1

In what follows, f : N — C is an arithmetic function with Dirichlet series F'(s) and ged(a, b)
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Abstract

We provide mean value results for sums of the composition of the ged and arithmetic
functions belonging to certain classes. Some applications are also given.

Introduction

is the ged of a and b. The Dirichlet convolution product f % g of f and g is defined by

The classical arithmetic functions 7, o, u, ¢, w are respectively the number and sum of
divisors, the Mobius function, the Euler totient function and the number of distinct prime
factors. Finally, v is the Euler-Mascheroni constant, |¢| is the integer part of ¢ € R and we

(f*g)(n) =" fld)g (%)

din

set (t) =t — |t] —1/2.

In 1885, E. Ceséro [3] proved the following identity.

Lemma 1. For every positive integer n, we have

Z flged(i,n)) = (f x¢)(n).


mailto:borde43@wanadoo.fr

This follows from

Do Heedlm) =2 @) Y 1= Je(5) = (Fre)m).

dn k<n/d dn
ged(k,n/d)=1

It should be mentioned that such an identity also occurs with some other convolution prod-
ucts where the summation is over some subset of the set of the divisors of n. For instance,
L. Té6th [13] showed that

> fleed(in) = Y f(d)w(%)
dln

i€Reg(n
&) ged(d,n/d)=1

where the notation ¢ € Reg(n) means that 1 <7 < n and there exists an integer = such that
i’r =i (mod n).
Lemma 1 has a lot of interesting applications.

(a) With f = Id we get
> ged(i,n) = (Id x )(n)
i=1
which is Pillai’s function [11].

(b) With f = p we get

n

S leed(i,n)) = (s 9)(n) (1)

i=1

n
=

and thus the number of primitive Dirichlet characters modulo n is equal to > " | pu(ged(i, n)).
In particular, if m is an odd positive integer then

Z,u(gcd(i, 2m)) = 0.

(¢) With f =7 we have, using 7 x ¢ = o

so that
Z 7(ged(i,n)) < nloglogn

=1

which should be compared to the classical estimate Y | 7(i) < nlogn.
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(d) With f = 2“ we easily get

Z 2w(gcd(i,n)) _ \If(n) (3)
=1

where U(n) := (u* x1d)(n) = n][,, (1 +p~') is the Dedekind arithmetic function.

(e) Applying Lemma 1 twice with f = 7 and f = o respectively, and using 7 * ¢ = ¢ and
oxp =1Id x 7, we obtain

n  ged(i,n)

ZZ (ged(i, 7,m)).

11]1

The aim of this paper is to estimate the sums

S (z f<ged<z-,n>>) "

n<z =1

for x > 1 sufficiently large and an arithmetic function f verifying certain hypotheses. In
section 2, we provide a result for four classes of multiplicative functions and then give some
applications in section 3. The aim of section 4 is to provide a refinement of an estimate given
in Theorem 8.

2 Main result

This section is devoted to the proof of a unified theorem which gives estimates for sums of
the type (4). To this end, we first need some specific notation. More precisely, we consider
the four following classes of real-valued multiplicative functions.

1. f € My(a) if there exists a real number o > 0 such that

DI *m)(n)] < w(log )™, (5)

n<x

2. f € My(a) if there exists a real number a € [0,3/2] such that, for every positive
integer m we have

laJ+m
Sl = Y atogn 40 (1) er. @

o log )

> (Fxmm)* <alogz)’  (8>0). (7)
n<x

f(" — f(p1) is bounded for all [ > 1 and primes p. (8)
The sequence p — f(p) — 1 is ultimately monotone. 9)



3. f € Mj3(A) if there exist A > 0, B, C, D € R and an integrable function R defined
on [1,400) such that

Z@_Ax—i-Blogx—i-CdJ(x)‘f‘D‘i‘R(x)

n<x
and R(r) < x~%(logz)¥ with a, E > 0.

4. f e My(A, a,B) if there exist A >0, a > 1 and o > (3 > 0 such that

Z@ = Az® + O (7). (10)

n<x

Finally, we define 0 < 6, < % and Ay > 0 such that

fln) rx 0 A
3y —E—¢<E)<<aawmgx)f (11)
n<yx
and we set 0 := max (6, 01q) and A := max (A, Apg).

