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Abstract

In this paper, we discuss the properties of hyperfibonacci numbers and hyperlucas
numbers. We derive some identities for hyperfibonacci and hyperlucas numbers by the
method of coefficients. Furthermore, we give asymptotic expansions of certain sums
involving hyperfibonacci and hyperlucas numbers by Darboux’s method.

1 Introduction

Dil and Mező [1] introduced the definitions of “hyperfibonacci” numbers F
(r)
n and “hyperlu-

cas” numbers L
(r)
n

F (r)
n =

n
∑

k=0

F
(r−1)
k , with F (0)

n = Fn, F
(r)
0 = 0, F

(r)
1 = 1,

L(r)
n =

n
∑

k=0

L
(r−1)
k , with L(0)

n = Ln, L
(r)
0 = 2, L

(r)
1 = 2r + 1,
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where r is a positive integer, and Fn and Ln are Fibonacci and Lucas numbers, respectively.
The generating functions of F

(r)
n and L

(r)
n are as follows:

∞
∑

n=0

F (r)
n tn =

t

(1 − t − t2)(1 − t)r
,

∞
∑

n=0

L(r)
n tn =

2 − t

(1 − t − t2)(1 − t)r
.

The first few values of F
(r)
n and L

(r)
n are as follows:

F (1)
n : 0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583, . . . ;

F (2)
n : 0, 1, 3, 7, 14, 26, 46, 79, 133, 221, 364, 596, 972, 1581, 2567, 4163, 6746, . . . ;

L(1)
n : 2, 3, 6, 10, 17, 28, 46, 75, 122, 198, 321, 520, 842, 1363, 2206, 3570, 5777, . . . ;

L(2)
n : 2, 5, 11, 21, 38, 66, 112, 187, 309, 507, 828, 1348, 2190, 3553, 5759, 9329, 15106, . . . .

There are some elementary identities for F
(r)
n and L

(r)
n when r = 1, 2. For example,

F (1)
n = Fn+2 − 1,

F (2)
n = Fn+4 − n − 3

=
n

∑

k=0

(n − k)Fk,

L(1)
n = Ln+2 − 1

= Fn + Fn+2 − 1,

L(2)
n = 4(Fn+1 − 1) + 3Fn − n

= Ln+3 − (n + 4).

For the above values and elementary identities of F
(r)
n and L

(r)
n , see [4] (A000071, A001924,

A001610, A023548).
Hyperfibonacci numbers and hyperlucas numbers are useful, and Dil and Mező [1] derived

some equalities for Fibonacci and Lucas numbers by applying them. Hence, hyperfibonacci
numbers and hyperlucas numbers deserve to be investigated. In this paper, we discuss
properties of F

(r)
n and L

(r)
n . We establish some identities for F

(r)
n and L

(r)
n . Furthermore, we

give asymptotic expansions of certain sums related to F
(r)
n and L

(r)
n .

For convenience, we first recall some notation. Let α = (1+
√

5)/2. It is well known that

Fn =
αn − (−1)nα−n

√
5

, Ln = αn + (−1)nα−n,

and Fn and Ln satisfy the following recurrence relation

Wn+1 = Wn + Wn−1, n ≥ 1. (1)
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As usual, the binomial coefficient
(

n
m

)

is defined by

(

n

m

)

=







n!

m!(n − m)!
, if n ≥ m;

0, if n < m;

where n and m are nonnegative integers. Throughout, [zn]f(z) denotes the coefficient of zn

in f(z), where

f(z) =
∞

∑

n=0

fnz
n.

