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Abstract

We provide mean value results for sums of the composition of the gcd and arithmetic

functions belonging to certain classes. Some applications are also given.

1 Introduction

In what follows, f : N −→ C is an arithmetic function with Dirichlet series F (s) and gcd(a, b)
is the gcd of a and b. The Dirichlet convolution product f ⋆ g of f and g is defined by

(f ⋆ g) (n) =
∑

d|n
f(d)g

(n
d

)
.

The classical arithmetic functions τ , σ, µ, ϕ, ω are respectively the number and sum of
divisors, the Möbius function, the Euler totient function and the number of distinct prime
factors. Finally, γ is the Euler–Mascheroni constant, ⌊t⌋ is the integer part of t ∈ R and we
set ψ(t) := t− ⌊t⌋ − 1/2.

In 1885, E. Cesáro [3] proved the following identity.

Lemma 1. For every positive integer n, we have

n∑

i=1

f(gcd(i, n)) = (f ⋆ ϕ)(n).
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This follows from

n∑

i=1

f(gcd(i, n)) =
∑

d|n
f(d)

∑

k≤n/d
gcd(k,n/d)=1

1 =
∑

d|n
f(d)ϕ

(n
d

)
= (f ⋆ ϕ)(n).

It should be mentioned that such an identity also occurs with some other convolution prod-
ucts where the summation is over some subset of the set of the divisors of n. For instance,
L. Tóth [13] showed that

∑

i∈Reg(n)

f(gcd(i, n)) =
∑

d|n
gcd(d,n/d)=1

f(d)ϕ
(n
d

)

where the notation i ∈ Reg(n) means that 1 ≤ i ≤ n and there exists an integer x such that
i2x ≡ i (mod n).

Lemma 1 has a lot of interesting applications.

(a) With f = Id we get
n∑

i=1

gcd(i, n) = (Id ⋆ ϕ)(n)

which is Pillai’s function [11].

(b) With f = µ we get

n∑

i=1

µ(gcd(i, n)) = (µ ⋆ ϕ)(n) (1)

and thus the number of primitive Dirichlet characters modulo n is equal to
∑n

i=1 µ(gcd(i, n)).
In particular, if m is an odd positive integer then

2m∑

i=1

µ(gcd(i, 2m)) = 0.

(c) With f = τ we have, using τ ⋆ ϕ = σ

n∑

i=1

τ(gcd(i, n)) = σ(n) (2)

so that
n∑

i=1

τ(gcd(i, n)) ≪ n log log n

which should be compared to the classical estimate
∑n

i=1 τ(i) ≪ n log n.
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(d) With f = 2ω we easily get

n∑

i=1

2ω(gcd(i,n)) = Ψ(n) (3)

where Ψ(n) := (µ2 ⋆ Id)(n) = n
∏

p|n(1 + p−1) is the Dedekind arithmetic function.

(e) Applying Lemma 1 twice with f = τ and f = σ respectively, and using τ ⋆ ϕ = σ and
σ ⋆ ϕ = Id × τ , we obtain

τ(n) =
1

n

n∑

i=1

gcd(i,n)∑

j=1

τ(gcd(i, j, n)).

The aim of this paper is to estimate the sums

∑

n≤x

(
n∑

i=1

f(gcd(i, n))

)
(4)

for x ≥ 1 sufficiently large and an arithmetic function f verifying certain hypotheses. In
section 2, we provide a result for four classes of multiplicative functions and then give some
applications in section 3. The aim of section 4 is to provide a refinement of an estimate given
in Theorem 8.

2 Main result

This section is devoted to the proof of a unified theorem which gives estimates for sums of
the type (4). To this end, we first need some specific notation. More precisely, we consider
the four following classes of real-valued multiplicative functions.

1. f ∈ M1(α) if there exists a real number α ≥ 0 such that

∑

n≤x

|(f ⋆ µ)(n)| ≪ x(log x)α. (5)

2. f ∈ M2(α) if there exists a real number α ∈ [0, 3/2] such that, for every positive
integer m we have

∑

n≤x

|(f ⋆ µ)(n)| = x

⌊α⌋+m∑

i=0

Ai(log x)α−i +O

(
x

(log x)m

)
(Ai ∈ R). (6)

∑

n≤x

((f ⋆ µ)(n))2 ≪ x(log x)β (β ≥ 0). (7)

f(pl) − f(pl−1) is bounded for all l ≥ 1 and primes p. (8)

The sequence p 7−→ f(p) − 1 is ultimately monotone. (9)
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3. f ∈ M3(A) if there exist A > 0, B, C, D ∈ R and an integrable function R defined
on [1,+∞) such that

∑

n≤x

f(n)

n
= Ax+B log x+ Cψ(x) +D +R(x)

and R(x) ≪ x−a(log x)E with a,E ≥ 0.

4. f ∈ M4(A,α, β) if there exist A > 0, α ≥ 1 and α > β ≥ 0 such that

∑

n≤x

f(n)

n
= Axα +O

(
xβ
)
. (10)

Finally, we define 0 ≤ θf ≤ 1
2

and ∆f ≥ 0 such that

∑

n≤√
x

f(n)

n
ψ
(x
n

)
≪ xθf (log x)∆f (11)

and we set θ := max (θf , θId) and ∆ := max (∆f ,∆Id).

