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Abstract

For P ∈ F2[z] with P (0) = 1 and deg(P ) ≥ 1, let A = A(P ) be the unique subset of
N such that

∑
n≥0 p(A, n)zn ≡ P (z) (mod 2), where p(A, n) is the number of partitions

of n with parts in A. Let p be an odd prime number, and let P be irreducible of order
p ; i.e., p is the smallest positive integer such that P divides 1 + zp in F2[z]. N. Baccar
proved that the elements of A(P ) of the form 2km, where k ≥ 0 and m is odd, are
given by the 2-adic expansion of a zero of some polynomial Rm with integer coefficients.
Let sp be the order of 2 modulo p, i.e., the smallest positive integer such that 2sp ≡ 1
(mod p). Improving on the method with which Rm was obtained explicitly only when
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sp = p−1
2 , here we make explicit Rm when sp = p−1

3 . For that, we have used the
number of points of the elliptic curve x3 + ay3 = 1 modulo p.

1 Introduction.

Let N denote the set of positive integers, and let A = {a1, a2, . . .} be a non-empty subset of
N. For n ∈ N, let p(A, n) be the number of partitions of n with parts in A, i.e., the number
of solutions of the diophantine equation

a1x1 + a2x2 + · · · = n (1)

in non-negative integers x1, x2, . . .. By convention, p(A, 0) = 1 and p(A, n) = 0 for all n < 0.
The generating series of p(A, n) is

FA(z) :=
∞∑

n=0

p(A, n)zn =
∏

a∈A

1

1 − za
. (2)

Let F2 be the field with two elements and P (z) = 1+ ǫ1z + · · ·+ ǫNzN ∈ F2 [z], N ≥ 1. J.-L.
Nicolas, I. Z. Ruzsa and A. Sárközy [10] proved that there exists a unique set A = A(P )
satisfying

FA(z) ≡ P (z) (mod 2), (3)

which means that
p(A, n) ≡ ǫn (mod 2) for 1 ≤ n ≤ N (4)

and p(A, n) is even for all n > N . Indeed, for n = 1,

p(A, 1) =

{
1, if 1 ∈ A;
0, if 1 /∈ A.

and so, by (4),
1 ∈ A ⇔ ǫ1 = 1.

Further, assume that we Know An−1 = A∩{1, . . . , n−1}; since there exists only one partition
of n containing the part n, then

p(A, n) = p(An−1, n) + χ(A, n),

where χ(A, .) is the characteristic function of the set A, i.e.,

χ(A, n) =

{
1, if n ∈ A;
0, if n /∈ A,

which with (3) allow one to decide whether n belongs to A.

Let p be an odd prime number, and let sp be the order of 2 modulo p, i.e., sp is the
smallest positive integer such that p divides 2sp − 1. Let P ∈ F2[z] be irreducible of order p
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(ord(P ) = p); in other words, p is the smallest positive integer such that P divides 1 + zp in
F2[z]. N. Baccar and F. Ben Säıd [2] determined the sets A(P ) for all p such that sp = p−1

2
.

Moreover, they proved that if k ≥ 0 and m is an odd positive integer, then the elements of
A(P ) of the form 2km are given by the 2-adic expansion of some zero of a polynomial Rm

with integer coefficients. N. Baccar [1] extended this last result to any odd prime number
p. Unfortunately, the method used in that paper can make explicit Rm only when sp = p−1

2
.

In this paper, we will improve on the method given by N. Baccar [1], by introducing elliptic
curves, to make Rm explicit when sp = p−1

3
. In Section 2, some properties of the polynomial

Rm are exposed. In Section 3, we introduce elliptic curves to compute some cardinalities
used in Section 4 to make R1 explicit, and in Section 5 to get Rm explicitly for any odd
integer m ≥ 3.

Throughout this paper, p is an odd prime number and P is some irreducible polynomial
in F2[z] of order p. We also denote by sp the order of 2 modulo p. For a ∈ Z and b ∈ N, we
should write a mod b for the remainder of the euclidean division of a by b.

2 Some results on the polynomial Rm

Let p be an odd prime. We denote by (Z/pZ)∗ the group of invertible elements modulo p
and by < 2 > its subgroup generated by 2. We consider the action ⋆ of < 2 > on the set
Z/pZ given by a ⋆ n = an for all a ∈< 2 > and all n ∈ Z/pZ. The quotient set will be
denoted by (Z/pZ)/<2> and the orbit of some n ∈ Z/pZ by O(n). So, we can write

Z/pZ = O(1) ∪ O(g) ∪ · · · ∪ O(gr−1) ∪ O(p),

where g is some generator of (Z/pZ)∗, r = p−1
sp

is the number of invertible orbits of Z/pZ,

O(gi) =
{
2jgi mod p : 0 ≤ j ≤ sp − 1

}
, 0 ≤ i ≤ r − 1, (5)

O(p) = {0} .

Note that for any integer t,
O(gt) = O(gt mod r). (6)

The orbits O(n) are defined as parts of Z/pZ; however, by extension, they are also consid-
ered as parts of N.

If φp is the cyclotomic polynomial over F2 of index p, then

1 + zp = (1 + z)φp(z).