If f(t) and g(t) are formal power series, the following relations hold [2]

[tn](af(t) + bg(t)) = a[tn]f(t) + b[tn]g(t), (2)

[tn]tf(t) = [tn−1]f(t), (3)

[tn]f(t)g(t) =
n

∑

k=0

[yk]f(y)[tn−k]g(t). (4)

The above relations (2)–(4) will be used later on.
Now we recall the notation of the binomial transform of a sequence, the inverse binomial

transform of a sequence and Euler-Seidel infinite matrix [1, 5]. Let {ak}∞k=0 be a sequence.
The binomial transform of {ak} is given by

∑n
k=0

(

n
k

)

ak, the inverse binomial transform of
{ak} is given by

∑n
k=0

(

n
k

)

(−1)kak, and the Euler-Seidel infinite matrix corresponding to the
sequence {ak} is determined by the following formulas

a[0]
n = an (n ≥ 0),

a[k]
n = a[k−1]

n + a
[k−1]
n+1 (n ≥ 0, k ≥ 0),

where a
[k]
n is the element at the (k+1)th row and the (n+1)th column. The sequences {a[0]

n }
and {a[n]

0 } satisfy [1]

a
[n]
0 =

n
∑

k=0

(

n

k

)

a
[0]
k , (5)

a[0]
n =

n
∑

k=0

(

n

k

)

(−1)n−ka
[k]
0 . (6)

Let a(t) and ā(t) be the generating function of {a[0]
n } and {a[n]

0 }, respectively,

a(t) =
∞

∑

n=0

a[0]
n tn, ā(t) =

∞
∑

n=0

a
[n]
0 tn.

The functions a(t) and ā(t) satisfy [1]

ā(t) =
1

1 − t
a

(

t

1 − t

)

, (7)

a(t) =
1

t + 1
ā

(

t

t + 1

)

. (8)
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2 Main Results

In this section, we derive some identities for F
(r)
n and L

(r)
n . Later, we give asymptotic

expansions of certain sums involving F
(r)
n and L

(r)
n .

Various identities involving Fibonacci and Lucas numbers were established. The following
sums were investigated [3, 7, 8]

∑

j1+j2+···+jk=n

Fj1Fj2 · · ·Fjk
,

∑

j1+j2+···+jk=n

Lj1Lj2 · · ·Ljk
.

For example,

∑

j1+j2=n

Fj1Fj2 =
(n − 1)Ln + 2Fn−1

5
,

∑

j1+j2=n

Lj1Lj2 = (n + 1)Ln + 2Fn+1.

Now we derive some identities for F
(r)
n and L

(r)
n . Denote

An,k,r =
∑

j1+j2+···+jk=n

F
(r)
j1

F
(r)
j2

· · ·F (r)
jk

, Bn,k,r =
∑

j1+j2+···+jk=n

L
(r)
j1

L
(r)
j2

· · ·L(r)
jk

.

These sums are interesting because they can help us to find some new convolution properties.
For An,k,r and Bn,k,r, we have

Theorem 1. Let k, n ≥ 1 and r ≥ 1 be positive integers. For An,k,r and Bn,k,r, we have

An,2,1 = n + 5 − 2Fn+4 +
(n + 1)Ln+4 − 2Fn+1

5
, (9)

Bn,2,1 = n + 9 − 10Fn+4 − 2Fn+1 +
(5n + 9)Ln+4 + 4Ln+6

5
, (10)

An,k+1,r =
n

∑

j=0

An,k,rF
(r)
j , (11)

Bn,k+1,r =
n

∑

j=0

Bn,k,rL
(r)
j . (12)

Proof. Let

Fr(t) =
t

(1 − t − t2)(1 − t)r
, Lr(t) =

2 − t

(1 − t − t2)(1 − t)r
.
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Clearly,

F1(t) =

(

α2 − α−2

t − 1
− α

t − α−1
− α−1

t + α

)

1√
5

=

( ∞
∑

n=0

Fn+2t
n −

∞
∑

n=0

tn
)

t,

An,2,1 = [tn]F 2
1 (t),

Bn,2,1 = [tn]L2
1(t)

= [tn]F 2
1 (t) − 4[tn+1]F 2

1 (t) + 4[tn+2]F 2
1 (t)