Remark 2. It is known [5] that one can take

θId =
131

416
.
= 0.3149 . . . and ∆Id =

26947

8320
.
= 3.2388 . . .

The following result gives further information when f ∈ M3(A) and f ∈ M4(A,α, β).

Lemma 3. Let f ∈ M3(A). Then we have for x sufficiently large

∑

n≤x

f(n)

n2
= A log x+ A+G− B

x
+
Cψ(x)

x
+O

(
(log x)E

xa+1
+

1

x2

)

where

G := B + C

(
1

2
− γ

)
+D +

∫ ∞

1

R(t)dt

t2
. (12)

Let f ∈ M4(A,α, β). Then we have for x sufficiently large

∑

n≤x

f(n)

n2
= AαEα(x) +O (Rβ(x))

where

Eα(x) :=





xα−1

α− 1
, if α > 1;

log x, if α = 1

(13)
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and

Rβ(x) :=





xβ−1, if α > β > 1;

log x, if α > β = 1;

1, if α ≥ 1 > β ≥ 0.

(14)

Proof. Let f ∈ M3(A). Using Abel summation, we get

∑

n≤x

f(n)

n2
= A+

B log x

x
+
Cψ(x)

x
+
D

x
+
R(x)

x

+

∫ x

1

1

t2
(At+B log t+ Cψ(t) +D +R(t)) dt

= A log x+ A+B +D +

∫ ∞

1

R(t)dt

t2
− B

x

+ C

(
ψ(x)

x
+

∫ x

1

ψ(t)dt

t2

)
+
R(x)

x
−
∫ ∞

x

R(t)dt

t2
.

The estimate ∫ x

1

ψ(t)dt

t2
=

1

2
− γ +O

(
1

x2

)

which can be proven by using Euler–MacLaurin’s summation formula, gives

∑

n≤x

f(n)

n2
= A log x+ A+G− B

x
+
Cψ(x)

x
+O

(
(log x)E

xa+1
+

1

x2

)
.

The proof for f ∈ M4(A,α, β) is similar and somewhat simpler, so we omit the details.

Now we can state our main result.

Theorem 4. Let f be a real-valued multiplicative function with Dirichlet series F (s).

1. If f ∈ M1(α), then we have for x sufficiently large

∑

n≤x

(
n∑

i=1

f(gcd(i, n))

)
=
x2F (2)

2ζ(2)
+O

{
x
∏

p≤x

(
1 +

∞∑

l=1

∣∣f
(
pl
)
− f

(
pl−1

)∣∣
pl

)
+ x(log x)α

}
.

2. If f ∈ M2(α), then we have for x sufficiently large

∑

n≤x

(
n∑

i=1

f(gcd(i, n))

)
=
x2F (2)

2ζ(2)
+O

{
x(log x)

2
3
(α+1)(log log x)

4
3
(α+1)

}
.
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3. If f ∈ M3(A), then we have for x sufficiently large

∑

n≤x

(
n∑

i=1

f(gcd(i, n))

)
=
Ax2 log x

2ζ(2)
+

x2

2ζ(2)

{
A

(
γ +

1

2
− ζ ′(2)

ζ(2)

)
+G

}
+O

{(
x1+θ + xr

)
(log x)Γ

}

where θ is given in (11), G is given in (12) and

Γ := max(2,∆, E + 1) and r :=

{
1
2
(3 − a), if 0 ≤ a < 1;

0, if a ≥ 1.

4. If f ∈ M4(A,α, β), then we have for x sufficiently large

∑

n≤x

(
n∑

i=1

f(gcd(i, n))

)
=
Aαx2Eα(x)

2ζ(α+ 1)
+O

{
x
∏

p≤x

(
1 +

∞∑

l=1

∣∣f
(
pl
)
− f

(
pl−1

)∣∣
pl

)
+ x2Rβ(x)

}

where Eα(x) is given in (13) and Rβ(x) is given in (14).

Proof. Let f be a real-valued multiplicative function with Dirichlet series F (s).

1. Set g := f ⋆ µ. Since ϕ = µ ⋆ Id, we have, using Lemma 1

∑

n≤x

(
n∑

i=1

f(gcd(i, n))

)
=
∑

n≤x

(g ⋆ Id) (n) =
∑

d≤x

g(d)
∑

k≤x/d

k

=
1

2

∑

d≤x

g(d)
⌊x
d

⌋(⌊x
d

⌋
+ 1
)

=
1

2

∑

d≤x

g(d)

{
x2

d2
− 2x

d
ψ
(x
d

)
−
(

1

4
− ψ

(x
d

)2
)}

=
x2

2

∑

d≤x

g(d)

d2
− x

∑

d≤x

g(d)

d
ψ
(x
d

)
+O

(
∑

d≤x

|g(d)|
)
.

Using (5) it is easily seen that the series
∑

d≥1 g(d)d
−2 is absolutely convergent, and

hence we have

∑

n≤x

(
n∑

i=1

f(gcd(i, n))

)
=
x2

2

∞∑

d=1

g(d)

d2
− x

∑

d≤x

g(d)

d
ψ
(x
d

)
+O

(
∑

d≤x

|g(d)| + x2
∑

d>x

|g(d)|
d2

)

=
x2F (2)

2ζ(2)
− x

∑

d≤x

g(d)

d
ψ
(x
d

)
+O

(
x(log x)α + x2

∑

d>x

|g(d)|
d2

)
.

