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Abstract

In this paper we study the action of a generalization of the Binomial interpolated
operator on the set of linear recurrent sequences. We find how the zeros of character-
istic polynomials are changed and we prove that a subset of these operators form a
group, with respect to a well-defined composition law. Furthermore, we study a vast
class of linear recurrent sequences fixed by these operators and many other interesting
properties. Finally, we apply all the results to integer sequences, finding many rela-
tions and formulas involving Catalan numbers, Fibonacci numbers, Lucas numbers and
triangular numbers.

1 Introduction

The study of operators acting on sequences is a very rich research field, recently developed
with the aid of OEIS [7]. Many beautiful connections between apparently unrelated sequences
have been discovered in the last years, investigating the properties of some operators like
Binomial, Invert and the Hankel transform (see, e.g., the papers of Layman, [5], Prodinger [6],
Spivey and Steil [8] and our previous paper [2]). With the aim of continuing this exploration,
we give in this paper a deep sight on a generalization of the Binomial interpolated operator.
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Definition 1. We define, over an integral domain R, the set S(R) of sequences a = (a,),1%),

and the set W(R) of linear recurrent sequences.

Definition 2. The right-shift operator o changes any sequence a € S(R) as follows:

o(a) = (a1,az,as,...)

Definition 3. We recall the definition of the Binomial interpolated operator L), with pa-
rameter y € R, which acts on elements of S(R) as follows:

L(y) ((l) - b7 bn = Z (n) y"_iai .
1

=0

Prodinger [6] defined a generalization of the Binomial interpolated operator as

L0y =b, b= (”) Wy ia 1)
1

1=0

for any a € S(R) and h,y € R not zero. This generalization can arise from the study of par-
ticular sequences called variant sequences and recently introduced by Gould and Quaintance
[4]. A variant sequence is a sequence a € S(R) satisfying the recurrence

n n .
Api1 = Z <Z_)h’y" a; . (2)

=0

These sequences generalize the Bell numbers A000110, obtainable from (2) when h =y = 1,
and the Uppuluri-Carpenter numbers A000587, obtainable from (2) when h = 1 and y = —1.
Furthermore, when h = —1 and y # 0 the variant sequences are linear recurrent sequences
of degree 2. As example, Gould and Quaintance [4] have studied the case h = —1 and y = 1
corresponding to the sequence A010892:

(bp)fos =(1,1,0,—-1,-1,0,1,1,0,—1,-1,0,1,1,...) . (3)
In this way it is easy to prove that
bn+2 = bn-{—l - bn Vn > 2 )

and other relations. By Definition 3, it is immediate that if a € S(R) is a variant sequence
with h =1
LY (a) = o(a),

i.e., when h = 1, the operator L") shifts a variant sequence of one position.
Now if we want an operator with these characteristics for all the variant sequences, we have
to consider the operator (1). Indeed, for any variant sequence a € S(R)

L% (a) = o(a).
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Furthermore, the operator (1) generalizes three operators introduced by Spivey and Steil
[8] in order to relate together several numbers of sequences. Spivey and Steil [8] have also
used them for a new proof of the invariance of the Hankel transform of a sequence under
the action of Binomial. These operators convert a sequence a € S(R) into a sequence b as

follows: . .

b, = k" i (7;) a, b= (Z‘) Fai bi= (?) ki,

1=0 =0 =0

for some k # 0 € R, but we can consider these operators respectively as
b= L(k’k)(a), b= L(k’l)(a), b= LOF (a) = L(k)(a).

Thus the operator (1) surely provides more informations about sequences over R and, in
particular, about integer sequences. Prodinger [6] has specially worked on the action of
this operator over the exponential generating functions of sequences. In the next section we
will focus our attention on linear recurrent sequences and their characteristic polynomials,
instead of studying the generating functions. Moreover, we will give a composition law
between generalized Binomial interpolated operators, when h € R is an invertible element,
which enables us to obtain a group structure.

2 Action of generalized Binomial interpolated opera-
tor over sequences and composition law

In a previous paper [2] we have shown how the Binomial and Invert interpolated operators
act on recurrent sequences, finding how these operators change characteristic polynomials.
Following the same way of thinking, we now make clear the action of (1) over the set W(R).