Moreover, one has
φp(z) = P0(z)P1(z) · · ·Pr−1(z),

where P0, P1, . . . and Pr−1 are the only distinct irreducible polynomials in F2 [z] of the same
degree sp and all of which are of order p. For all l, 0 ≤ l ≤ r − 1, let Al = A(Pl) be the set
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obtained from (3). If m is an odd positive integer, we define the 2−adic integer yl(m) by

yl(m) = χ(Al,m) + 2χ(Al, 2m) + 4χ(Al, 4m) + · · · =
∞∑

k=0

χ(Al, 2
km)2k. (7)

By computing yl(m) mod 2k+1, one can deduce χ(Al, 2
jm) for all j, 0 ≤ j ≤ k, and obtain

all the elements of Al of the form 2jm. In [3], some necessary conditions on integers to be
in Al were given. For instance:

p2n /∈ Al, ∀ n ∈ N, (8)

if q is an odd prime in O(1), then qn /∈ Al, ∀n ∈ N. (9)

Let K be some field, and let u(z) =
∑n

j=0 ujz
j and v(z) =

∑t
j=0 vjz

j be polynomials in
K[z]. We denote the resultant of u and v with respect to z by resz(u(z), v(z)), and recall the
following well known result

Lemma 1. (i) The resultant resz(u(z), v(z)) is a homogeneous multivariate polynomial with
integer coefficients, of degree n + t in the n + t + 2 variables ui, vj.
(ii) If u(z) is written as u(z) = un(z −α1)(z −α2) · · · (z −αn) in the splitting field of u over
K then

resz(u(z), v(z)) = ut
n

n∏

i=1

v(αi). (10)

N. Baccar proved [1] that, for all l, 0 ≤ l ≤ r−1, the 2-adic integers yl(m) defined by (7)
are the zeros of some polynomial Rm with integer coefficients and which can be written as
the resultant of two polynomials. We mention here that the expressions given in that paper
to Rm, for m = 1 and m ≥ 3, can be encoded in only one. So that we have

Theorem 2. ([1]) 1) Let m be an odd positive integer such that m /∈ O(p) (i.e., gcd(m, p) =
1), and let δ = δ(m) be the unique integer in {0, 1, . . . , r − 1} such that m ∈ O(gδ). We
define the polynomial Am by

Am(z) =
r−1∑

h=0

αh(m)Bh(z), (11)

where for all h, 0 ≤ h ≤ r − 1,

αh(m) =
∑

d | em, d∈O(gh)

µ(d), (12)

m̃ =
∏

q prime q|m q is the radical of m with 1̃ = 1, µ is the Möbius function and Bh is the
polynomial

Bh(z) = Bh,m(z) =

sp−1∑

j=0

z(2jg(δ−h) mod r) mod p. (13)
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Then, the 2-adic integers y0(m), y1(m), . . . and yr−1(m) are the zeros of the polynomial Rm(y)
of Z[y] defined by the resultant

Rm(y) = resz(φp(z),my + Am(z)) (14)

and we have

Rm(y) = mp−1
(
(y − y0(m))(y − y1(m)) · · · (y − yr−1(m))

)sp
. (15)

2) The 2-adic integers y0(p), y1(p), . . . and yr−1(p) are the zeros of the polynomial R1(−py −
sp); while if m = pm′, m′ ≥ 3 and gcd(m′, p) = 1, then y0(m), y1(m), . . . and yr−1(m) are
the zeros of the polynomial Rm′(−py) defined by (14).
3) If m is divisible by p2 or by some prime q belonging to O(1) then we extend the definition
(14) to Rm(y) = mp−1ysp; so that y0(m), y1(m), . . . and yr−1(m) remain zeros of Rm since,
from (8) and (9), they all vanish.

Remark 3. Explicit formulas to the polynomials Rm defined by (14), when sp = p−1
2

, are
given in [1]. Moreover in that paper, it is shown that if θ is a certain primitive p-th root of
unity over the 2-adic field Q2, then for all l, 0 ≤ l ≤ r − 1,

yl(1) = −Tl, (16)

where, for all l ∈ Z,

Tl = Tl mod 3 =

sp−1∑

k=0

θ2kgl

=
∑

j∈O(gl)

θj. (17)

We also mention here that N. Baccar [1] proved that for all m ∈ N,

Rm(y) =
r−1∏

l=0

(
my + Am(θgl

)
)sp

. (18)

3 Orbits and elliptic curves.

From now on, we keep the above notation and assume that the prime number p is such that
sp = p−1

3
(the first ones up to 1000 are: p = 43, 109, 157, 229, 277, 283, 307, 499, 643, 691, 733, 739,

811, 997 ). So the number of invertible orbits is r = 3 and

Z/pZ = O(1) ∪ O(g) ∪ O(g2) ∪ O(p), (19)

where g is some generator of the cyclic group (Z/pZ)∗. The order of 2 is sp = p−1
3

; if 2 were

a square modulo p, its order should divide p−1
2

, which is impossible. Hence 2 cannot be a
square modulo p, and by Euler criterion, p has to satisfy p ≡ ±3 (mod 8), and, as p ≡ 1
(mod 3), p ≡ 13, 19 (mod 24).
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Lemma 4. For all i, 0 ≤ i ≤ 2, let O(gi) be the orbit of gi defined by (5). Then

O(gi) =
{
−gi,−2gi, . . . ,−2sp−1gi

}
=
{
gi, gi+3. . . . , gi+3(sp−1)

}
. (20)

In particular, 2 is a cube modulo p and the sub-group generated by 2 is the sub-group of cubes
(generated by g3) and contains −1.

Proof. To get the first equality of (20), it suffices to show that −1 ∈ O(1). This follows from

−1 = (2
p
) ≡ 2

p−1
2 (mod p).

To prove the second equality of (20), one just use the fact that (cf. (6)) g3 ∈ O(1).