Now by Abel summation and (5), we get

x2
∑

d>x

|g(d)|
d2

= −
∑

d≤x

|g(d)| + 2x2

∫ ∞

x

1

t3

(
∑

d≤t

|g(d)|
)

dt≪ x(log x)α
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and the inequality |ψ(x/d)| ≤ 1/2 gives

∑

d≤x

g(d)

d
ψ
(x
d

)
≪
∑

d≤x

|g(d)|
d

≪
∏

p≤x

(
1 +

∞∑

l=1

∣∣g
(
pl
)∣∣

pl

)
.

2. The proof is the same as before except that we are able to treat the sum
∑

d≤x
g(d)

d
ψ
(

x
d

)

more efficiently. Using (6), (7), (8) and (9) we see that the function d 7−→ g(d)d−1

satisfies the conditions of Theorem 1 of [9] which gives

∑

d≤xe−(log x)1/6

g(d)

d
ψ
(x
d

)
≪ (log x)

2
3
(α+1)(log log x)

4
3
(α+1)

and, using (6) and partial summation, we get

∑

xe−(log x)1/6
<d≤x

g(d)

d
ψ
(x
d

)
≪

∑

xe−(log x)1/6
<d≤x

|g(d)|
d

≪ (log x)α+1/6.

Note that α ∈ [0, 3/2] implies (log x)2(α+1)/3 ≥ (log x)α+1/6.

3. Set h := f ⋆ Id. Using Dirichlet’s hyperbola principle, we have
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∑

n≤x

h(n)

n
=
∑

n≤x

∑

d|n

f(d)

d
=
∑

n≤x

(
f

Id
⋆ 1

)
(n)

=
∑

n≤√
x

f(n)

n

∑

m≤x/n

1 +
∑

n≤√
x

∑

m≤x/n

f(m)

m
−
⌊√

x
⌋ ∑

n≤√
x

f(n)

n

=
∑

n≤√
x

f(n)

n

(
x

n
− 1

2
− ψ

(x
n

))

+
∑

n≤√
x

{
Ax

n
+B log

x

n
+ Cψ

(x
n

)
+D +O

((n
x

)a

(log x)E
)}

−
(√

x− 1

2
− ψ(

√
x)

) ∑

n≤√
x

f(n)

n

= x
∑

n≤√
x

f(n)

n2
−
∑

n≤√
x

f(n)

n
ψ
(x
n

)
+ Ax

∑

n≤√
x

1

n
+B

∑

n≤√
x

log
x

n

+ C
∑

n≤√
x

ψ
(x
n

)
+D

(√
x− 1

2
− ψ(

√
x)

)
+O

(
x(1−a)/2(log x)E

)

−
(√

x− ψ(
√
x)
)(

A
√
x+

B

2
log x+ Cψ(

√
x) +D +O

(
x−a/2(log x)E

))

= x
∑

n≤√
x

f(n)

n2
+ Ax

(
log x

2
+ γ − ψ(

√
x)√
x

+O
(
x−1
))

+B

(√
x log x

2
+
√
x+O (log x)

)
− D

2
− Ax− B

√
x log x

2

+ (A− C)
√
xψ(

√
x) +

B

2
ψ(

√
x) log x+ Cψ(

√
x)2

+O
(
xθ(log x)∆ + x(1−a)/2(log x)E

)

= x
∑

n≤√
x

f(n)

n2
+
Ax log x

2
+ Ax (γ − 1) +B

√
x− C

√
xψ(

√
x)

+O
(
xθ(log x)∆ + x(1−a)/2(log x)E + log x

)
.

Now by Lemma 3 we get

∑

n≤x

h(n)

n
= x

{
A log x

2
+ A+G− B√

x
+
Cψ(

√
x)√

x
+O

(
(log x)E

x(a+1)/2
+

1

x

)}

+
Ax log x

2
+ Ax (γ − 1) +B

√
x− C

√
xψ(

√
x)

+O
(
xθ(log x)∆ + x(1−a)/2(log x)E + log x

)

= Ax log x+ (Aγ +G)x+O
(
xθ(log x)∆ + x(1−a)/2(log x)E + log x

)
.
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An Abel summation then gives

∑

n≤x

h(n) =
Ax2 log x

2
+
x2

4
(A(2γ + 1) + 2G)+O

(
x1+θ(log x)∆ + x(3−a)/2(log x)E + x log x

)

and hence

∑

n≤x

(
n∑

i=1

f(gcd(i, n))

)
=
∑

d≤x

µ(d)
∑

k≤x/d

h(k)

=
Ax2

2

∑

d≤x

µ(d)

d2
log

x

d
+
x2

4
(A(2γ + 1) + 2G)

∑

d≤x

µ(d)

d2

+O

(
x1+θ(log x)∆ + x(3−a)/2(log x)E

∑

d≤x

1

d(3−a)/2
+ x(log x)2

)

=
Ax2 log x

2ζ(2)
− Aζ ′(2)

2ζ(2)2
x2 +

x2

4ζ(2)
(A(2γ + 1) + 2G)

+O
((
x1+θ + xr

)
(log x)Γ

)

which is the asserted result.