Remark 2. Tt is known [5] that one can take

131 26947
=— =0.3149... Ay =——=32
91d 116 0.3149 and 1d 3390 3.2388

The following result gives further information when f € M3(A) and f € My(A, «, ).
Lemma 3. Let f € M3(A). Then we have for x sufficiently large

Z%:AlongrAJrG—EJer—u)th(MJri)

T T :EaJrl 332
n<x

where

G:B+C(%~O+D+A®Rg“. (12)

Let f € My(A, o, ). Then we have for x sufficiently large

Z %Z) = AaE,(z) + O (Rs(x))
where _

a—1

if a>1;
17 1 a b

o —

logz, ifa=1



and

227 ifa>p>1;
Rg(x) = logz, if a>p=1; (14)
1, ifa>1>8>0

Proof. Let f € M3(A). Using Abel summation, we get

+
T T T T

Z%:A+Blogx+6’d}(x)+2 R(z)

n<x

71
+/1 t—z(At+Blogt+Cw(t)+D+R(t))dt

:Alogx+A+B+D—|—/IOOR(tt2)dt—§
Glx) | [To@)dt\  R@) (< R(t)dt
+O(T+/1 T)*T‘/x P

The estimate

st 1 1
/1 t2> :5_7+O<ﬁ)

which can be proven by using Euler-MacLaurin’s summation formula, gives

3 f(gz) C(x) o ((logx)E 1 ) |

T anrl ?
n<x

B
=Alogr +A+G— —+
x

The proof for f € My(A, a, ) is similar and somewhat simpler, so we omit the details. []
Now we can state our main result.

Theorem 4. Let f be a real-valued multiplicative function with Dirichlet series F(s).

1. If f € My(«), then we have for x sufficiently large

> (Z f(gcd(i,n))) = QE;S(SHO {xH (1 +; 717) _plf e~ )‘) +m(logm)°‘}.

n<x =1 <z

2. If f € My(«), then we have for x sufficiently large

5 (S steon) - 2280 ottt}

n<x



3. If f € M3(A), then we have for x sufficiently large

- Ar?logx  a? ' PR .
Z (Zf(gcd(i,n))) = 24%2? +2C(2) {A (’y—l— % - 2522;) —i—G}—i—O{(mH + ") (logz)" }

n<x =1

where 0 is given in (11), G is given in (12) and

13- if 0<a<l:
[i=max(2,A,E+1) and 7 := 33— a), BU=as4
Oa 1f&21.

4. If f € My(A,a, ), then we have for x sufficiently large

3 (i f(gcd(i,n))) _ % {xH (1 + Z G ( ”) +x27aﬂ(x)}

n<lz \1=1 p<zx

where E,(x) is given in (13) and Rs(x) is given in (14).

Proof. Let f be a real-valued multiplicative function with Dirichlet series F'(s).

1. Set g := f % pu. Since ¢ = p* Id, we have, using Lemma 1

> (if(gcd(i,n))) = (gx1d)(n) = g(d) >k

n<z \i=l n<z d<z k<z/d
: ;Mgw L%J (5]
s {E 20 - (@)
-5y S D () o (S

Using (5) it is easily seen that the series )., g(d)d=? is absolutely convergent, and
hence we have

n<z \i=1 T d<z d>z

29_¢< ) ( (log 2)° Z‘gdz )

d>x

Z(Zf(g(:d(in >:%ng—— Z#ﬁqﬁ(f)+O<Z‘g(d>|+x22|gfg)|>
°F(2)
¢(2)

Now by Abel summation and (5), we get

z? Z |gc(;2i Z lg(d)] + 22 / (Z lg(d ) dt < xz(logz)”

d>x d<z d<t



and the inequality [¢(x/d)| < 1/2 gives

;@w(g) <<;@<<H<1+;‘g(€)‘

p<z p

g(d)

2. The proof is the same as before except that we are able to treat the sum ) i<z ¥ (5)
more efficiently. Using (6), (7), (8) and (9) we see that the function d — g(d)d !
satisfies the conditions of Theorem 1 of [9] which gives

> %l)@b <§) < (log )3+ (loglog z) 3+

dgxe—(logx)l/G
and, using (6) and partial summation, we get
g9(d) Z l9(d)] a+1/6
> SEe X S <ot
ze—(log I)1/6<d§1‘ xe—(log 1)1/6<d§1‘
Note that o € [0,3/2] implies (logz)*@1/3 > (log z')**+1/6.