Let us define the integers ℓi,j, 0 ≤ i, j ≤ 2, by

ℓi,j =
∣∣{t : 0 ≤ t ≤ sp − 1, 1 + gj+3t ∈ O(gi)

}∣∣ . (21)

Remark 5. As shown just above, −1 ∈ O(1), so that there exists one and only one
t ∈ {0, 1, . . . , sp − 1} such that 1 + g3t ∈ O(p). Moreover, for all t ∈ {0, 1, . . . , sp − 1} and
j ∈ {1, 2}, 1 + gj+3t /∈ O(p). Hence the integers ℓi,j defined by (21) satisfy

2∑

i=0

ℓi,j = sp − δ0,j, (22)

where δi,j is the Kronecker symbol given by

δi,j =

{
1, if i = j;
0, otherwise.

The integers ℓi,j defined above are cardinalities of some curves. Indeed, let us consider the
curve over Fp,

Ci,j : 1 + gjX3 = giY 3

and denote by ci,j its cardinality, ci,j =| Ci,j |. Since −1 is a cube modulo p, it is clear that

cj,i = ci,j.

Using (21) it follows that

ℓi,j = |{(X3, Y 3) : X 6= 0, Y 6= 0 and (X,Y ) ∈ Ci,j}|.

Therefore,
ℓj,i = ℓi,j. (23)

Note that, (X3, Y 3) = (X ′3, Y ′3) if and only if X ′ = Xgvsp and Y ′ = Y gwsp for some
v, w ∈ {0, 1, 2}. Moreover, if i 6= 0 (resp. j 6= 0), no point on the curve Ci,j can be of the
form (0, Y ) (resp. (X, 0)). But if i = 0 (resp. j = 0), we obtain three points on the curve
Ci,j with X = 0 (resp. Y = 0). Consequently, we obtain the relation

ci,j = 9ℓi,j + 3δi,0 + 3δ0,j. (24)
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Now, let us consider the projective plane cubic curve

Ei,j : Z3 + gjX3 = giY 3

and ei,j =| Ei,j | its cardinality. If i 6= j, Ei,j has no points at infinity; whereas if i = j, it has
three points at infinity. Hence

ei,j = ci,j + 3δi,j. (25)

By multiplying the equation Z3 + gX3 = gY 3 by g2, we get the curve g2Z3 + X ′3 = Y ′3.
So, by permuting the variables, we deduce that e1,1 = e2,0. Similarly, we obtain e2,2 = e1,0.
Hence, by (25) and (24) we find that

ℓ1,1 = ℓ2,0, (26)

ℓ2,2 = ℓ1,0. (27)

Therefore, from (22), it follows that

ℓ2,1 = ℓ0,0 + 1. (28)

Furthermore, from (25) and (24) we have for all i, 0 ≤ i ≤ 2,

9ℓi,0 = ci,0 − 3δi,0 − 3

= ei,0 − 6δi,0 − 3. (29)

Hence, to get all the numbers ℓi,j, 0 ≤ i, j ≤ 2, it suffices to know the values of ei,0, 0 ≤ i ≤ 2.

Computation of ei,0, i ∈ {0, 1, 2}.
Here, we are interested with the curve Ei,0 : Z3 + X3 = giY 3. By setting X = 9giz + 2y,
Y = 6x and Z = 9giz − 2y, we get the Weierstrass’s form

zy2 = x3 − (27/4)g2iz3,

which, when divided by z3, gives the form

y2 = x3 − (27/4)g2i.

Let
y2 = x3 + αx + β

be the equation of an elliptic curve E defined over Fp. It is well known that the number of
points of E is equal to

| E |= p + 1 +
∑

x∈Fp

(
x3 + αx + β

p

)
, (30)

where ( .
p
) is the Legendre’s symbol. For α = 0, the sum

∑
x∈Fp

(
x3+αx+β

p

)
was investigated

by S. A. Katre [8]. He obtained:
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Lemma 6. Let p be a prime number such that p ≡ 1 (mod 3). Then there exist a unique L,
L ≡ 1 (mod 3) and a unique M up to a sign such that 4p = L2 + 27M2. Moreover, if β is
an integer 6= 0 then

∑

x∈Fp

(
x3 + β

p

)
=





(β
p
)L, if 4β is a cube modulo p;

−1
2
(β

p
)(L + 9M), otherwise, where M is chosen uniquely

by (4β)
p−1
3 ≡ L+9M

L−9M
(mod p) .

Thanks to Lemma 6, we can give the values of ei,0 for 0 ≤ i ≤ 2.
Computation of e0,0. From (30), since −27 is a cube , by using Lemma 6 with β = −27/4,
we obtain

e0,0 = p + 1 +

(−27/4

p

)
L

= p + 1 +

(−27

p

)
L

= p + 1 +

(−3

p

)3

L.

Since p ≡ 1 (mod 3) then, by the quadratic reciprocity law, −3 is a quadratic residue modulo
p. Hence,

e0,0 = p + 1 + L. (31)

Computation of e1,0. If β = −27g2/4 then 4β = −27g2 is not a cube modulo p. Hence,
by using Lemma 6 again, it follows that

e1,0 = p + 1 − 1

2

(−27g2/4

p

)
(L + 9M)

= p + 1 − 1

2
(L + 9M), (32)

where the sign of M is given by

(
−27g2

)(p−1)/3 ≡ (g2)(p−1)/3 (mod p)

≡ L + 9M

L − 9M
(mod p).