4. The proof is similar to the points 1 and 2. We use g := f ⋆ µ and we have as above

∑

n≤x

(
n∑

i=1

f(gcd(i, n))

)
=
∑

d≤x

g(d)
∑

k≤x/d

k

=
1

2

∑

d≤x

g(d)
⌊x
d

⌋(⌊x
d

⌋
+ 1
)

=
x2

2

∑

d≤x

g(d)

d2
+O

(
x
∑

d≤x

|g(d)|
d

)

=
x2

2

∑

d≤x

µ(d)

d2

∑

k≤x/d

f(k)

k2
+O

(
x
∑

d≤x

|g(d)|
d

)

and using Lemma 3 gives the desired result.

The proof of Theorem 4 is complete.

3 Applications

We first introduce some additional notation. The functions µ, τ, σ, ϕ, Id and 1 have their
usual meanings and we add the following multiplicative functions.
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• β(n) is the number of square-full divisors of n.

• a(n) is the number of non-isomorphic abelian groups of order n.

• τ (e)(n) and σ(e)(n) are respectively the number and the sum of exponential divisors of
n.

• If k ≥ 2 is any fixed integer, µk is the characteristic function of the set of k-free integers,
τk is the k-th Piltz divisor function defined by τk = 1 ⋆ · · · ⋆ 1︸ ︷︷ ︸

k times

with τ2 = τ , τ(k)(n) is

the number of k-free divisors of n with τ(2) = 2ω and γk(n) is the greatest k-free divisor
of n.

• If K/Q is any fixed number field of degree d ≥ 2, νK(n) is the number of nonzero
integral ideals of norm n. The Dedekind zeta-function of K is denoted by ζK.

The following lemma gives the distribution of these functions into the classes Mi .

Lemma 5. Let k ≥ 2 be a fixed integer. We have the following distribution.

M1(α) M2(α) M3(A) M4(A,α, β)

β ∈ M1(0) τ ∈ M2(0) ϕ ∈ M3 (ζ(2)−1) γk ∈ M4

(
Ak, 1,

1
k

)

τ (e) ∈ M1(0) τ(k) ∈ M2(0) σ ∈ M3(ζ(2))

µk ∈ M1(0) µ ∈ M2(1) σ(e) ∈ M3(2κ)

a ∈ M1(0)

where κ
.
= 0.568 and

Ak :=
∏

p

(
1 − 1

pk−1(p+ 1)

)
. (15)

Proof. In the sequel, P (n) is the number of unrestricted partitions of n.

1. For the class M1(α), use

(β ⋆ µ) (n) =

{
1, if n is square-full;

0, otherwise

(µk ⋆ µ) (n) =

{
(−1)ω(m), if n = mk and µ2(m) = 1;

0, otherwise
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and for the function a we have |(a ⋆ µ)(p)| = P (1) − 1 = 0 and for all integers l ≥ 2
we have

∣∣(a ⋆ µ)
(
pl
)∣∣ = |P (l) − P (l − 1)| < 2 × 5l/4 (see [7] for instance) so that the

function |a ⋆ µ| satisfies Wirsing’s conditions (i.e. 0 ≤ f(pl) ≤ λ1λ
l
2 for some real

numbers λ1 > 0 and 0 ≤ λ2 < 2) and hence

∑

n≤x

|(a ⋆ µ)(n)| ≪ x

log x
exp

(
∑

p≤x

|(a ⋆ µ)(p)|
p

)
≪ x

log x
.

For the function τ (e) we use (τ (e) ⋆ µ)(p) = τ(1) − 1 = 0 and for all integer l ≥ 2 we
have (τ (e) ⋆ µ)

(
pl
)

= τ(l) − τ(l − 1) (see [16]) so that

∑

n≤x

∣∣(τ (e) ⋆ µ)(n)
∣∣≪ x

log x
.

2. For the class M2(α), we use the fact that τ ⋆ µ = 1 and τ(k) ⋆ µ = µk which proves the
result for τ and τ(k). The function µ needs more work. First we have

(µ ⋆ µ) (n) =

{
(−2)ω(a), if n = ab2 with (a, b) = 1 and µ2(a) = µ2(b) = 1;

0, otherwise

so that the conditions (7), (8) and (9) are easily checked. We now prove the following
identity

∑

n≤x

|(µ ⋆ µ) (n)| = A0x log x+ A1x+O
(
x1/2(log x)3

)
(16)

where A0 =
∏

p (1 − 2p−2 + p−4) ≈ 0.3695 . . . and A1 = A0

(
2γ − 1 + 4

∑
p

log p
p2−1

)

which implies condition (6).

To do this we first set f(n) := |(µ ⋆ µ) (n)| which is multiplicative with Dirichlet series
F (s) = ζ(s)2H(s), where H(s) :=

∏
p (1 − 2p−2s + p−4s) is absolutely convergent in

the half-plane σ > 1/2. Moreover, if we set H(s) :=
∑∞

n=1 h(n)n−s, then we have from
the Euler product

h(n) =

{
(−2)ω(a), if n = a2b4 with (a, b) = 1 and µ2(a) = µ2(b) = 1;

0, otherwise

so that

∑

n≤x

|h(n)|
n1/2

≤
∑

a≤x1/2

2ω(a)

a

∑

b≤(x/a2)1/4

1

b2
≪ (log x)2.