= An,2,1 − 4An+1,2,1 + 4An+2,2,1.
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Then we get
∑

j1+j2=n

F
(1)
j1

F
(1)
j2

= [tn]F 2
1 (t)

= [tn]
1

5

[

(α2 − α−2)2

(t − 1)2
+

α2

(t − α−1)2
+

α−2

(t + α)2
− 2α(α2 − α−2)

(t − 1)(t − α−1)

−2α−1(α2 − α−2)

(t − 1)(t + α)
+

2

(t − α−1)(t + α)

]

= [tn]
1

5

{

(α2 − α−2)2

(t − 1)2
+

α4

(1 − αt)2
+

α−4

(1 + α−1t)2

+
2(α2 − α−2)(α3 + α−3)

1 − t
− 2

[

α4(α2 − α−2) +
α

α + α−1

]

1

1 − αt

+2

[

α−4(α2 − α−2) − α−1

α + α−1

]

1

1 + α−1t

}

= [tn]
1

5

{

(α2 − α−2)2

∞
∑

n=0

(n + 1)tn +
∞

∑

n=0

[αn+4 + (−1)nα−n−4](n + 1)tn

+2(α2 − α−2)(α3 + α−3)
∞

∑

n=0

tn

−2

[

α4(α2 − α−2) +
α

α + α−1

] ∞
∑

n=0

αntn

+2

[

α−4(α2 − α−2) − α−1

α + α−1

] ∞
∑

n=0

(−1)nα−ntn
}

= [tn]

{ ∞
∑

n=0

(n + 1)tn +
∞

∑

n=0

αn+4 + (−1)nα−n−4

5
(n + 1)tn + 2F3

∞
∑

n=0

tn

−2

5
(α2 − α−2)

∞
∑

n=0

[αn+4 − (−1)nα−n−4]tn

− 2

5(α + α−1)

∞
∑

n=0

[αn+1 + (−1)nα−n−1]tn
}

= [tn]
∞

∑

n=0

(n + 1)tn + [tn]
∞

∑

n=0

(n + 1)Ln+4

5
tn + [tn]4

∞
∑

n=0

tn

−[tn]2
∞

∑

n=0

Fn+4t
n − [tn]

2

5

∞
∑

n=0

Fn+1t
n.

By applying (3) and the definitions of Fn and Ln, we have (9). Naturally, we deduce that

Bn,2,1 = n + 9 − 10Fn+4 +
4(n + 3)Ln+6 − 4(n + 2)Ln+5 + (n + 1)Ln+4

5
− 2Fn+1.

By using (1), we prove that (10) holds. By means of (4), we can show that (11) and (12)
hold.
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It is interesting that we can get congruence relations from (9) and (10)

An,2,1 ≡
(

n − 2Fn+4 +
(n + 1)Ln+4 − 2Fn+1

5

)

(mod 5),

Bn,2,1 ≡
(

n − 10Fn+4 − 2Fn+1 +
(5n + 9)Ln+4 + 4Ln+6

5

)

(mod 9).

When k or r gets large, it is difficult to compute the closed forms of An,k,r and Bn,k,r.
However, we can give their asymptotic values. Now we recall a lemma [6].

Lemma 2. Assume that f(t) =
∑

n≥0 ant
n is an analytic function for |t| < r and with a

finite number of algebraic singularities on the circle |t| = r. α1, α2, · · · , αl are singularities

of order ω, where ω is the highest order of all singularities. Then

an = (nω−1/Γ(ω)) ×
( l

∑

k=1

gk(αk)α
−n
k + o(r−n)

)

, (13)

where Γ(ω) is the gamma function, and

gk(αk) = lim
t→αk

(1 − (t/αk))
ωf(t).

Theorem 3. Suppose that k and r are fixed positive integers. For An,k,r and Bn,k,r, when

n → ∞,

An,k,r =
nk−1

(k − 1)!

[(

α

α2 + 1

)k

(1 + α)krαn + o(αn))

]

, (14)

Bn,k,r =
nk−1

(k − 1)!