Theorem 4. Let a € W(R) be a linear recurrent sequence of degree r, with characteristic
polynomial f(t) having zeros a,. .., ., over a field F containing R. Then L"Y)(a) is a
linear recurrent sequence of degree r, with characteristic polynomial g(t) having zeros hoy +
Y,...,ha, +y. Moreover if

f&)=t"+> (=ioit™,
=1
then

o) =1+ (=17t
i=1
where o; and &; are the symmetric functions of the roots, satisfying the relations
F:i rek Ry ko, i=1,2 r (4)
i s i — k i sy, T

Proof. In our previous paper we have proved [2] (Theorem 10) that L% (a) is a linear re-
current sequence of degree r, with characteristic polynomial having zeros oy + vy, ..., . +¥.



Thus, considering the sequence b = (h"a,,); 25, with characteristic polynomial p(t) having

zeros hay, . .., ha,., we observe that
L(h7y)<a) — L(y)(b)

and so L"¥)(a) is a linear recurrent sequence of degree r, with characteristic polynomial
having zeros hay + vy, ..., ha, + y. Furthermore it is clear the relationship between the
symmetric functions @; and o; of the roots of p(t) and f(t), respectively

Fl' = hZO',L'.

To complete the proof, we only need to observe that L™ (p(t)) = p(t — ) and that the
relation (4) clearly hold as consequences, respectively, of Theorem 10 and of Corollary 11 of
our previous paper [2]. ]

We now need a well-defined composition law involving operators of the form (1). This
operation, together with the previous Theorem 4, will enable us to prove many relations
between sequences. In order to compose the operators L% with each other, we have to
define how the operators acts when h =0 or y = 0. So we pose for all a € S(R)

LOY(a) = (y"ao)t2 , L"9(a) = (h"an)t2, L) = (ap,0,0,0,...) .
Under these statements, the composition rule naturally derives from the following
Proposition 5. Given h,y, k,w € R we have

L) o [(kw) — [ (hky+wh)

Proof. For all a € S(R)

w . i i : U ]
et =3 (73 (e =

S

£yl o
- (?) (hkY (hw + )" Fa; = (LOF0) (@),

]

Thus, we have that L9 is the identity, with respect to this composition of operators.
Moreover, any operator L% has an inverse, when h is an invertible element of R:

L(h7y) o L(I»O) L(h’y), L(LO) 1) L(h’y) L(h’y)

1 Y

L) o G #) — [0 G $) o () — [(10)

Y

These results are a straightforward proof of the next
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Proposition 6. Let £ be the set of the operators L") where h and y belong to R, and h
is an invertible element. Then (L,0) is a group.

We now have all the necessary tools to begin a deep exploration of the action of L»¥)
over linear recurrent sequences.

3 Fixed sequences and some mutual relations between
sequences under the action of generalized Binomial
interpolated operator

We start this section with some interesting results about sequences left unaltered under the
action of LY. First of all we consider a general case, with the only condition that 1 — h
is an invertible element of R. In the proof of the following proposition, we will use an
umbral approach a la Gian—Carlo Rota [9]. We consider a particular umbra U associated to
a sequence a € S(R), which is a linear functional on R|z| defined by posing

Uiz"Y=a, Yn=1,2,... U(l)=ay and U(0)=0, (5)

and extended linearly (see Rota [9] and Roman [10]).

() ), L

is the only sequence satisfying L"Y)(a) = a for all the possible values of y € R and h € R
such that 1 — h 1is invertible.

Proposition 7. The sequence

Proof. From Definition 1 we have L") (a) = b where, using (5)

b, = ; (Z,>hzy”’U(zl) =U <; (Z) hy”z) =U((hz+y)"). (7)
The condition b = a corresponds to the equivalent relations
U")=U((hz+y)") Yn=12,...,
and the linearity of U leads to the equations
Ui"—=(hz4+y)")=0 Vn=1,2...,
which clearly hold when
2= (hz+y)"=0 VYn=12....

So we immediately obtain
z—(hz+y) =0,

5



and finally z = %, which implies, from (5)
B . y n ~ y n ~ y n
an = Uz >_U((_1_h> ) (_1_h) () (—1—h> a“ .

Proposition 8. Let a € S(R) be a sequence with initial value ag = 1, then L") (a) = a
onlyifh=1andy=0 or h=—1 and y = 2a;.