Computation of e2,0. Let M be fixed by last congruence, and let β = −27g4/4. Since

(g4)
(p−1)/3 6≡ (g2)

(p−1)/3
(mod p), Lemma 6 implies that

e2,0 = p + 1 − 1

2
(L − 9M). (33)
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4 The explicit form of R1 when sp =
p−1
3 .

First, we remark that the polynomial R1(y) given by (14) can also be defined (cf. (15), (16))
by

(R1(y))1/sp =
∏

i∈{0,1,2}

(
y + Ti

)
, (34)

where θ 6= 1 is some p-th root of unity.

Theorem 7. Let p be an odd prime such that sp = p−1
3

. Then the polynomial R1 given by
(14) or (34) is equal to

R1(y) =
(
y3 − y2 − spy + λp

)sp
,

with

λp =
p(L + 3) − 1

27
,

where L is the unique integer satisfying 4p = L2 + 27M2 and L ≡ 1 (mod 3).

Remark 8. p(L + 3) ≡ 1 (mod 27) follows easily from the congruences L ≡ 1 (mod 3)
and p ≡ L2 (mod 27).

Proof of Theorem 7. From (34), we have

R1(y) =

(
(y + T0)(y + T1)(y + T2)

)sp

.

This can be written as

R1(y) =

(
y3 + λ′′

py
2 + λ′

py + λp

)sp

,

with
λp = T0T1T2, (35)

λ′
p = T0T1 + T0T2 + T1T2, (36)

λ′′
p = T0 + T1 + T2.

We begin by calculating λ′′
p. It follows immediately from (17) and (19) that

λ′′
p = T0 + T1 + T2

=
2∑

i=0

sp−1∑

k=0

θ2kgi

=

p−1∑

j=1

θj

= −1, (37)
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since cf. Remark 3, θ is a primitive p-th root of unity.

Now, let us prove that λ′
p = −sp. From (36) and (17), we have

λ′
p =

∑

0≤k,k′≤sp−1

θ2kg+2k′g2

+
∑

0≤k,k′≤sp−1

θ2kg2+2k′

+
∑

0≤k,k′≤sp−1

θ2kg+2k′

. (38)

To treat the last sum in (38), let us fix k and k′ in {0, 1, . . . , sp − 1}. We have θ2kg+2k′

=

θ2k′ (1+2k−k′g). Since 2k−k′

g ∈ O(g) then, from the second equality in (20), there exists a
unique t ∈ {0, 1, . . . , sp − 1} such that 2k−k′

g = g1+3t. Hence, the last sum in (38) becomes

∑

0≤k,k′≤sp−1

θ2kg+2k′

=
∑

0≤k′,t≤sp−1

θ2k′ (1+g1+3t). (39)

For the first and second sums in (38), arguing as above, we get

∑

0≤k,k′≤sp−1

θ2kg2+2k′

=
∑

0≤k,k′≤sp−1

θ2k′ (1+2k−k′g2)

=
∑

0≤k′,t≤sp−1

θ2k′ (1+g2+3t) (40)

and

∑

0≤k,k′≤sp−1

θ2kg+2k′g2

=
∑

0≤k,k′≤sp−1

θ2k(g+2k′−kg2)

=
∑

0≤k,t≤sp−1

θ2k(g+g2+3t). (41)

Now, from (21), (26), (27), (17) and Remark 5, we obtain

∑

0≤k′,t≤sp−1

θ2k′ (1+g1+3t) =
2∑

i=0

ℓi,1Ti

= ℓ1,0T0 + ℓ2,0T1 + ℓ2,1T2 (42)

and

∑

0≤k′,t≤sp−1

θ2k′ (1+g2+3t) =
2∑

i=0

ℓi,2Ti

= ℓ2,0T0 + ℓ2,1T1 + ℓ1,0T2. (43)

On the other hand, since for all v ≥ 0, 0 ≤ i, j ≤ 2,

1 + gj+3t ∈ O(gi) ⇐⇒ gv + gv+j+3t ∈ O(gv+i),
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again by (21), (26), (17) and Remark 5, we get

∑

0≤k,t≤sp−1

θ2k(g+g2+3t) =
2∑

i=0

ℓi,1T1+i

= ℓ2,1T0 + ℓ1,0T1 + ℓ2,0T2. (44)

Clearly, from (22) and (28), one can deduce that

ℓ1,0 + ℓ2,0 + ℓ2,1 = sp, (45)

which, by (38)-(44) and (37), gives

λ′
p = sp (T0 + T1 + T2)

= sp

p−1∑

j=1

θj

= −sp. (46)

Finally, let us calculate λp. From (35) and (17), we have

λp =
∑

0≤k,k′,k”≤sp−1

θ2k+2k′g+2k”g2

=
∑

0≤k≤sp−1

θ2k




∑

0≤k′,k”≤sp−1

θ2k′g+2k”g2


 . (47)

Hence, by (41), (44) and (17), we get

λp =
∑

0≤k≤sp−1

θ2k


ℓ2,1

∑

j∈O(1)

θj + ℓ1,0

∑

j∈O(g)

θj + ℓ2,0

∑

j∈O(g2)

θj




= ℓ2,1

∑

0≤k,k′≤sp−1

θ2k+2k′

+ ℓ1,0

∑

0≤k,k′≤sp−1

θ2k+2k′g + ℓ2,0

∑

0≤k,k′≤sp−1

θ2k+2k′g2

.