3. Set h := f xId. Using Dirichlet’s hyperbola principle, we have



n<yz m<a/n  n<yrm<a/n <z
n) (fz 1 x
—;% (i)
+ Z {% + Blog% +Cvy (%) +D+0 ((g)a (logx)E>}
n<\x
(i) 3 1
n<ya
=z Z %— Z @¢<%)+Am Z %—1—3 Z logg
n<VE n<VE n<VE n<VE
+C Z (0 <%> +D <\/E - % - w(\/@) +0 (21792 (log z) ")
n<VE

(V=) (47 + Liogr o) + D40 (- (0g )
= f(n) + Ax (logx 5 — v(ve) +0 (x_1)>

2
1 D By/xl
B<\/§20gx+\/§+0(logx))—§—z4x— \/3_320g;p

(A= C)VEO(VE) + Do) log + Co(VE)

+ 0 (2%(log 2)* + 2" =9/%(log 2) )

=z Y ff;;) - Axgogx + Az (v — 1) + Byx — CVay (V)
n<VE

+ 0 (2°(logz)™ + 1=92(log 2)F + log ).

Now by Lemma 3 we get

hn) _ [ Aloga B CuWE) (o)t 1
nzgx —{ 7 HATG- =+ — +O(x(“+1)/2 x)}
+ ATOBT | Aw (= 1) + BV — CVEU(VE)

+0 (2%(log 2)® + z792(log 2)¥ + log )
= Azlogz + (Ay + G) z + O (2% (log )™ + 21=92(log 2)¥ + log ).
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An Abel summation then gives

_A 2] 2
S hin) == ngJrZ (A(2y +1) +2G)+0 (2" (log 2)* + 2~ (log 2)” + zlog z)

n<x

and hence

Z (Z f(gcd(i,n))> = Zu(d) Z h(k)
n<lz \1=1 d<z k<z/d
S e T A +26) Y A

d<zx d<z

a 1
+0 (J:He(log )2 4 28792 (log 2)E dg ean T z(log x)2>
_ Aa?logx AQ’(?)I2 N x?
2¢(2) 20022 4C2)

+0 ((m1+9 + xr) (log x)F)

(A(27 + 1) + 2G)

which is the asserted result.

4. The proof is similar to the points 1 and 2. We use g := f * ¢ and we have as above

> (Z f<gcd<zan>>) =S o) Sk

n<z =1 d<z k<z/d
x x

=32 9@ 5] ([5]+1)

N g(d) lg(d

=3 2 +0 (:v Z y
d<z d<z

k
S D) 5~ 1) o(xzm )
d<z k<z/d d<z
and using Lemma 3 gives the desired result.
The proof of Theorem 4 is complete. m

3 Applications

We first introduce some additional notation. The functions u, 7,0, ¢, Id and 1 have their
usual meanings and we add the following multiplicative functions.
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e ((n) is the number of square-full divisors of n.
e a(n) is the number of non-isomorphic abelian groups of order n.

e 7(9(n) and o' (n) are respectively the number and the sum of exponential divisors of
n.

e If k > 2is any fixed integer, uy is the characteristic function of the set of k-free integers,
Ti is the k-th Piltz divisor function defined by 7, = 1 x -+ x 1 with 7 = 7, T(k)(n) is
——

k times
the number of k-free divisors of n with 7(2) = 2 and 75 (n) is the greatest k-free divisor

of n.

e If K/Q is any fixed number field of degree d > 2, vg(n) is the number of nonzero
integral ideals of norm n. The Dedekind zeta-function of K is denoted by (k.

The following lemma gives the distribution of these functions into the classes M; .

Lemma 5. Let k > 2 be a fized integer. We have the following distribution.

Ml(a) Mg(Oé) ./\/lg(A) M4(A, a,ﬁ)

B e My(0) TEMy(0) | peMs(C2)7") | e My (Ak,1,3)
7 € My(0) | 7y € Ma(0) | o € M3(C(2))
pr € M1(0) | p€ My(1) | o© e Ms(2k)

a e Ml(O)

where k = 0.568 and

"

p

Proof. In the sequel, P(n) is the number of unrestricted partitions of n.