]

Proof. By the definition we know that
L(h’y)(l, ai, a, .. ) = (]_, arh + Y, a2h2 + y(2a1h + y), .. )

and the system

CLlh + Yy =ax
a2h2 + y(2a1h + y) = Q9

has only the solutions h =1,y =0 and h = —1,y = 2a. [

Remark 9. In a previous work Barbero and Cerruti [1] studied the underlying group structure
involving some operators acting over the set of sequences a € S(R) such that ap = 1. In
particular, embedding this set into R[[t]] as follows:

+oo
Aa) = Z ant"™t .
n=0

and considering the natural composition of series o, which induce the operation e
Va,b € S(R) with ag=by=1 aeb=\"'(\(a)oA(b)),

over this set, they have proved that L% (a) = a @ X(y), where X (y) = (y")!%. Now if we
define, as Barbero and Cerruti [1], the operator e such that

Va € S(R) (a) = ((—1)"an),2 .
we have, for all sequences a with ag = 1
L&(a) = e(a)  X(y) ,
and by Proposition 8, when the operator L(=12%1) fixes the sequence a, we obtain
e(a) e X(2a1) = a .

Another important result consists in finding all the recurrent sequences of degree 2 fixed
by LY when we make a suitable choice of h, y and initial conditions. First of all, we
introduce a notation to shortly write linear recurrent sequences of degree 2.



Definition 10. We indicate with a = (a,,); 25 = W(§,7,p, q) the linear recurrent sequence
of degree 2 with characteristic polynomial ¢* — pt + ¢ and initial conditions ¢ and 7, i.e.,

ap = 9;
ay =17;
Ap = Plp—1 — qQnp—2 Vn > 2.

Proposition 11. For any linear recurrent sequence a = W(8,7,p, q), we have LY (a) = a
if and only if (h,y) = (=1,p) and v = 55, counting out the trivial case (h,y) = (1,0).
Moreover

LV (a) = LM (q). (8)

Proof. As we have shown in Theorem 4, when we consider r = 2 in (4), the symmetric
functions of the roots of L) (f(t)) are

o1 =hoy+2y and o5 = h20q + hyo, + y2.

In our case 0, = p and 0y = ¢, so the characteristic polynomial of L% (a) will coincide with
the one of a if and only if

p=nhp+2y and q:h2q+hyp+y2.

From the first of these equalities we find y = %p. Substituting into the second one, we

obtain
p

(1 -na+ne-5=o
which is true for all p and ¢ if and only if h = —1 or A = 1. The case h = 1 gives y = 0, not
so interesting, while the case h = —1 gives y = p. Finally, if we pay attention to the initial

conditions, we have
L(_Lp)(a) - (57 - +p57 . )

so —y + pd = v if and only if v = £5. The equality (8) is a straightforward consequence of
Proposition 5. O

Example 12. As an example of sequence like those studied in Proposition 11, we can
consider the Lucas numbers A000032

= (1,),29=1(2,1,3,4,7,11,18,29,47,76,123, . ..) .
Since this sequence corresponds to [ = W(2,1,1, —1), we immediately observe that
L) =1.

Let us consider any a = W (5, Lo, p, q) satisfying the hypotheses of Proposition 11. Ap-
plying L) we directly obtain the following interesting identities

w=3 (1) (9
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and

n—1 .
n o 0, if n even;
(z) (=1)'p""a; = { (10)

P 2a,, if n odd;

which we will use in the next section, finding some new applications to well-known integer
sequences. Furthermore, as a direct consequence of Proposition 11, we have the following

Corollary 13. Let a = (a,); > be a linear recurrent sequence with characteristic polynomial
(t? — pt + q)™. Then LEYP)(a) has the same characteristic polynomial.

We study another interesting property of the action of L% on linear recurrent sequences
of degree 2 in the next

Theorem 14. If a = W(4,7,p,q) and u=W(0,1,p,q) then
b= (agn)25 = L= tm-1)(g) k> 1.

