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Abstract

A set of k positive integers is a postage stamp basis for n if every positive integer up

to n can be expressed as the sum of no more than h values from the set. An extremal

basis is one for which n is as large as possible. For the case h = k = 8, the unique

extremal basis is A = {1, 8, 13, 58, 169, 295, 831, 1036}, with n = 3485. Several other

new extremal bases are presented, along with corrections to a previous article.

1 Introduction

The global postage-stamp problem consists of determining, for given positive integers h and
k, a set of k positive integers

Ak = {a1 = 1 < a2 < · · · < ak}

such that

(a) sums of h or fewer of these aj can realize the numbers 1, 2, . . . , n, and
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(b) the value of n is as large as possible.

The h-range for a particular set Ak is denoted by nh(Ak) and the extremal value by nh(k).
Mossige [3] presented efficient search algorithms for determining nh(k), which Shallit [8] has
shown to be NP hard in k. Various techniques (e.g., Challis [2]) have been used to reduce
the effort to compute nh(k), and a further improvement is described below.

The most recent results are presented in an appendix. Corrections and improvements to
Robinson [6] are also given.

2 Tree representation

A set Ak is said to be admissible (strictly, h-admissible) if nh(Ak) ≥ ak; clearly inadmissible
sets are of no interest when searching for the extremal value nh(k).

The natural tree representation for all admissible postage stamp sets associates a1 = 1
with the root. The root branches out to h admissible nodes at the second level for the
a2 values 2, 3, . . . , h + 1. At level three and beyond, the number of successor states for a
particular state can vary. For any given admissible denomination vector A there is a path.

For the diagonal case h = k, all possible admissible sets were examined for the cases
h = 6, 7, 8 and about 100 million random admissible sets for h = 9. Table 1 summarizes
these experiments. The average fan-out is over all admissible sets. Note that the average
fan-out increases down the tree and for the same level grows slowly with h. The number of
admissible sets for h = 9 is an estimate based on the experimental average values.

Admissible Average fan-out by level
h cases 1 2 3 4 5 6 7 8
6 5.2 × 106 6 11.8 23.9 43.2 71.6
7 5.6 × 109 7 15.0 32.5 64.0 114 234
8 2.5 × 1013 8 18.5 42.8 90.8 174 307 525
91 3.7 × 1017 9 22.3 54.7 125 256 472 860 1502

Table 1: Cases and fan-out

3 Algorithm for case h = k = 8

The number of admissible postage stamp sets grows rapidly for the diagonal case (Table 1).
Level k − 1 has the largest average fan-out; e.g., over 500 for h = 8. We extend the method
of Challis [2] wherein a set A can be rejected if it can be shown that a particular needed
total x cannot be represented by A. Whereas Challis uses a software cache to speed up his
generate(x) procedure, we use look-up tables. We next outline this speed-up for h = 8.

1Estimates.
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For each preamble of a1 = 1 to a7, eight intermediate look-up tables are calculated. Each
table lists all totals of a1 to a7 using len denominations or less, for 1 ≤ len ≤ 8. These
calculations are amortized over all the admissible values of a8. Next, the target total x is
checked, in one look-up step in the table len = 8, to determine if some combination of a1

to a7 totals to x. If not, then the table len = 7 is checked for the total x − a8; if it exists,
this yields a combination totaling x using one copy of x8. If not, another a8 is subtracted,
and the len = 6 table is checked for a combination using two copies of x8. Continue down
to len = 1, finally checking whether 8a8 = x. When a combination for x is found, the scan
down the eight tables is exited and the entire process is repeated with another target x. If
no combination equal to x is found in these nine steps, A with a8 is rejected, and another
value for a8 is tested.

The set of target values for x are the totals needed to equal the current best A. If we
generate all these totals, then n8(A) is computed, and the target set is updated. This process
yielded a net speed-up factor of more than 20 over the unoptimized procedure for h = 8.

There are more than 1013 admissible sets in the (8, 8) case. The unique extremal basis
A = {1, 8, 13, 58, 169, 295, 831, 1036} with n = 3485 was determined in 2002 by the first
author and independently in 2009 by the second using the program described above. Challis
[2] describes two different algorithms (the K-program and H-program) and the 2002 result was
obtained using the K-program, whereas the 2009 result was obtained using an independent
algorithm based on the H-program.

4 New extremal sets

Many other new results have been obtained by Challis, and a complete table of extremal
bases known to him at the time of writing (September 2009) is included as Appendix A to
this paper.

These results have been obtained using the algorithms described in Challis [2], but with
one further improvement made to the H-program which enables a number of candidate sets
Ak to be rejected as a group.

Suppose that we have already determined a reasonably good lower bound T for nh(k). In
[2] we show that the following value X < T is a “difficult” target for Ak: that is, in almost
all cases (provided h ≫ k) there is no generation of X as the sum of no more than h values
from Ak:

X = (Ck − 1)ak + (Ck−1 − 1)ak−1 + . . . + (C2 − 1)a2 + (a2 − 1) (1)

where
T = Ckak + Rk for 0 ≤ Rk < ak,

and
ai = Ci−1ai−1 + Ri−1 for 0 ≤ Ri−1 < ai−1, 3 ≤ i < k.