1. For the class M;(«a), use

1, if n is square-full;

(6*#)(n)={

0, otherwise

(—=1)*0™ if n = mF and pa(m) = 1;

0, otherwise

(pg * ) (n) = {
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and for the function a we have [(ax p)(p)] = P(1) — 1 = 0 and for all integers [ > 2
we have |(ax p) (p')| = |P(I) = P(I = 1)| < 2 x 54 (see [7] for instance) so that the
function |a * | satisfies Wirsing’s conditions (i.e. 0 < f(p') < M, for some real
numbers A; > 0 and 0 < Ay < 2) and hence

\a )( x
|(a*u)(n |<< — exp :
; ; logx

For the function 7(®) we use (7(®) x u)(p) = 7(1) — 1 = 0 and for all integer [ > 2 we
have (709 % p) (p') = 7(1) — 7(I — 1) (see [16]) so that

ZMT@*M ‘<<logx

n<x

. For the class My (), we use the fact that 7+ p = 1 and 7y * 4t = i, which proves the
result for 7 and 7(;). The function x4 needs more work. First we have

—2)¥@ if n = ab® with (a,b) = 1 and pa(a) = ps(b) = 1;
(e (m) = {2 b with (a,0) 2(a) = pa(®)

0, otherwise
so that the conditions (7), (8) and (9) are easily checked. We now prove the following
identity

Z| px ) (n)] = Apzlogz + Ajz + O (z 1/2(10g9c)3) (16)

n<x

where Ag = [[,(1—=2p +p~*) = 0.3695... and A, = A (27 —1+4) M)

p p*—1
which implies condition (6).
To do this we first set f(n) := |(u p) (n)| which is multiplicative with Dirichlet series
F(s) = ((s)*H(s), where H(s) := [],(1 —2p~° +p~*) is absolutely convergent in
the half-plane o > 1/2. Moreover, if we set H(s) := >~ h(n)n"*, then we have from
the Euler product

otherwise

_9\w(a) ; — 12p4 5 — .
h(n)z{é 2)“)if n = a*b* with (a,b) =1 and ps(a) = us(b) = 1;

2¢(a) 1
Z|n1/2 < Z — Z 7 < (log z)?.

n<lz a<zl/? bg(x/a2)1/4

Now we are able to show (16). From the factorization F(s) = ((s)?H (s), we infer that
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D )= (rxh)(n) = h(d) Y 7(

n<z n<z d<z k<z/d

_Zh {—10g +d(27—1)+0(<§>1/2)}
:x(logx+27—1)2@—xz h(d);ogd { 1/22|d1/2 }

d<z d<z d<z

:H(l)xlog:c—i—x{H(l)(%y—1)+H’( )} + O (z'?(log z)?)
h(d h(d)|logd
+O<xlogxz| Z| \og )
d>x d>x
and we conclude the proof by using Abel summation to get
)| 1
Z [h(d) < 2z ?(logz)? and Z —|h c|l og d < 72 (log z)®.

d>x d>x

3. For the class M3(A), we first have the well known estimates

> A 20 (g g og) ).
2 @ = 62) = 550 ((og ).

For the function o() one can deduce from the results proven in [9, 10] that

o (n
Z T() = 2rz + O ((log z)*?) .

n<x

4. For the class My (A, «a, ), use (see [12])

where Ay, is given in (15).

The proof is complete.

For the function vk, we have the following result in the case of Galois extensions.
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Lemma 6. Let K/Q be a Galois extension of degree d > 2. Then, for every positive integer
n, we have
(v % p) ()] < 7a-1(n)

so that vg € My(d — 2).

Proof. The result is obvious for n = 1 and, by multiplicativity, it suffices to prove the
inequality for prime powers. Let p be any prime number and [ > 1 be any integer. Since
K/Q is Galois, all prime ideals above p have the same residual degree denoted by f, and
we set g, to be the number of those prime ideals. If f, = 1 then vg (p™) = 7,, (p™) for all
integer m > 0 so that

(v ) (0) = vie () = v (077) = 79, () =70, (0') = (7 % 1) (W) = 791 (V) -

If f, > 2 and since K/Q is Galois, we have

I

) =4°
0, otherwise
so that
(1, if =1
1
(ng/fp ) it1>2and f, |land f,1(1—1);
L/ fp
(v * ) (pl) =

_ gp+(l_1)/fp_1 i an an 1.
( (= 1)/f, ), fl>2and f,tland f, | (I —1);

0, otherwise.