Consequently, from (39), (42), (40) and (43), it happens that

λp = ℓ2,1

∑

0≤k,k′≤sp−1

θ2k+2k′

+ (ℓ2
1,0 + ℓ2

2,0)T0 + (ℓ1,0ℓ2,0 + ℓ2,0ℓ2,1)T1

+(ℓ1,0ℓ2,1 + ℓ1,0ℓ2,0)T2. (48)

Since 2k′−k ∈ O(1) = O(g3) then, cf. (20), there exists a unique t ∈ {0, 1, . . . , sp − 1} such
that 2k′−k = g3t. Hence

∑

0≤k,k′≤sp−1

θ2k+2k′

=
∑

0≤k,k′≤sp−1

θ2k(1+2k′−k)

=
∑

0≤k,t≤sp−1

θ2k(1+g3t).

11



Now, we recall that cf. Remark 5 there exists one and only one t ∈ {0, 1, . . . , sp − 1}
satisfying 1 + g3t ∈ O(p). Consequently, by (21) and (17), we get

∑

0≤k,k′≤sp−1

θ2k+2k′

=
∑

0≤k,t≤sp−1

θ2k(1+g3t)

= ℓ0,0T0 + ℓ1,0T1 + ℓ2,0T2 + sp. (49)

Hence, (48) gives

λp = (ℓ2
1,0 + ℓ2

2,0 + ℓ0,0ℓ2,1)T0 + (ℓ1,0ℓ2,0 + ℓ2,0ℓ2,1 + ℓ1,0ℓ2,1)T1

+(ℓ1,0ℓ2,0 + ℓ1,0ℓ2,1 + ℓ2,0ℓ2,1)T2 + ℓ2,1sp. (50)

On the other hand, from (47), by changing the order of summation, λp can be written as

λp =
∑

0≤k′≤sp−1

θ2k′g




∑

0≤k,k”≤sp−1

θ2k+2k”g2




and we get in the way as above

λp = (ℓ1,0ℓ2,0 + ℓ1,0ℓ2,1 + ℓ2,0ℓ2,1)T0 + (ℓ2
1,0 + ℓ2

2,0 + ℓ0,0ℓ2,1)T1

+(ℓ1,0ℓ2,0 + ℓ2,0ℓ2,1 + ℓ1,0ℓ2,1)T2 + ℓ2,1sp (51)

Whereas, if we write λp in the form

λp =
∑

0≤k”≤sp−1

θ2k”g2




∑

0≤k,k′≤sp−1

θ2k+2k′g


 ,

we get

λp = (ℓ1,0ℓ2,0 + ℓ2,0ℓ2,1 + ℓ1,0ℓ2,1)T0 + (ℓ1,0ℓ2,0 + ℓ1,0ℓ2,1 + ℓ2,0ℓ2,1)T1

+(ℓ2
1,0 + ℓ2

2,0 + ℓ0,0ℓ2,1)T2 + ℓ2,1sp. (52)

By summing (50), (51) and (52), we obtain

3λp = (ℓ2
1,0 + ℓ2

2,0 + 2ℓ1,0ℓ2,0 + 2ℓ1,0ℓ2,1 + 2ℓ2,0ℓ2,1 + ℓ0,0ℓ2,1) ×
(T0 + T1 + T2) + 3ℓ2,1sp.

But, according to (37), T0 + T1 + T2 = −1. Hence,

3λp = −(ℓ2
1,0 + ℓ2

2,0 + 2ℓ1,0ℓ2,0 + 2ℓ1,0ℓ2,1 + 2ℓ2,0ℓ2,1 + ℓ0,0ℓ2,1) + 3ℓ2,1sp

= −
(
(ℓ1,0 + ℓ2,0)

2 + ℓ1,0ℓ2,1 + ℓ2,0ℓ2,1 + ℓ2,1(ℓ0,0 + ℓ1,0 + ℓ2,0)
)

+ 3ℓ2,1sp.

So that, from (45) and (22), we obtain

3λp = −(sp − ℓ2,1)
2 − ℓ2,1(sp − ℓ2,1) − ℓ2,1(sp − 1) + 3ℓ2,1sp,

which gives λp =
(3sp+1)ℓ2,1−s2

p

3
=

pℓ2,1−s2
p

3
. Finally, using the value of ℓ2,1:

ℓ2,1 =
1

9
(p + 1 + L) (53)

which follows from (28), (29) and (31), we complete the proof of Theorem 7.
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In the following table we give L, g, M and R1(y) when p ≤ 1000.

p L g M R1(y)
43 -8 3 -2 (y3 − y2 − 14y − 8)14

109 -2 6 4 (y3 − y2 − 36y + 4)36

157 -14 5 4 (y3 − y2 − 52y − 64)52

229 22 6 4 (y3 − y2 − 76y + 212)76

277 -26 5 -4 (y3 − y2 − 92y − 236)92

283 -32 3 -2 (y3 − y2 − 94y − 304)94

307 16 5 -6 (y3 − y2 − 102y + 216)102

499 -32 7 -6 (y3 − y2 − 166y − 536)166

643 40 11 6 (y3 − y2 − 214y + 1024)214

691 -8 3 10 (y3 − y2 − 230y − 128)230

733 -50 6 4 (y3 − y2 − 244y − 1276)244

739 16 3 10 (y3 − y2 − 246y + 520)246

811 -56 3 -2 (y3 − y2 − 270y − 1592)270

997 10 7 -12 (y3 − y2 − 332y + 480)332

xxxx

5 The explicit form of Rm when sp =
p−1
3 and m ≥ 3.

We remind that if m ∈ O(p) or m is divisible by some prime q belonging to O(1), then the
polynomial Rm is given by Theorem 2, 2) and 3). Let m be an odd integer ≥ 3 such that
all its prime divisors are in O(g) ∪ O(g2). For i ∈ {1, 2}, we denote by ωi the arithmetic
function which counts the number of distinct prime divisors belonging to O(gi) of an integer,
i.e.,

ωi(n) =
∑

q prime, q∈O(gi), q |n
1. (54)

Let the decomposition of m into irreducible factors be

m = q
γ1,1

1,1 q
γ1,2

1,2 · · · qγ1,ω1
1,ω1

q
γ2,2

2,1 q
γ2,2

2,2 · · · qγ2,ω2
2,ω2

, (55)

where ωi = ωi(m), ω = ω(m) = ω1 + ω2 and qi,j ∈ O(gi).