We now suppose that we can find a value x such that

x ≤ X and x > (Ck − 2)ak + (h − Ck + 2)ak−1,
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where the second condition above means that if x is to have a valid generation as the sum
of no more than h values from Ak, then it will require at least (Ck − 1) values ak. Of course
there is no guarantee that we can find such values for given T and Ak, but in practice it
turns out often to be the case.

Suppose further that x cannot be generated by Ak at all. We now show how under
certain conditions it is possible to derive a value x′ which cannot be generated by A′

k where
a′

k = ak − r, r > 0, a′

i = ai, 1 ≤ i < k. As ak decreases, so Ck may increase and Ck−1 may
decrease; other values Ci will remain unchanged. One extra condition that we require is that
Ck−1 also remains unchanged. So we have:

a′

k = ak − r, C ′

k = Ck + j, r > 0, j ≥ 0

with
C ′

(k−1) = Ck−1 (2)

Now consider
x′ = x + j(ak − r) − r(Ck − 1)

and suppose further (our second condition) that x′, in analogy with x, satisfies

x′ > (C ′

k − 2)a′

k + (h − C ′

k + 2)ak−1. (3)

We show that A′

k cannot generate x′ by contradiction. Suppose that such a generation
exists. Then it must include exactly (C ′

k − 1) values a′

k and so will be of the form:

x′ = (C ′

k − 1)a′

k + fk−1ak−1 + . . . + f2a2 + f1

with
(C ′

k − 1) + fk−1 + . . . + f1 ≤ h

Substituting for x′, C ′

k and a′

k we have

x + j(ak − r) − r(Ck − 1) = (Ck + j − 1)(ak − r) + fk−1ak−1 + . . . + f2a2 + f1

or

x = (Ck − 1)ak + fk−1ak−1 + . . . + f2a2 + f1 with (C ′

k − 1) + fk−1 + . . . + f1 ≤ h.

But since C ′

k ≤ Ck this means that x can be generated by Ak, which is contrary to hypothesis.
We now know that x′ cannot be generated by A′

k, but in order to reject A′

k we must also
show that x′ is less than T . If we write

x = (Ck − 1)ak + F,

we have
x′ = (Ck − 1)ak + F + j(ak − r) − r(Ck − 1) = (C ′

k − 1)a′

k + F.

From (1) we know that F ≤ (Ck−1 − 1)ak−1 + . . . + (C2 − 1)a2 + (a2 − 1), and so

x′ ≤ (C ′

k − 1)a′

k + (Ck−1 − 1)ak−1 + . . . + (C2 − 1)a2 + (a2 − 1) = X ′
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where X ′ is the difficult target for A′

k, so x′ < T .
Once we have discovered a suitable value x we can reject all sets A′

k for r = 0, 1, . . .
without further ado so long as the two conditions (2) and (3) are met. It is not difficult to
calculate when these conditions will fail, and as the average length of the “chain” of rejected
sets is quite substantial for large h, the extra cost of the requisite book-keeping code is more
than offset by the savings made. This is illustrated in the following table:

k h Average chain length Speed increase
4 150 1088 7%
5 35 395 11%
6 14 124 9%

5 Corrections to “Some extremal postage stamp 2-

bases”

Of minor importance are the following corrections to Table 1 of the original article [6]:

Stride s Original value Correct value
13 1,654 1,658
17 246,196 246,169
21 69,076,273 69,075,740

A counting bug was found in the original program which was most serious for s = 21.
The type of 2-bases investigated by Robinson [6] were also investigated by Mossige [5],

who first describes preambles PA(s, as) and then describes a property extensibility. Consider
the following family of bases derived from PA(s, as):

Ap+s = {1, a2, . . . , as = b0, as + s = b1, as + 2s = b2, . . . , as + ps = bp}

We say PA(s, as) is extensible if Ap+s is admissible for all p.
Next we say that an extensible preamble PA(s, as) is symmetricizable if the family of the

symmetric bases Ak derived from it in the obvious way (see Robinson [6]) are admissible
for all k ≥ k0 for some k0. It is straightforward to show that PA(s, as) is extensible if Ap+s

is admissible for some p such that bp−1 ≥ 2b0, and that it is symmetricizable if the derived
symmetric basis is admissible for some p such that bp ≥ 2b0. These facts were used by Challis
when coding his algorithm to determine optimal preambles PA(s, as).

What is perhaps surprising is that an extensible preamble is not necessarily symmetriciz-
able, and this is the reason for the two errors in Table 2 of the original article: the preambles
for s = 16 and s = 24, although extensible, are not symmetricizable. As an example, con-
sider the 2-basis for k = 52 derived from PA(16, 61); it is easy to show that the value 415
cannot be generated by this basis.
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Let us call a preamble that is extensible but not symmetricizable anomalous ; then there
are no anomalous preambles for s < 14. Even afterwards, there are very few, although the
proportion increases slightly as s increases. For s = 21, just 1.3% of extensible preambles
are anomalous.