\

We have the trivial inequality g, < d and if [, f, > 2 then [/f, <1/2 <[ —1 so that, using
the fact that if ¢ > 1 and 0 < x < y then (9+§_1) < (‘”i_l)7 we have in every case

s (] = (7)< (T )

which concludes the proof. O]

Remark 7. One can also have the same inequality in some nonnormal cases. For instance,
let K3 be a cubic field with negative discriminant, so that K3 is not Galois. The factorization
of prime numbers into prime ideals is nevertheless well known and one can prove [1] that we
have in fact the following situation.
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Factorization of (p) l (vies * 1) (p')

Completely split any [+1
inert [ =0 (mod 3) 1

inert [=1 (mod 3) —1
inert [ =—1 (mod 3) 0
split [ =0 (mod 2) 1
split [=1 (mod 2) 0
ramified any 1
Completely ramified any 0

so that we also have in this case |(vi, * ) (p')| < 7 (p') and hence vx, € M;(1).

Now collecting all those results with Theorem 4 we obtain the following estimates.

Theorem 8. For x sufficiently large, we have

(i)

3 <Z B(ged(i, n))) % +0(2).

(ii)
> (Z a(ged(i, n))) = %2 [T¢@k)+0 ().

n<lz =1

(iii) Let k > 2 be a fizved integer. Then we have

> (Z uk(gcd(i,n))) = 2{(6%) +0 ().

n<x 1=1

() If 7(l) ==7() —7(l—=1) = 7(l = 2) + 7(l — 3) forl > 5 then we have

> (ZT(e)(gcd(z’,n))) = %H (1 + ; %) +0(z).

i=1 p
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(v) Let U be the Dedekind arithmetical function. Then we have

Z U(n) = ZCC((Z)) + O (z(log 2)?*(loglog x)4/3) :

n<x

More generally, let k > 2 be a fixed integer. Then we have

Z (Z T (ged (4, n))) = ;CCE2(/2€§ + O (z(log 2)**(log log z)*/*) .

n<lx =1

(vi)
2%¢(2)

Z o(n) = 5 + O (z(log 2)*3(log log x)4/3) :

n<x

(vii) Let N'(n) be the number of primitive Dirichlet characters modulo n. Then we have
2

ZN(n) = # + O (z(log 2)*3(log log x)*/?) .

n<x

(viii) Let K/Q be a Galois extension of degree d > 2. Then we have

2 (Z ”K(g‘?d(@n))) = %TS) + 0 (z(logz)™).

n<x =1
(iz) Let K3/Q be a cubic field with negative discriminant. Let Kg/Q be a normal closure

of Ky and L(s,1,Kg/Q) be the Artin L-function associated to the character ¢ of a
two-dimensional finite representation of Gal (Kg/Q) ~ S3. Then we have

> (Z qu<gcd<m>>) = PR L0 (wrogey)

()

Z (z-zl it n))) - 932;(02%293—'—252)2 (7 + % _¢@ + C&p) +0 (x?’/?(log x)26947/8320)

n<x

where Cy, € R.
(xi)

- . 22logx  2? 1 (2 547/416 26947 /8320
> (Swettn ) - oty (-5 5 r0 1 g,

i=1
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o ged(iyn)) | = BT, 2 [ (1 @)
Z<Z et ”) a0 @) o)
+0 (ZIJS/Q(IOg ZL‘)26947/8320)

where k = 0.568 and C ) € R.
(xiii)

Z (Zn: U(ng(i>n))> = - 1;)ga:+%2 (7 + % - CC,(<22)) + Cg) +0 (2% (log 2)?6947/8320)
n<x =1

where C, € R.
(xiv) Let k > 2 be a fized integer. Then we have
" , Apr?logx 5
Ye(ged(i, n =————+4+0 (z
2 (S - 255 00
where Ay, is given in (15).