Proof. 1f t> —pt-+q has zeros o and 3, then b recurs with characteristic polynomial ¢ — vt +¢"
whose zeros are of and (3%, and vy is the k—th term of v = W(2,p,p,q). Indeed, the
characteristic polynomial of b is the characteristic polynomial of the matrix [3]:

()

If we take h = uy, = O‘;:gk and y = —qug_1 = aﬂk*gkﬂ, by Theorem 4 the zeros of the

-
characteristic polynomial of b are

Oék—ﬁk aﬁk—akﬁ_ N Ock—ﬁk Oéﬁk—akﬁ
a=p "t Tams T ams e

and the initial conditions are aq and ay. O

= g*

Finally, we see how the Hankel transform [5] changes after applying L%

Proposition 15. Let H be the Hankel transform, for any a € S(R)

H(LO (@) = (B4 0k, ) 1

n=0"
where (k,)25 = H(a).
Proof.

H(LO(@) = HLODLOD () = HLOD (@) = (0 +0k, )15

n=0

since Spivey and Steil [8] have proved the last equality and the Hankel transform is invariant
under the Binomial interpolated operator [8]. O



The last Proposition 15 allows us to find the Hankel transform of some sequences of
the form L") (a), starting from a known Hankel transform H(a). For example the Hankel
transform of a constant sequence a = (¢, ¢,c,...) is

H(a) = (¢,0,0,...), VYceR,

since
L(h’y)(a) = (c(h + y>n)+oo

n=0 »

we have

H((c(h+y)"),2%) = (c,0,0,...) .

4 Applications to integer sequences

In the previous section we have shown many properties about the action of L% on linear
recurrent sequences over R. In this section we focus our attention on integer sequences and
we will see how the operator L% is very useful in order to find many new relations and
informations. First of all, we start showing how, by Theorem 4, we can immediately prove a
relation between integer sequences only conjectured by Spivey and Steil [8] (p. 11, Table 1).

Proposition 16. Let a = W(1,5,6,1) and b =W(1,3,4,2) then
L2 (a)=b .

Proof. The sequence a is the linear recurrent sequence of integers with initial conditions
ap = 1, a; = 5 and characteristic polynomial #* — 6t + 1 A001653:

a=(1,5,29,169,985,...) .

The sequence b is the linear recurrent sequence of integers with initial conditions by = 1,
b, = 3 and characteristic polynomial > — 4t 4+ 2 A007052 in OEIS:

b=(1,3,10,34,116,...) .

The zeros of t2 — 6t + 1 are 3+ 2v/2. The operator L3 transforms a into a sequence with
characteristic polynomial whose zeros are

1 1
5(3j:2\/§)+§:2i\/§,
corresponding to the zeros of t2 — 4t + 2. Finally, it is straightforward to check that L3

changes initial conditions of a into those of b. m

Many relations involving integer sequences can be found using the Proposition 11 and
the derived formulas (9) and (10). For Lucas numbers A000032 we have seen in Example 12
that

Loy =1,

9
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We also have the following new relations

Qki (Qf) (1) =0,

=0

1 2k +1 ,
52( Z. )(—1>Zzi=zgkﬂ.
1=0

The Proposition 11 can be applied to many other interesting recurrent sequences of integers.
For example, let a be the sequence of numerators of continued fraction convergents to v/2
A001333. This is a linear recurrent sequence of degree 2, in particular, with respect to our
notation, it is a = W(1, 1,2, —1), i.e.,

(1,1,3,7,17,41,99,239,577,1393,...) .

Its characteristic polynomial and its initial conditions satisfy the hypotheses of Proposition
11 and we have

L(_I’Q)(a) =a
and )
() fo e
—\u 2a,, if nodd.

As we have already seen, not only recurrent sequences can be fixed by L% . In the next

Theorem we see a surprising result involving the famous Catalan numbers A000108. They
are fixed by L1,

Theorem 17. Let C = (C,):2% be the sequence of the Catalan numbers
C = (1,1,2,5, 14,42, 132, 429, 1430, 4862, 16796, . . )

then
L(_1’4)(0(C')) =o(C).

Proof. Recalling the explicit formula of Catalan numbers, we have

2 1
@:(3 CYn>0.
n/)n+1

LW (o(C)) = a,

Now we pose

and we have

_ . n _ 1\hn—h 2h + 2 1 B n N
GH—E:Q)(1)4 <h+1)h+2_§:FWW% Vn>0.
h=0 e
We can prove that
220+ 3)F(h,n) + (=0 — 3)F(h,n + 1) = A(F(h, n)R(h, n), (1)

10
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4h(h + 2)

for all n > 0, where R(h,n) = and A is the forward difference operator in h.