We shall begin with some result concerning binomial coefficients:

Lemma 9. For all n ∈ N and all j , 0 ≤ j ≤ 2,

∑

k≥0

(
n

3k + j

)
(−1)k+j = 2.3

n
2
−1 cos(

nπ

6
+

2jπ

3
). (56)

Proof. Let z1 = e(2iπ)/3 and z2 = e(4iπ)/3 be the two cubic primitive roots of unity, and let
f(z) =

∑
k≥0 akz

k be some convergent power series. Since for all j, 0 ≤ j ≤ 2,

1 + zn−j
1 + zn−j

2

3
=

{
1, if n ≡ j (mod 3);

0, otherwise ,

13



it follows that
f(z) + 1

zj
1

f(z1z) + 1

zj
2

f(z2z)

3
=
∑

k≥0

a3k+jz
3k+j.

Hence, defining gj(z), 0 ≤ j ≤ 2, by

gj(z) =
∑

k≥0

(
n

3k + j

)
z3k+j,

and taking f(z) = (1 + z)n, we get

gj(z) =
f(z) + 1

zj
1

f(z1z) + 1

zj
2

f(z2z)

3
.

By making the substitution z = −1, we obtain

gj(−1) =
∑

k≥0

(
n

3k + j

)
(−1)k+j

=

1

zj
1

(1 − z1)
n + 1

zj
2

(1 − z2)
n

3

=
1

3

{
1

zj
1

(
3 − i

√
3

2

)n

+
1

zj
2

(
3 + i

√
3

2

)n}
.

To get (56), we need only transform the right hand-side of the last equality.

Corollary 10. Let m be an odd integer ≥ 3 of the form (55), and let αh(m) be the quantity
defined by (12). For all h, 0 ≤ h ≤ 2, we have

αh(m) = η(m) cos
(
(ω2 − ω1)

π

6
+ 4h

π

3

)
(57)

where
η(m) = 2.3

ω
2
−1. (58)

Proof. From (12), for all h, 0 ≤ h ≤ 2, we have

αh(m) =
∑

d | em, d∈O(gh)

µ(d).

First, let us suppose that ω1 6= 0 and ω2 6= 0. By (54) and (55), we obtain that for all h,
0 ≤ h ≤ 2,

αh(m) =

ω1∑

i1=0

(−1)i1

(
ω1

i1

) ω2∑

i2=0
i2≡i1+2h (mod 3)

(−1)i2

(
ω2

i2

)
.

14



So that, by (56), we get

αh(m) =

ω1∑

i1=0

(−1)i1

(
ω1

i1

)
2.3

ω2
2
−1 cos

(
ω2π

6
+

2(i1 + 2h)π

3

)

= 2.3
ω2
2
−1

2∑

j=0

cos

(
ω2π

6
+

2(j + 2h)π

3

) ω1∑

i1=0
i1≡j (mod 3)

(−1)i1

(
ω1

i1

)
,

which, by (56) again, gives

αh(m) = 4.3
ω
2
−2

2∑

j=0

cos

(
ω2π

6
+

2(j + 2h)π

3

)
cos

(
ω1π

6
+

2jπ

3

)
.

Consequently, to get (57), one need only use the elementary trigonometric formulas

cos a cos b =
1

2
(cos(a + b) + cos(a − b)) for all a and b in R

and

cos c + cos(c +
2π

3
) + cos(c +

4π

3
) = 0, for all c ∈ R.

In case ω1 = or ω2 = 0, (57) follows immediately from (56).

Theorem 11. Let m be an odd integer ≥ 3 of the form (55). Let η(m) be as defined in (58),
and let Rm be the polynomial given by (14). Then

Rm(y) =

(
m3y3 − 3

4
pmη2(m)y + νp

)sp

, (59)

with

νp =





1
8
(−1)

ω2−ω1
2 pη3(m)L, if ω2 − ω1 is even ;

3
√

3
8

(−1)
ω2−ω1−1

2 pη3(m)M, if ω2 − ω1 is odd,

(60)

where L and M are the unique integers satisfying 4p = L2 + 27M2, L ≡ 1 (mod 3) and
(g2)(p−1)/3 ≡ L+9M

L−9M
(mod p).

Proof. From (18), we have

Rm(y) =
2∏

l=0

(
my + Am(θgl

)
)sp

=
(
m3y3 + m2ν ′′

py2 + mν ′
py + νp

)sp
, (61)

where
ν ′′

p = Am(θ) + Am(θg) + Am(θg2

), (62)
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ν ′
p = Am(θ)Am(θg) + Am(θ)Am(θg2

) + Am(θg)Am(θg2

) (63)

and
νp = Am(θ)Am(θg)Am(θg2

). (64)

Recall that cf. Theorem 2, δ is the unique integer in {0, 1, 2} such that m ∈ O(gδ). So that
from (11)-(13) and (17), we get for i ∈ {0, 1, 2}

Am(θgi

) =
2∑

h=0

αh(m)Tδ−h+i. (65)

Computation of ν ′′
p .