Remark 9. The first estimate in (v) and estimate (vi) are slightly weaker than the result
obtained by Walfisz [15] who proved that one can remove the factor (loglogx)%3. This is
due to the use of the Walfisz—Pétermann’s result in its whole generality which does not take
account of these particular cases. For instance with (vi), we have here 7+ = 1 and Walfisz
showed precisely that (see also section 4)

S (@) - S b () < b

Using this estimate gives Walfisz’s result. More generally, it can be shown by induction that,
for every integer k > 1, we have (see [8] for instance)

Z @@D (%) < (log x)F1/3,

n<z

Using the method of Theorem 4 we get for k > 2

Z (Z Tk(gcd(i,n))> = % + O (z(log z)F~*/3) . (17)

n<x =1

Remark 10. Estimate (xi) has first been obtained in [4] and later rediscovered in [2].
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4 Quadratic fields

Let K = Q(v/D) be a quadratic field of discriminant D and set d = |D|. x is the primitive
Dirichlet character associated to K so that x(-) = (d/-) where (a/b) is a Kronecker symbol.
Finally let L(s, x) be the L-function associated to x. It is known that for ¢ > 1, we have the
factorization (x(s) = ((s)L(s, x), and hence using estimate (viii) of Theorem 8 we obtain

Z (Z v (ged(i, n))) = w + O (zlogz).

n<x =1

The purpose of this section is to show that the error term can be improved to

n 2
Z (Z VK(gcd(i,n))> = %ZX) +0 (dl/Qx(log x)2/3) : (18)
n<lz =1

The identity (x(s) = ((s)L(s,x) implies that vg x p = x and thus it is easy to verify
that vk satisfies hypotheses (6) and (7) of the class My(«) with @@ = 0. We also have
|(vi 1) ()] = |x (#")| <1 of hypothesis (8). In fact, the only condition which fails is that
p — (vk * ) (p) = x(p) is not ultimately monotone since x(p) = 1, 0, —1 depending on
whether p completely splits, is ramified or is inert in K. The following result is a first step
into the direction of (18).

Lemma 11. For every real number x > 1 sufficiently large and every real number T such
that 1 < T <z, we have

Z (i VK(gcd(i,n))> = w —x mw (%) +0 (sz_le/z logd+T).

- n
n<z \i1=1 n<T

In particular, we have

Z <Z VK(gcd(i,n))> = w - Z %n)w (g) +0 (zd"?logd) .

n<lx \t=1 n<gl/2

Proof. Using Dirichlet’s hyperbola principle, we get

Z (Z vie(ged (i, n))) = Z (x *1d) (n)

n<lz \1=1 n<x
=2 X Dkt D m ) x(W=) x(m) ) m
n<T k<z/n n<z/T k<z/n n<T n<z/T

o 2] (1)) o] £ 0|5

n<z/T k<z/n

+ 0 Zn

n<z/T

> x(n)

n<T
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and the use of the Pélya—Vinogradov inequality and the estimate

H G0 = () o
give

> (Z vic(ged(i,n)) | = %2 3 % —z ) @w (%) +0 (22T %d"*logd + T) .

n<z =1 n<T n<T

We conclude the proof by noticing that

3 xg;) —120)- Y XT(LZ)

n<T n>T

and we get by Abel summation and the Pélya—Vinogradov inequality the estimate

x(n) - 4d'?log d
>

n>T

giving the asserted result. [l
Remark 12. The choice of T = x'/? is obviously not the best possible since T' = 2?/3 provides
an error-term of the form O (2?/3d"/?logd), but it will be sufficient for our purpose.

Using Lemma 11, we can see that (18) follows at once from the estimate

3 @w (%) < a*(oga)? (19)

n<zl/2

where y is any primitive real Dirichlet character of modulus d > 2. For x large we set
w(z) = exp (c(log z)*3) where ¢ > 0 is an absolute constant. Since

> ()« 3 L s

n<w(z) n<w(x)

it is sufficient to prove

oo, (2) < d"2(tog)* (20)

n n
w(z)<n<zl/2

so that we set N > 1 to be a large integer satisfying w(z) < N < 2'/2 and consider sums of

the type

Sx00 = Y xmpw () (21)

N<n<Ni

with N7 > 1 integer such that N < N; < 2N.

