) + az(m) = > p(d) =0 (66)

|

and thus v, = 0.

Computation of v.

From (61), to prove (59) it suffices to show (60) and that v/, = =2pn*(m). By (63) and (65),
we have

k=0 h=0
with
U(h,h) = > Ts_ i Ts—nj
(4.9)€{(0,1),(0,2),(1,2)}
and, for h < k,
U(h, k) = Z (Ts—ntiTs5—tj + Ts—priTs5-n+s) -
(4,9)€£(0,1),(0,2),(1,2)}

Observing that, for 0 < 0, h,k < 2, U(h, k) does not depend on ¢ and is equal to TyT) +
TOT2 + T1T2 when h = k and to TOTl + T[)TQ + TlTQ + T02 + T12 + T22 when h < k, we obtain

vy = o) (23 + 7433 ) + o) (T8 + BT+ 113 ) (67

where



and
3'(m) = ag(m) + af(m) + az(m) + B(m).

From (57), it is easy to check that

By (66), we find that

Fm) = <Zai<m>) ~ 2(m) + (m)

= —A(m)
= Sr(m)

On the other hand, using (17), we get

sp—1 2 sp—1 2 sp—1 2
TE+TE+ T = (Z 92k> + (Z 92’“9) + (Z 92’“92> .

k=0 k=0 k=0

The first sum in the last equality is, by (49), equal to

o= > e

0<k,k' <sp—1

= LooTo + 1011 + Lo T + sp.

Similarly, for the second and third sums, we obtain

o= Y e

0<k,k'<sp—1
= LooTy + Ui oI + Lo Ty + s

and
o= > e
0<k,k/ <sp—1
= 5070T2 + 5170T0 + 6270T1 -+ Sp.
Consequently,

Te+ TP +T5 =3s, + (boo + lrg+ lag)(To + Th + T).
So that, by (22) and (37), we get
TE+TE+T; = 3s,— (s, — 1)
= 2s,+ L.
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Therefore, with the use of (67), (36) and the fact that s, = p%l, we obtain

Computation of v,.
By (64) and (65), we obtain

vo= > ap(m)ar(m)ay(m) sy Ts_ g To—iio
h,k,te{0,1,2}

and by observing the 27 terms of the expansion of the above sum, we find that
%::%mmnﬁ+ﬂﬁ+nﬁ>+%m(%ﬁ+ﬂﬁ+nﬁ)

+73(m) <T§ + T2 4 T23> + Y4 (m) Ty T T,

where
mn(m) = ag(m)ai(m) + ag(m)az(m) + af(m)as(m),
ya(m) = ag(m)as(m) + ag(m)ai(m) + ai(m)az(m),
Y3(m) = ag(m)as (m)as(m)
and

Ya(m) = aj(m) + o2 (m) + ai(m) + 3y3(m).
Using (68)-(70), we get

T03 = EO’OTOZ + 0 01T + lo o ToTs + 5,10,

T13 = 6070T12 + €170T1T2 + £270T0T1 + SpTl

and
T23 = EO,OTQQ + él’OTOTQ -+ gQ’OTlTQ + SpTg.

Therefore,
ﬁ+ﬁ+ﬁ=%@kﬂkﬂg+%%ﬁ+ﬁ+ﬁ>
+(l10 + £a0) (T0T1 + 10T, + T1T2> :
So that, from (37), (71) and (36) , we get

Tg + Tlg + T23 = —Sp + 60’0(2810 + 1) — (61,0 + 62,0>5p7

18
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which, by (22), gives
g+ TP+ 15 = Loo(3sp+1) — s
= ploo — 512).
Similarly, by again using (68)-(70), we obtain
ToTy 4 ToTs + TP Ty = plig — 5

and
T5Ty + ToT} + ThT5 = plag — s

Using (73)-(75) and (57), it is easy to show that

() = o) eos (e =)+ 5 ).
Ya(m) = ;1773(711) oS ((wg - wl)g + 2%)
and
v3(m) = %1773(771) cos <(w2 — “’1)%) _