Now we are able to show (16). From the factorization F (s) = ζ(s)2H(s), we infer that
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∑

n≤x

f(n) =
∑

n≤x

(τ ⋆ h) (n) =
∑

d≤x

h(d)
∑

k≤x/d

τ(k)

=
∑

d≤x

h(d)

{
x

d
log

x

d
+
x

d
(2γ − 1) +O

((x
d

)1/2
)}

= x(log x+ 2γ − 1)
∑

d≤x

h(d)

d
− x

∑

d≤x

h(d) log d

d
+O

{
x1/2

∑

d≤x

|h(d)|
d1/2

}

= H(1)x log x+ x {H(1)(2γ − 1) +H ′(1)} +O
(
x1/2(log x)2

)

+O

(
x log x

∑

d>x

|h(d)|
d

+ x
∑

d>x

|h(d)| log d

d

)

and we conclude the proof by using Abel summation to get

∑

d>x

|h(d)|
d

≪ x−1/2(log x)2 and
∑

d>x

|h(d)| log d

d
≪ x−1/2(log x)3.

3. For the class M3(A), we first have the well known estimates

∑

n≤x

ϕ(n)

n
=

x

ζ(2)
+O

(
(log x)2/3(log log x)4/3

)
.

∑

n≤x

σ(n)

n
= xζ(2) − log x

2
+O

(
(log x)2/3

)
.

For the function σ(e) one can deduce from the results proven in [9, 10] that

∑

n≤x

σ(e)(n)

n
= 2κx+O

(
(log x)5/3

)
.

4. For the class M4(A,α, β), use (see [12])

∑

n≤x

γk(n)

n
= Akx+O

(
x1/k

)

where Ak is given in (15).

The proof is complete.

For the function νK, we have the following result in the case of Galois extensions.
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Lemma 6. Let K/Q be a Galois extension of degree d ≥ 2. Then, for every positive integer
n, we have

|(νK ⋆ µ)(n)| ≤ τd−1(n)

so that νK ∈ M1(d− 2).

Proof. The result is obvious for n = 1 and, by multiplicativity, it suffices to prove the
inequality for prime powers. Let p be any prime number and l ≥ 1 be any integer. Since
K/Q is Galois, all prime ideals above p have the same residual degree denoted by fp and
we set gp to be the number of those prime ideals. If fp = 1 then νK (pm) = τgp (pm) for all
integer m ≥ 0 so that

(νK ⋆ µ)
(
pl
)

= νK

(
pl
)
− νK

(
pl−1

)
= τgp

(
pl
)
− τgp

(
pl−1

)
=
(
τgp ⋆ µ

) (
pl
)

= τgp−1

(
pl
)
.

If fp ≥ 2 and since K/Q is Galois, we have

νK

(
pl
)

=





(
gp + l/fp − 1

l/fp

)
, if fp | l;

0, otherwise

so that

(νK ⋆ µ)
(
pl
)

=





−1, if l = 1;

(
gp + l/fp − 1

l/fp

)
, if l ≥ 2 and fp | l and fp ∤ (l − 1);

−
(
gp + (l − 1)/fp − 1

(l − 1)/fp

)
, if l ≥ 2 and fp ∤ l and fp | (l − 1);

0, otherwise.

We have the trivial inequality gp ≤ d and if l, fp ≥ 2 then l/fp ≤ l/2 ≤ l − 1 so that, using
the fact that if g ≥ 1 and 0 ≤ x ≤ y then

(
g+x−1

x

)
≤
(

g+y−1
y

)
, we have in every case

∣∣(νK ⋆ µ)
(
pl
)∣∣ ≤

(
gp + l − 2

l

)
≤
(
d+ l − 2

l

)
= τd−1

(
pl
)

which concludes the proof.

Remark 7. One can also have the same inequality in some nonnormal cases. For instance,
let K3 be a cubic field with negative discriminant, so that K3 is not Galois. The factorization
of prime numbers into prime ideals is nevertheless well known and one can prove [1] that we
have in fact the following situation.

13



Factorization of (p) l (νK3 ⋆ µ)
(
pl
)

Completely split any l + 1

inert l ≡ 0 (mod 3) 1

inert l ≡ 1 (mod 3) −1

inert l ≡ −1 (mod 3) 0

split l ≡ 0 (mod 2) 1

split l ≡ 1 (mod 2) 0

ramified any 1

Completely ramified any 0

so that we also have in this case
∣∣(νK3 ⋆ µ)

(
pl
)∣∣ ≤ τ

(
pl
)

and hence νK3 ∈ M1(1).

Now collecting all those results with Theorem 4 we obtain the following estimates.

Theorem 8. For x sufficiently large, we have

(i)
∑

n≤x

(
n∑

i=1

β(gcd(i, n))

)
=
x2ζ(4)ζ(6)

2ζ(12)
+O (x) .

(ii)
∑

n≤x

(
n∑

i=1

a(gcd(i, n))

)
=
x2

2

∞∏

k=2

ζ(2k) +O (x) .

(iii) Let k ≥ 2 be a fixed integer. Then we have

∑

n≤x

(
n∑

i=1

µk(gcd(i, n))

)
=

x2

2ζ(2k)
+O (x) .

(iv) If τ̃(l) := τ(l) − τ(l − 1) − τ(l − 2) + τ(l − 3) for l ≥ 5 then we have

∑

n≤x

(
n∑

i=1

τ (e)(gcd(i, n))

)
=
x2ζ(4)

2

∏

p

(
1 +

∞∑

l=5

τ̃(l)

p2l

)
+O (x) .
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(v) Let Ψ be the Dedekind arithmetical function. Then we have

∑

n≤x

Ψ(n) =
x2ζ(2)

2ζ(4)
+O

(
x(log x)2/3(log log x)4/3

)
.