—h+n+1
Indeed, dividing the last equation by F'(h,n) we obtain for the first member
n+1 6 + 6h + 6n + 4hn
2(2 4(—n—-3)— = —
(2n+3)+dln =3) 29—, nt1_h

and for the second member

F(h+1,n)R(h+1,n) 4h(h + 2)
F(h,n) ~ Rlhn) = =22h 4 8) - ZEE T S

6 + 6h + 6n + 4hn
B n+1—nh ’
Now summing both members of the equation (11) over A , from 0 to n — 1, and rearranging
the resulting terms with a little bit of calculation, it is easy to see that we have

22n + 3)a, + (—n — 3)ap1 =0, Vn >0,
and it is well-known (see, e.g., in OEIS [7] the sequence A000108) that
22n+3)Cpy1 + (—n—3)Chya =0, VYn >0,
i.e., we have proved that a = o(C). O

As consequence we have a new recurrent formula for Catalan numbers:

n

n
Cn+1 = Z (h) (—1)h4n—h0h+1 ’

h=0

which we can decompose into two new formulas, like in equation (10)

1 n—2
C,=— (n) (=1)"4""Ch1,  n even

1 n—1 n
Cny1= 52 <h) (—1)h4"_hC'h+1, n odd .

h=0
It is really interesting to observe that when, e.g., n = 2k in the first formula, we have only to
choose n = 2k —1 in the second formula in order to have two different new representations of
the same Catalan number Cy;. In the next Propositions, where we find a beautiful formula
for triangular numbers A000217 and for the binomial (Z), we apply the Corollary 13.

Proposition 18. Let T = (T,,):% be the triangular numbers
(0,1,3,6,10,15,...) ,

then
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Proof. Let T' = (T),!25 be the sequence
(0,0,1,3,6,10,15,...) ,

i.e., it is the sequence of triangular numbers starting from (0,0, 1,...) instead of (0,1,...). It
is easy to check that 7" recurs with characteristic polynomial (t—1)* = (t2—2t+1)2. Thus, by
Corollary 13, the sequence L(="?)(T") has the same characteristic polynomial. Furthermore,
in general

a Gasp — agp®
L(_Lp)<a0aa1aa'27a37' . ) = (a()’Lp’ az, 2p -

5 — )
i.e., in our case the initial conditions of 7" are fixed by L(-%?, and clearly
L(71,2) (T/) -7
If we observe that 7' = o(7") and T}, = 0, recalling (1), we have

T, = Zn: (7;) (—1)i2"'T; .

=0

Proposition 19. For any integer n > 0 we have

(3) -2 () (v

Proof. Let a be the linear recurrent sequence with characteristic polynomial (¢ — 1)® and
initial conditions (0,0,0,0,1,5). It is possible to verify that

a, = (Z), Vn >0

i.e., a is the sequence A000332. By Corollary 13 and checking that initial condition are fixed
by LE15?2) | we have
L(_l’Z)(a) =a,

and we can explicitly write

O

Finally, we see some applications of the Theorem 14 to the Fibonacci numbers A000045
F = (F,)t% =W(0,1,1,—1). Applying directly this theorem, we have

(Fin)y2o = LUF=0(F)

12
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and we find the following known formula [7]:

n

n . .
Fy, = VLT F;
k ZZ; ( z) kt k-1
But if we apply the Theorem 14 to the Lucas numbers [, we have the following relation
between Fibonacci and Lucas numbers:

(len)i 5 = LUWF=0(D)

n=

which gives

" n . .
= (Z,>F,§F,?_fli :

=0

5 Final remarks

In this article we focused on the study of sequences fixed by generalized Binomial interpolated
operator. In particular, we have seen this for linear recurrent sequences of degree 2 and this
result could be extended to linear recurrent sequences of higher degree. However, as we have
already seen, there are fixed points of L% which are not linear recurrent sequences. A
future development of this article is the general study of this problem. It would seem that,
except for the particular case studied in Proposition 7, L% fixes sequences only when h = 1
(and consequently y = 0, i.e., we have the identity) or when h = —1.
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