Since, cf. (66), ap(m) + a1(m) + as(m) = 0, from (76) we find that

ya(m) = —y1(m) — y2(m) + 3v3(m).
Therefore, ;
ya(m) = §n3(m) coS <(w2 — wl)g) _

Note that if ws — w; is even then

3 1 3 wy—wy
Y1(m) = y2(m) = —573(7”) = —1’74(7””) = —gﬁg(m) (=1) =
while if wy — wy is odd then
3\/5 wo—wi+1
11(m) = =y2(m) = =—=n*(m)(=1)"= ", y(m) =0, (m) =

For wy — w; even, from (72), (77)-(79) and (28), we get

]_ wo—wq
vp =3 (=1)"2 pir’(m) (9o —p = 1).
For wy — w; odd, from (72) and (77)-(79), we get
3\/§ wg—wy+1
vy =——(=1)" = pi(m)(lrp — la0).

8

By (29), (32) and (33), we have
lig — oo = —M.

Lastly, for wy — w; even (resp. odd), (60) follows from (53) (resp. the last equality).
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Example: p = 43.
As an explicit example, let us consider the case p = 43. Then

L+ 2% = (1 + 2)P(2)Py(2) Ps(2),

where Pi(z) = 2" 4+ 22 + 210 4 27 4 20+ 2241, Py(z) = 2M + 21 + 210 + 29 4 28 4 27 +
425+ 428+ 1 and Pa(z) = 21 4+ 218 4+ 21 + 27+ 23 + 2 + 1 are the only irreducible
polynomials over Fy[z] of order 43. For 1 <[ < 3, let A(P,) be the unique set defined by
(3). For m > 1, let A(P),, denote the set of the elements of A(P,) of the form 2*m. We
give bellow the description of the sets A(F); and A(F))s; 1 <1< 3.

Since p = 43 then g = 3 is a generator of the cyclic group (Z/437Z)*. Let L and M be
the unique integers satisfying 4p = 172 = L? + 27M? L = 1 (mod 3) and (¢?)®~1/3 =
(35" = L8 (mod 43). Hence, L = —8, M = =2, Ri(y) = (y* — y* — 14y — 8)** and
R3(y) = (27y* — 129y + 86)*.

By using the function polrootspadic of PARI, the 2—adic expansions of the zeros of the
polynomial R;(y) are
22_|_23_|_26+210+213+217+218+220+222+225_|_227_|_229_|_230_|_232+233+236+“_
2+24+26+27+210+215_|_216_'_219+220+223+226+227+231_'_234_’_235_’_“_
142425420427 42942104212 4 214 4 920 4 924 4 927 4 ...

and the 2—adic expansions of the zeros of the polynomial Rs(y) are
1+22+23+24+26+27+212+217+218+219+220+221+225+227+231+232+235_|_236_’_‘”
1+22+25+27+210+213+214+219+220+222+223+224+225_‘_227_|_229+234_|__”
2_'_22_|_23+24+25+26+29+211+215+216+219+221+222+223_|_224_|_227+230+233+.._.
After computing some first few elements of the sets A(F,), we deduce that

A(P1>1 — {27 247 267 277 2107 2157 2167 2197 2207 2237 2267 2277 2317 2347 2357 . }

A(P2)1 — {227 237 267 210’ 213’ 2177 218’ 2207 222’ 2257 2277 229’ 2307 232’ 233’ 2367 . }

A(Ps) ={1,2, 2526 97 929 910 912 914 920 924 92T " 3.

A(P)s = {2.3,22.3,23.3,24.3,25.3,26.3,29.3 211.3 215 3 916 3 919 3 921 3 922 3 923 3 9243 1
A(Py); = {3,22.3,23.3,24.3,26.3,27.3 2123 917 3 218 3 219 3 920 3 921 3 925 3 927 3 931 3 1
A(Py); = {3,22.3,25.3,27.3,210 3 213 3 914 3 219 3 920 3 922 3 923 3 924 3 9253 9273 9203}
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