More generally, let k ≥ 2 be a fixed integer. Then we have

∑

n≤x

(
n∑

i=1

τ(k)(gcd(i, n))

)
=
x2ζ(2)

2ζ(2k)
+O

(
x(log x)2/3(log log x)4/3

)
.

(vi)
∑

n≤x

σ(n) =
x2ζ(2)

2
+O

(
x(log x)2/3(log log x)4/3

)
.

(vii) Let N (n) be the number of primitive Dirichlet characters modulo n. Then we have

∑

n≤x

N (n) =
x2

2ζ(2)2
+O

(
x(log x)4/3(log log x)8/3

)
.

(viii) Let K/Q be a Galois extension of degree d ≥ 2. Then we have

∑

n≤x

(
n∑

i=1

νK(gcd(i, n))

)
=
x2ζK(2)

2ζ(2)
+O

(
x(log x)d−1

)
.

(ix) Let K3/Q be a cubic field with negative discriminant. Let K6/Q be a normal closure
of K3 and L(s, ψ,K6/Q) be the Artin L-function associated to the character ψ of a
two-dimensional finite representation of Gal (K6/Q) ≃ S3. Then we have

∑

n≤x

(
n∑

i=1

νK3(gcd(i, n))

)
=
x2L(2, ψ,K6/Q)

2
+O

(
x(log x)2

)
.

(x)

∑

n≤x

(
n∑

i=1

ϕ(gcd(i, n))

)
=
x2 log x

2ζ(2)2
+

x2

2ζ(2)2

(
γ +

1

2
− ζ ′(2)

ζ(2)
+ Cϕ

)
+O

(
x3/2(log x)26947/8320

)

where Cϕ ∈ R.

(xi)

∑

n≤x

(
n∑

i=1

gcd(i, n)

)
=
x2 log x

2ζ(2)
+

x2

2ζ(2)

(
2γ − 1

2
− ζ ′(2)

ζ(2)

)
+O

(
x547/416(log x)26947/8320

)
.
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(xii)

∑

n≤x

(
n∑

i=1

σ(e)(gcd(i, n))

)
=
κx2 log x

ζ(2)
+

x2

ζ(2)

{
κ

(
γ +

1

2
− ζ ′(2)

ζ(2)

)
+ Cσ(e)

}

+O
(
x3/2(log x)26947/8320

)

where κ
.
= 0.568 and Cσ(e) ∈ R.

(xiii)

∑

n≤x

(
n∑

i=1

σ(gcd(i, n))

)
=
x2 log x

2
+
x2

2

(
γ +

1

2
− ζ ′(2)

ζ(2)
+ Cσ

)
+O

(
x3/2(log x)26947/8320

)

where Cσ ∈ R.

(xiv) Let k ≥ 2 be a fixed integer. Then we have

∑

n≤x

(
n∑

i=1

γk(gcd(i, n))

)
=
Akx

2 log x

2ζ(2)
+O

(
x2
)

where Ak is given in (15).

Remark 9. The first estimate in (v) and estimate (vi) are slightly weaker than the result
obtained by Walfisz [15] who proved that one can remove the factor (log log x)4/3. This is
due to the use of the Walfisz–Pétermann’s result in its whole generality which does not take
account of these particular cases. For instance with (vi), we have here τ ⋆ µ = 1 and Walfisz
showed precisely that (see also section 4)

∑

n≤x

1(n)

n
ψ
(x
n

)
=
∑

n≤x

1

n
ψ
(x
n

)
≪ (log x)2/3.

Using this estimate gives Walfisz’s result. More generally, it can be shown by induction that,
for every integer k ≥ 1, we have (see [8] for instance)

∑

n≤x

τk(n)

n
ψ
(x
n

)
≪ (log x)k−1/3.

Using the method of Theorem 4 we get for k ≥ 2

∑

n≤x

(
n∑

i=1

τk(gcd(i, n))

)
=
x2ζ(2)k−1

2
+O

(
x(log x)k−4/3

)
. (17)

Remark 10. Estimate (xi) has first been obtained in [4] and later rediscovered in [2].
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4 Quadratic fields

Let K = Q(
√
D) be a quadratic field of discriminant D and set d = |D|. χ is the primitive

Dirichlet character associated to K so that χ(·) = (d/·) where (a/b) is a Kronecker symbol.
Finally let L(s, χ) be the L-function associated to χ. It is known that for σ > 1, we have the
factorization ζK(s) = ζ(s)L(s, χ), and hence using estimate (viii) of Theorem 8 we obtain

∑

n≤x

(
n∑

i=1

νK(gcd(i, n))

)
=
x2L(2, χ)

2
+O (x log x) .