[(

2α2 − α

α2 + 1

)k

(1 + α)krαn + o(αn))

]

. (15)

Proof. Let

fk,r(t) =
tk

(1 − t − t2)k(1 − t)kr
.

We know that fk,r(t) is analytic for |t| < 1/α, and with one algebraic singularity on the
circle |t| = 1/α. The order of 1/α is k. One can compute that

lim
t→1/α

(1 − αt)kfk,r(t) =

(

α

α2 + 1

)k

(1 + α)kr.

By using Lemma 2, we can prove that (14) holds. Using the same method, we can prove
that (15) holds.

In addition, we give asymptotic expansions of other sums for F
(r)
n and L

(r)
n .
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Theorem 4. Let n be a positive integer. When n → ∞,
n

∑

k=0

(

n

k

)

F
(r)
k =

α(1 + α)r

(α2 + 1)(2 − α)n
+ o((2 − α)−n), (16)

n
∑

k=0

(

n

k

)

L
(r)
k =

(1 + α)r

(2 − α)n
+ o((2 − α)−n), (17)

n
∑

k=0

(

n

k

)

(−1)kF
(r)
k =

−αn+1(2 − α)r

α2 + 1
+ o((−α)n), (18)

n
∑

k=0

(

n

k

)

(−1)kL
(r)
k = (2 − α)rαn + o((−α)n). (19)

Proof. We only give the proofs of (16) and (18). The proofs of (17) and (19) are similar to

those of (16) and (18), respectively, and they are omitted here. Let F
(r)
k be the first row,

and we get the Euler-Seidel infinite matrix A. Then let F
(r)
k be the first column, and we get

Euler-Seidel infinite matrix B. The elements of A and B are denoted by a
[k]
n and b

[k]
n . By

using (5) and (6), we obtain

a
[n]
0 =

n
∑

k=0

(

n

k

)

F
(r)
k ,

b[0]
n =

n
∑

k=0

(

n

k

)

(−1)n−kF
(r)
k .

By means of (7) and (8), we get
n

∑

k=0

(

n

k

)

F
(r)
k = a

[n]
0

= [tn]
t(1 − t)r

(t2 − 3t + 1)(1 − 2t)r
,

n
∑

k=0

(

n

k

)

(−1)n−kF
(r)
k = b[0]

n

= [tn]
−t(1 + t)r

t2 − t − 1
.

We know that the function ā(t) =
t(1 − t)r

(t2 − 3t + 1)(1 − 2t)r
is analytic for |t| < 2 − α with one

algebraic singularity α1 = 2 − α on the circle |t| = 2 − α, and a(t) =
−t(1 + t)r

t2 − t − 1
is analytic

for |t| < α−1 with one algebraic singularity β1 = −α−1 on the circle |t| = α−1. The orders of
α1 and β1 are 1. We can compute that

lim
t→2−α

(1 − t

2 − α
)ā(t) =

α(1 + α)r

α2 + 1
,

lim
t→−α−1

(

1 +
t

α−1

)

a(t) = −α(2 − α)r

α2 + 1
.
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By using Lemma 2, we prove that (16) and (18) hold.

Theorem 5. Suppose that m and r are fixed positive integers. When n → ∞,

n
∑

j=0

F
(r)
n−j

(

j + m − 1

j

)

=
αn+1(1 + α)r+m

α2 + 1
+ o(αn), (20)

n
∑

j=0

L
(r)
n−j

(

j + m − 1

j

)

= (1 + α)r+mαn + o(αn). (21)

Proof. We can verify that
n

∑

j=0

F
(r)
n−j

(

j + m − 1

j

)

=
n

∑

j=0

[tn−j]
t

(1 − t − t2)(1 − t)r
[tj]

1

(1 − t)m

= [tn]
t

(1 − t − t2)(1 − t)m+r
,

n
∑

j=0

L
(r)
n−j

(

j + m − 1

j

)

= [tn]
2 − t

(1 − t − t2)(1 − t)m+r
.