From (65) and (62) we deduce that

ν ′′
p =

(
α0(m) + α1(m) + α2(m)

)(
T0 + T1 + T2

)
.

Since gcd(m, p) = 1 and m 6= 1, it follows immediately from (12) and (19) that

α0(m) + α1(m) + α2(m) =
∑

d | em

µ(d) = 0 (66)

and thus ν ′′
p = 0.

Computation of ν ′
p.

From (61), to prove (59) it suffices to show (60) and that ν ′
p = −3

4
pη2(m). By (63) and (65),

we have

ν ′
p =

2∑

k=0

k∑

h=0

αh(m)αk(m)U(h, k)

with
U(h, h) =

∑

(i,j)∈{(0,1),(0,2),(1,2)}
Tδ−h+iTδ−h+j

and, for h < k,

U(h, k) =
∑

(i,j)∈{(0,1),(0,2),(1,2)}
(Tδ−h+iTδ−k+j + Tδ−k+iTδ−h+j) .

Observing that, for 0 ≤ δ, h, k ≤ 2, U(h, k) does not depend on δ and is equal to T0T1 +
T0T2 + T1T2 when h = k and to T0T1 + T0T2 + T1T2 + T 2

0 + T 2
1 + T 2

2 when h < k, we obtain

ν ′
p = β(m)

(
T 2

0 + T 2
1 + T 2

2

)
+ β′(m)

(
T0T1 + T0T2 + T1T2

)
, (67)

where
β(m) = α0(m)α1(m) + α0(m)α2(m) + α1(m)α2(m)

16



and
β′(m) = α2

0(m) + α2
1(m) + α2

2(m) + β(m).

From (57), it is easy to check that

β(m) = −3

4
η2(m).

By (66), we find that

β′(m) =

(
2∑

i=0

αi(m)

)2

− 2β(m) + β(m)

= −β(m)

=
3

4
η2(m).

On the other hand, using (17), we get

T 2
0 + T 2

1 + T 2
2 =

(sp−1∑

k=0

θ2k

)2

+

(sp−1∑

k=0

θ2kg

)2

+

(sp−1∑

k=0

θ2kg2

)2

.

The first sum in the last equality is, by (49), equal to

T 2
0 =

∑

0≤k,k′≤sp−1

θ2k+2k′

= ℓ0,0T0 + ℓ1,0T1 + ℓ2,0T2 + sp. (68)

Similarly, for the second and third sums, we obtain

T 2
1 =

∑

0≤k,k′≤sp−1

θ2kg+2k′g

= ℓ0,0T1 + ℓ1,0T2 + ℓ2,0T0 + sp (69)

and

T 2
2 =

∑

0≤k,k′≤sp−1

θ2kg2+2k′g2

= ℓ0,0T2 + ℓ1,0T0 + ℓ2,0T1 + sp. (70)

Consequently,

T 2
0 + T 2

1 + T 2
2 = 3sp + (ℓ0,0 + ℓ1,0 + ℓ2,0)(T0 + T1 + T2).

So that, by (22) and (37), we get

T 2
0 + T 2

1 + T 2
2 = 3sp − (sp − 1)

= 2sp + 1. (71)
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Therefore, with the use of (67), (36) and the fact that sp = p−1
3

, we obtain

ν ′
p = −3

4
pη2(m).

Computation of νp.

By (64) and (65), we obtain

νp =
∑

h,k,t∈{0,1,2}
αh(m)αk(m)αt(m)Tδ−hTδ−k+1Tδ−t+2

and by observing the 27 terms of the expansion of the above sum, we find that

νp = γ1(m)

(
T0T

2
1 + T1T

2
2 + T2T

2
0

)
+ γ2(m)

(
T0T

2
2 + T1T

2
0 + T2T

2
1

)

+γ3(m)

(
T 3

0 + T 3
1 + T 3

2

)
+ γ4(m)T0T1T2, (72)

where
γ1(m) = α2

0(m)α1(m) + α0(m)α2
2(m) + α2

1(m)α2(m), (73)

γ2(m) = α2
0(m)α2(m) + α0(m)α2

1(m) + α1(m)α2
2(m), (74)

γ3(m) = α0(m)α1(m)α2(m) (75)

and
γ4(m) = α3

0(m) + α3
1(m) + α3

2(m) + 3γ3(m). (76)

Using (68)-(70), we get

T 3
0 = ℓ0,0T

2
0 + ℓ1,0T0T1 + ℓ2,0T0T2 + spT0,

T 3
1 = ℓ0,0T

2
1 + ℓ1,0T1T2 + ℓ2,0T0T1 + spT1

and
T 3

2 = ℓ0,0T
2
2 + ℓ1,0T0T2 + ℓ2,0T1T2 + spT2.

Therefore,

T 3
0 + T 3

1 + T 3
2 = sp

(
T0 + T1 + T2

)
+ ℓ0,0

(
T 2

0 + T 2
1 + T 2

2

)

+(ℓ1,0 + ℓ2,0)

(
T0T1 + T0T2 + T1T2

)
.