The purpose of this section is to show that the error term can be improved to

∑

n≤x

(
n∑

i=1

νK(gcd(i, n))

)
=
x2L(2, χ)

2
+O

(
d1/2x(log x)2/3

)
. (18)

The identity ζK(s) = ζ(s)L(s, χ) implies that νK ⋆ µ = χ and thus it is easy to verify
that νK satisfies hypotheses (6) and (7) of the class M2(α) with α = 0. We also have∣∣(νK ⋆ µ)

(
pl
)∣∣ =

∣∣χ
(
pl
)∣∣ ≤ 1 of hypothesis (8). In fact, the only condition which fails is that

p 7−→ (νK ⋆ µ) (p) = χ(p) is not ultimately monotone since χ(p) = 1, 0, −1 depending on
whether p completely splits, is ramified or is inert in K. The following result is a first step
into the direction of (18).

Lemma 11. For every real number x ≥ 1 sufficiently large and every real number T such
that 1 ≤ T ≤ x, we have

∑

n≤x

(
n∑

i=1

νK(gcd(i, n))

)
=
x2L(2, χ)

2
− x

∑

n≤T

χ(n)

n
ψ
(x
n

)
+O

(
x2T−2d1/2 log d+ T

)
.

In particular, we have

∑

n≤x

(
n∑

i=1

νK(gcd(i, n))

)
=
x2L(2, χ)

2
− x

∑

n≤x1/2

χ(n)

n
ψ
(x
n

)
+O

(
xd1/2 log d

)
.

Proof. Using Dirichlet’s hyperbola principle, we get

∑

n≤x

(
n∑

i=1

νK(gcd(i, n))

)
=
∑

n≤x

(χ ⋆ Id) (n)

=
∑

n≤T

χ(n)
∑

k≤x/n

k +
∑

n≤x/T

n
∑

k≤x/n

χ(k) −
∑

n≤T

χ(n)
∑

n≤x/T

n

=
1

2

∑

n≤T

χ(n)
⌊x
n

⌋(⌊x
n

⌋
+ 1
)

+O




∑

n≤x/T

n

∣∣∣∣∣∣

∑

k≤x/n

χ(k)

∣∣∣∣∣∣





+O







∑

n≤x/T

n



∣∣∣∣∣
∑

n≤T

χ(n)

∣∣∣∣∣




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and the use of the Pólya–Vinogradov inequality and the estimate
⌊x
n

⌋(⌊x
n

⌋
+ 1
)

=
x2

n2
− 2x

n
ψ
(x
n

)
+O(1)

give

∑

n≤x

(
n∑

i=1

νK(gcd(i, n))

)
=
x2

2

∑

n≤T

χ(n)

n2
− x

∑

n≤T

χ(n)

n
ψ
(x
n

)
+O

(
x2T−2d1/2 log d+ T

)
.

We conclude the proof by noticing that

∑

n≤T

χ(n)

n2
= L(2, χ) −

∑

n>T

χ(n)

n2

and we get by Abel summation and the Pólya–Vinogradov inequality the estimate
∣∣∣∣∣
∑

n>T

χ(n)

n2

∣∣∣∣∣ ≤
4d1/2 log d

T 2

giving the asserted result.

Remark 12. The choice of T = x1/2 is obviously not the best possible since T = x2/3 provides
an error-term of the form O

(
x2/3d1/2 log d

)
, but it will be sufficient for our purpose.

Using Lemma 11, we can see that (18) follows at once from the estimate

∑

n≤x1/2

χ(n)

n
ψ
(x
n

)
≪ d1/2(log x)2/3 (19)

where χ is any primitive real Dirichlet character of modulus d ≥ 2. For x large we set
w(x) := exp

(
c(log x)2/3

)
where c > 0 is an absolute constant. Since

∑

n≤w(x)

χ(n)

n
ψ
(x
n

)
≪

∑

n≤w(x)

1

n
≪ (log x)2/3

it is sufficient to prove

∑

w(x)<n≤x1/2

χ(n)

n
ψ
(x
n

)
≪ d1/2(log x)2/3 (20)

so that we set N ≥ 1 to be a large integer satisfying w(x) < N ≤ x1/2 and consider sums of
the type

SN(χ) :=
∑

N<n≤N1

χ(n)ψ
(x
n

)
(21)

with N1 ≥ 1 integer such that N < N1 ≤ 2N .
The proof of (20) uses ideas developed by Walfisz in [15] and exploited by Pétermann [9]

and Pétermann & Wu [10]. The first step to estimate (21) is to use an approximation of the
function ψ by trigonometric polynomials as it was shown by Vaaler [14].
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Lemma 13. For all real number x ≥ 1 and all integer H ≥ 1 we have

ψ(x) = −
∑

0<|h|≤H

Φ

(
h

H + 1

)
e(hx)

2πih
+ RH(x)

where Φ(t) := πt (1 − |t|) cot(πt) + |t| for 0 < |t| < 1 and

|RH(x)| ≤ 1

2H + 2

∑

|h|≤H

(
1 − |h|

H + 1

)
e(hx).

Moreover, we have 0 < Φ(t) < 1 for 0 < |t| < 1.