The proof of (20) uses ideas developed by Walfisz in [15] and exploited by Pétermann [9]
and Pétermann & Wu [10]. The first step to estimate (21) is to use an approximation of the
function ¢ by trigonometric polynomials as it was shown by Vaaler [14].
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Lemma 13. For all real number x > 1 and all integer H > 1 we have

b == ), ¢<HZ1) 62(:;;3+RH(:”>

0<|h|<H

where ®(t) := wt (1 — |t]) cot(mt) + |t| for 0 < |t| <1 and

2H1+2 3 (1—H|L+|1> e(h).

|h|<H

Ru(z)| <

Moreover, we have 0 < ®(t) <1 for 0 < |t| < 1.

Note that )

3 (1_%) elha) =

|h|<H

Z e(hx)

so that the sum in the error-term is a nonnegative real number. Using this useful tool by
multiplying by x(n) and summing over (N, Ni] we get

Sv =g > ¢ ()7 X e () X aora (%)

0<|h|<H N<n<N; N<n<N
with
e e
) < bl
> xR (D)< X [Ra (7))
N<n<N; N<n<N;
1 |h| hz
< 1M nr
SRS ( H+1) 2 €<n)
\h|<H N<n<N;
N 1 |h hx
e 2, ) )
2H + 2 2H + 2 0<|h|<H H + 1 N<n<N; n
N 1 hx
< nr
<t | 2 (5
1<h<H |N<n<N;
so that

+0 {NH—1 +H Y

1<h<H

> (%)

N<n<Ni
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Since y is primitive, we can expand it as a linear combination of additive characters using
Gauss sums, which gives

1 h 1 hx  an
S = — X O — | = —+ —
0= 20 2 e () e 2 ()
a mod d 0<|h|<H N<n<Ni
+0{NH—1 +HTTY Y e (ﬁ)‘}
n
1<h<H |N<n<N;
where 7(Y) is the Gauss sum associated to Y. Since y is primitive, we have |7(Y)| = d*/? so

that
> (%))

N<n<N;

+H Y

1<h<H

Sv(x) K NH™'4d72 >~ 3 %

amod d 1<h<H

> ()

N<n<N;

The second step is given by the following lemma which lies at the heart of Walfisz’s method.

Lemma 14. Suppose that e < N < N; < 2N and T > N? and let « € R. Then there
exists co > 0 such that uniformly in o we have

5 (L bon) o { g B Y

N<n<Np

Proof. Set Go(y) :=T/y+ ay for N <y < 2N. The case a« = 0 is Lemma 2.5 of [10]. The
proof of this result uses a general theorem obtained by Karatsuba (see [6] Theorem 1, [9]
Lemma C or [10] Lemma 2.4) which requires conditions on derivatives of orders > 2 of G,.

Since GY'(y) = GY(y) for all integer j > 2, we can see that the linear phase e(an) does
not affect Karatsuba’s result and thus we can closely follow the proof of Lemma 2.5 of [10]
giving the asserted estimate. It should be mentioned that the condition 7' > N? ensures
that Karatsuba’s theorem is used with derivatives of G, having orders > 2. ]

Applying Lemma 14 we obtain with €?® < N < N; < 2N and N < z'/2

(log N)?

S NH™ '+ Nd'/? —p——o
N(x) < + exp | —¢o (log HxN-1)?

}logH

and choosing H = [exp {(log N)3/(log z)2}] gives for eclos®** < N < g1/2
Nd'/?(log N)?
(log )

with some absolute constants ¢,¢; > 0 depending only on ¢y and where we have used the
bounds N > e0os®)** and H < z/8. An application of Abel summation yields

n x 12(lo °
Z #@/J( )<< Mexp{—cl(log]v)?)/(logl')Q}

NaZ, n (log )2

Sn(x) < exp {—ci(log N)*/(log z)?}
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for ecllogz)*/? < N < Y2 and a similar argument to that used in the proof of Lemma 2.3 of
[10] finally gives

s, (£) < a2(1og )

n
w(z)<n<lxl/2

which completes the proof of (20) and (19). The following result has thus been proved.

Theorem 15. Let K/Q be a quadratic field of discriminant D and let x be the quadratic
Dirichlet character associated to K. For every real number x > exp ((log |D|)*?) sufficiently
large, we have

> (Z VK(gcd(i,n))> = w +0 (ID["2z(log 2)¥?) .

n<x =1
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