By using Lemma 2, we have (20) and (21).

In the final of this section, we compare the accurate values with the asymptotic values.
In Theorem 4, let

Xn =
n

∑

k=0

(

n

k

)

F
(r)
k , Yn =

α(1 + α)r

(α2 + 1)(2 − α)n
.

n Xn Yn |Xn − Yn|/Xn

50 9.2737156629317196 × 1020 9.2737269219308562 × 1020 1.2141 × 10−6

100 7.345448671565505 × 1041 7.3454486715782857 × 1041 1.7399 × 10−12

150 5.818115698360039 × 1062 5.8181156983601641 × 1062 2.1352 × 10−14

Table 1: some values of Xn and Yn

From the above table, we find that the value of |Xn − Yn|/Xn gets smaller and smaller
with the increasing of n.

3 Remarks

Consider the sequences {u(r)
n } and {v(r)

n } defined by

∞
∑

n=0

u(r)
n zn =

z

(1 − pz − z2)(1 − z)r
,

∞
∑

n=0

v(r)
n zn =

2 − pz

(1 − pz − z2)(1 − z)r
,

9



where p > 0. It is clear that u
(r)
n = F

(r)
n and v

(r)
n = L

(r)
n when p = 1. The conclusions of F

(r)
n

and L
(r)
n can be generalized to the cases of {u(r)

n } and {v(r)
n }. For example, put

Un,k,r =
∑

j1+j2+···+jk=n

u
(r)
j1

u
(r)
j2

· · ·u(r)
jk

, Vn,k,r =
∑

j1+j2+···+jk=n

v
(r)
j1

v
(r)
j2

· · · v(r)
jk

.

Then we have

Un,2,1 =
n − 1

p2(p2 + 4)
(v(0)

n + 2v
(0)
n+1 + v

(0)
n+2) −

2

p3
(u

(0)
n+1 + 2u(0)

n + u
(0)
n−1)

+
2

p(p2 + 4)
u

(0)
n−1 +

np + p + 4

p3
, (22)

Un,k+1,r =
n

∑

j=0

Un,k,ru
(r)
j . (23)

We can verify that

Un,2,1 = [tn]
t2

(1 − pt − t2)2(1 − t)2

= [tn]

{

1

∆(1 + τ)2

t2

(t + τ)2
+

1

∆

(

1

1 − τ−1
− 1

1 + τ

)2
t2

(1 − t)2

+
1

∆

1

(1 − τ−1)2

t2

(t − τ−1)2
− 2

∆(1 + τ)

(

1

1 − τ−1
− 1

1 + τ

)

t2

τ + 1

(

1

t + τ
+

1

1 − t

)

− 2t2

∆(1 + τ)(1 − τ−1)

( −1

t + τ
+

1

t − τ−1

)

1√
∆

+
2t2

∆(1 − τ−1)

(

1

1 − τ−1
− 1

1 + τ

)(

1

t − τ−1
+

1

1 − t

)

1

1 − τ−1

}

= [tn]

{

1

p2∆

∞
∑

n=0

(n + 1)tn+2(v
(0)
n+2 + 2v

(0)
n+3 + v

(0)
n+4) +

1

p2

∞
∑

n=0

(n + 1)tn+2

− 2

p3

∞
∑

n=0

tn+2(u
(0)
n+3 + 2u

(0)
n+2 + u

(0)
n−1) +

2

p∆

∞
∑

n=0

tn+2u
(0)
n+1 +

4 + 2p

p3

∞
∑

n=0

tn+2

}

,

where ∆ = p2 + 4, τ = p+
√

∆
2

. Hence (22) holds. The proof of (23) is similar to that of (11),

and it is omitted here. The identities about {v(0)
n } can be found in the same way.

4 Acknowledgments

The authors would like to thank the anonymous referees for their criticism and useful sug-
gestions.

10



References
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