Note that
∑

|h|≤H

(
1 − |h|

H + 1

)
e(hx) =

1

H + 1

∣∣∣∣∣

H∑

h=0

e(hx)

∣∣∣∣∣

2

so that the sum in the error-term is a nonnegative real number. Using this useful tool by
multiplying by χ(n) and summing over (N,N1] we get

SN(χ) = − 1

2πi

∑

0<|h|≤H

Φ

(
h

H + 1

)
1

h

∑

N<n≤N1

χ(n)e

(
hx

n

)
+

∑

N<n≤N1

χ(n)RH

(x
n

)

with

∣∣∣∣∣
∑

N<n≤N1

χ(n)RH

(x
n

)∣∣∣∣∣ ≤
∑

N<n≤N1

∣∣∣RH

(x
n

)∣∣∣

≤ 1

2H + 2

∑

|h|≤H

(
1 − |h|

H + 1

) ∑

N<n≤N1

e

(
hx

n

)

=
N

2H + 2
+

1

2H + 2

∑

0<|h|≤H

(
1 − |h|

H + 1

) ∑

N<n≤N1

e

(
hx

n

)

≤ N

2H + 2
+

1

H + 1

∑

1≤h≤H

∣∣∣∣∣
∑

N<n≤N1

e

(
hx

n

)∣∣∣∣∣

so that

SN(χ) = − 1

2πi

∑

0<|h|≤H

Φ

(
h

H + 1

)
1

h

∑

N<n≤N1

χ(n)e

(
hx

n

)

+O

{
NH−1 +H−1

∑

1≤h≤H

∣∣∣∣∣
∑

N<n≤N1

e

(
hx

n

)∣∣∣∣∣

}
.
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Since χ is primitive, we can expand it as a linear combination of additive characters using
Gauss sums, which gives

SN(χ) = − 1

2πiτ(χ)

∑

a mod d

χ(a)
∑

0<|h|≤H

Φ

(
h

H + 1

)
1

h

∑

N<n≤N1

e

(
hx

n
+
an

d

)

+O

{
NH−1 +H−1

∑

1≤h≤H

∣∣∣∣∣
∑

N<n≤N1

e

(
hx

n

)∣∣∣∣∣

}

where τ(χ) is the Gauss sum associated to χ. Since χ is primitive, we have |τ(χ)| = d1/2 so
that

SN(χ) ≪ NH−1+d−1/2
∑

a mod d

∑

1≤h≤H

1

h

∣∣∣∣∣
∑

N<n≤N1

e

(
hx

n
+
an

d

)∣∣∣∣∣+H
−1

∑

1≤h≤H

∣∣∣∣∣
∑

N<n≤N1

e

(
hx

n

)∣∣∣∣∣ .

The second step is given by the following lemma which lies at the heart of Walfisz’s method.

Lemma 14. Suppose that e200 ≤ N < N1 ≤ 2N and T ≥ N2 and let α ∈ R. Then there
exists c0 > 0 such that uniformly in α we have

∑

N<n≤N1

e

(
T

n
+ αn

)
≪ N exp

{
−c0

(logN)3

(log TN−1)2

}
.

Proof. Set Gα(y) := T/y + αy for N ≤ y ≤ 2N . The case α = 0 is Lemma 2.5 of [10]. The
proof of this result uses a general theorem obtained by Karatsuba (see [6] Theorem 1, [9]
Lemma C or [10] Lemma 2.4) which requires conditions on derivatives of orders ≥ 2 of Gα.

Since G
(j)
α (y) = G

(j)
0 (y) for all integer j ≥ 2, we can see that the linear phase e(αn) does

not affect Karatsuba’s result and thus we can closely follow the proof of Lemma 2.5 of [10]
giving the asserted estimate. It should be mentioned that the condition T ≥ N2 ensures
that Karatsuba’s theorem is used with derivatives of Gα having orders ≥ 2.

Applying Lemma 14 we obtain with e200 ≤ N < N1 ≤ 2N and N ≤ x1/2

SN(χ) ≪ NH−1 +Nd1/2 exp

{
−c0

(logN)3

(logHxN−1)2

}
logH

and choosing H = [exp {(logN)3/(log x)2}] gives for ec(log x)2/3 ≤ N ≤ x1/2

SN(χ) ≪ Nd1/2(logN)3

(log x)2
exp

{
−c1(logN)3/(log x)2

}

with some absolute constants c, c1 > 0 depending only on c0 and where we have used the
bounds N ≥ ec(log x)2/3

and H ≤ x1/8. An application of Abel summation yields

∑

N<n≤N1

χ(n)

n
ψ
(x
n

)
≪ d1/2(logN)3

(log x)2
exp

{
−c1(logN)3/(log x)2

}
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for ec(log x)2/3 ≤ N ≤ x1/2 and a similar argument to that used in the proof of Lemma 2.3 of
[10] finally gives

∑

w(x)<n≤x1/2

χ(n)

n
ψ
(x
n

)
≪ d1/2(log x)2/3

which completes the proof of (20) and (19). The following result has thus been proved.

Theorem 15. Let K/Q be a quadratic field of discriminant D and let χ be the quadratic
Dirichlet character associated to K. For every real number x ≥ exp

(
(log |D|)3/2

)
sufficiently

large, we have

∑

n≤x

(
n∑

i=1

νK(gcd(i, n))

)
=
x2L(2, χ)

2
+O

(
|D|1/2x(log x)2/3

)
.

5 Acknowledgments

I express my gratitude to the referee for his careful reading of the manuscript and the many
valuable suggestions and corrections he made.

References

[1] P. Barrucand, J. Loxton, and H. C. Williams, Some explicit upper bounds on the class
number and regulator of a cubic field with negative discriminant, Pacific J. Math. 128

(1987), 209–222.

[2] O. Bordellès, A note on the average order of the gcd-sum function, J. Integer Seq. 10

(2007), Article 07.3.3.
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