So that, from (37), (71) and (36) , we get

T 3
0 + T 3

1 + T 3
2 = −sp + ℓ0,0(2sp + 1) − (ℓ1,0 + ℓ2,0)sp,
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which, by (22), gives

T 3
0 + T 3

1 + T 3
2 = ℓ0,0(3sp + 1) − s2

p

= pℓ0,0 − s2
p. (77)

Similarly, by again using (68)-(70), we obtain

T 2
0 T1 + T0T

2
2 + T 2

1 T2 = pℓ1,0 − s2
p (78)

and
T 2

0 T2 + T0T
2
1 + T1T

2
2 = pℓ2,0 − s2

p. (79)

Using (73)-(75) and (57), it is easy to show that

γ1(m) =
3

4
η3(m) cos

(
(ω2 − ω1)

π

2
+

4π

3

)
,

γ2(m) =
3

4
η3(m) cos

(
(ω2 − ω1)

π

2
+

2π

3

)

and

γ3(m) =
1

4
η3(m) cos

(
(ω2 − ω1)

π

2

)
.

Since, cf. (66), α0(m) + α1(m) + α2(m) = 0, from (76) we find that

γ4(m) = −γ1(m) − γ2(m) + 3γ3(m).

Therefore,

γ4(m) =
3

2
η3(m) cos

(
(ω2 − ω1)

π

2

)
.

Note that if w2 − w1 is even then

γ1(m) = γ2(m) = −3

2
γ3(m) = −1

4
γ4(m) = −3

8
η3(m) (−1)

w2−w1
2 ;

while if w2 − w1 is odd then

γ1(m) = −γ2(m) = −3
√

3

8
η3(m)(−1)

w2−w1+1
2 , γ3(m) = 0, γ4(m) = 0.

For w2 − w1 even, from (72), (77)-(79) and (28), we get

νp =
1

8
(−1)

ω2−ω1
2 pη3(m) (9ℓ2,1 − p − 1) .

For w2 − w1 odd, from (72) and (77)-(79), we get

νp =
3
√

3

8
(−1)

ω2−ω1+1
2 pη3(m)(ℓ1,0 − ℓ2,0).

By (29), (32) and (33), we have
ℓ1,0 − ℓ2,0 = −M.

Lastly, for w2 − w1 even (resp. odd), (60) follows from (53) (resp. the last equality).
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Example: p = 43.
As an explicit example, let us consider the case p = 43. Then

1 + z43 = (1 + z)P1(z)P2(z)P3(z),

where P1(z) = z14 + z12 + z10 + z7 + z4 + z2 + 1, P2(z) = z14 + z11 + z10 + z9 + z8 + z7 +
z6 + z5 + z4 + z3 + 1 and P3(z) = z14 + z13 + z11 + z7 + z3 + z + 1 are the only irreducible
polynomials over F2[z] of order 43. For 1 ≤ l ≤ 3, let A(Pl) be the unique set defined by
(3). For m ≥ 1, let A(Pl)m denote the set of the elements of A(Pl) of the form 2km. We
give bellow the description of the sets A(Pl)1 and A(Pl)3; 1 ≤ l ≤ 3.
Since p = 43 then g = 3 is a generator of the cyclic group (Z/43Z)∗. Let L and M be
the unique integers satisfying 4p = 172 = L2 + 27M2, L ≡ 1 (mod 3) and (g2)(p−1)/3 =
(32)14 ≡ L+9M

L−9M
(mod 43). Hence, L = −8, M = −2, R1(y) = (y3 − y2 − 14y − 8)14 and

R3(y) = (27y3 − 129y + 86)14.
By using the function polrootspadic of PARI, the 2−adic expansions of the zeros of the
polynomial R1(y) are
22 + 23 + 26 + 210 + 213 + 217 + 218 + 220 + 222 + 225 + 227 + 229 + 230 + 232 + 233 + 236 + · · ·
2 + 24 + 26 + 27 + 210 + 215 + 216 + 219 + 220 + 223 + 226 + 227 + 231 + 234 + 235 + · · ·
1 + 2 + 25 + 26 + 27 + 29 + 210 + 212 + 214 + 220 + 224 + 227 + · · ·
and the 2−adic expansions of the zeros of the polynomial R3(y) are
1+22 +23 +24 +26 +27 +212 +217 +218 +219 +220 +221 +225 +227 +231 +232 +235 +236 + · · ·
1 + 22 + 25 + 27 + 210 + 213 + 214 + 219 + 220 + 222 + 223 + 224 + 225 + 227 + 229 + 234 + · · ·
2+22 +23 +24 +25 +26 +29 +211 +215 +216 +219 +221 +222 +223 +224 +227 +230 +233 + · · · .
After computing some first few elements of the sets A(Pl), we deduce that
A(P1)1 = {2, 24, 26, 27, 210, 215, 216, 219, 220, 223, 226, 227, 231, 234, 235, . . .}
A(P2)1 = {22, 23, 26, 210, 213, 217, 218, 220, 222, 225, 227, 229, 230, 232, 233, 236, . . .}
A(P3)1 = {1, 2, 25, 26, 27, 29, 210, 212, 214, 220, 224, 227, . . .}.
A(P1)3 = {2.3, 22.3, 23.3, 24.3, 25.3, 26.3, 29.3, 211.3, 215.3, 216.3, 219.3, 221.3, 222.3, 223.3, 224.3, . . .}
A(P2)3 = {3, 22.3, 23.3, 24.3, 26.3, 27.3, 212.3, 217.3, 218.3, 219.3, 220.3, 221.3, 225.3, 227.3, 231.3, . . .}
A(P3)3 = {3, 22.3, 25.3, 27.3, 210.3, 213.3, 214.3, 219.3, 220.3, 222.3, 223.3, 224.3, 225.3, 227.3, 229.3, . . .}.
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