Here are corrected versions of Table 2 and Table 3 from Robinson [6]:

Table 2: Most efficient PAs for s = 11, . . . , 26

s A

11 {1, 3, 4, 7, 8, 9, 16, 17, 21, 24, 35}
13 {1, 2, 5, 7, 10, 11, 19, 21, 22, 25, 29, 30, 43}
15 {1, 2, 5, 6, 8, 9, 13, 19, 22, 27, 29, 33, 40, 41, 56}
16 {1, 2, 3, 7, 8, 9, 12, 15, 22, 26, 30, 36, 37, 43, 45, 61}
17 {1, 2, 5, 6, 7, 12, 13, 16, 26, 28, 31, 37, 38, 42, 44, 49, 66}
19 {1, 2, 3, 6, 9, 11, 12, 15, 16, 27, 32, 37, 45, 48, 52, 55, 61, 62, 80}
20 {1, 2, 4, 5, 11, 13, 14, 19, 29, 35, 37, 43, 46, 47, 50, 52, 56, 58, 68, 88}
21 {1, 2, 3, 6, 10, 14, 17, 19, 26, 29, 36, 41, 49, 51, 54, 55, 58, 60, 67, 74, 95}
22 {1, 3, 5, 7, 8, 12, 14, 18, 26, 32, 33, 42, 43, 50, 60, 63, 68, 79, 81, 83, 97, 105}
24 {1, 3, 5, 6, 13, 15, 16, 18, 22, 38, 41, 44, 47, 52, 55, 58, 59, 60, 74, 80, 81, 91, 93, 117}
26 {1, 3, 4, 6, 7, 14, 16, 19, 20, 28, 36, 38, 39, 48, 49, 60, 61, 70, 76, 77, 89, 93, 95, 99, 109, 135}

The changes are an alternative PA(16, 61) that is symmetricizable, a new PA(17, 66) that
gives rise to an optimal basis for k = 57, a replacement for PA(24, 118), and the addition of
PA(26, 135).

Table 3: Best n2(Ak) for the symmetric bases

s as k-range n2(Ak)
11 35 30-40 22k − 344
13 43 40-43 26k − 504
15 56 43-52 30k − 676
16 61 52-56 32k − 780
17 66 56-58 34k − 892
19 80 58-62 38k − 1124
20 88 62-67 40k − 1248
22 105 67-80 44k − 1516
24 117 80-82 48k − 1836
26 135 82-? 52k − 2164

Interestingly, Mossige missed PA(16, 61) and noted that for 9 ≤ s ≤ 19 all of the best
bases were derived from preambles with odd s, so although he calculated as far as s = 23 he
omitted s = 20 and s = 22.
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Recently (see section 7), an exhaustive search for optimal 2-bases for k = 21 found the
following to be extremal:

k n(2, k) A

21 164 {1, 3, 4, 6, 10, 13, 15, 21, 29, 37, 45, 53, 61, 69, 73, 75, 78, 79, 82, 84, 88}
{1, 3, 4, 6, 10, 13, 15, 21, 29, 37, 45, 53, 61, 69, 73, 75, 78, 79, 80, 82, 84}
{1, 3, 4, 6, 10, 13, 15, 21, 29, 37, 45, 53, 61, 67, 69, 72, 76, 78, 79, 81, 82}
{1, 3, 4, 5, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 77, 78, 79, 81, 82}

This is the first example for k > 14 where there are non-symmetric extremal solutions in
addition to the expected symmetric bases.

6 Discussion

It was found that n(8) = 3485 is 40 larger than the next best (8, 8) set with n8(A) = 3445.
The improved rejection factor technique presented in this note, when applied to the h = 9
case, appears to be about 50. Our estimate of more than 1017 admissible cases indicates that
this approach is insufficient for h = 9 with the current computer technology. In the random
experiments it was found that n(9) ≥ 9338, which is more than twice the Fibonacci lower
bound of 4180 [1].

7 Appendix A: Table of extremal ranges n(h, k) with

corresponding h-bases Ak

Note that the smaller values in the following table were previously published by the first
author [2].

h = 2

k n(2, k) ai

3 8 1 3 4
4 12 1 3 5 6
5 16 1 3 5 7 8
6 20 1 2 5 8 9 10
6 20 1 3 4 8 9 11
6 20 1 3 4 9 11 16
6 20 1 3 5 6 13 14
6 20 1 3 5 7 9 10
7 26 1 2 5 8 11 12 13
7 26 1 3 4 9 10 12 13
7 26 1 3 5 7 8 17 18
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h = 2 (continued)

k n(2, k) ai

8 32 1 2 5 8 11 14 15 16
8 32 1 3 5 7 9 10 21 22
9 40 1 3 4 9 11 16 17 19 20

10 46 1 2 3 7 11 15 19 21 22 24
10 46 1 2 5 7 11 15 19 21 22 24
11 54 1 2 3 7 11 15 19 23 25 26 28
11 54 1 2 5 7 11 15 19 23 25 26 28
11 54 1 3 4 9 11 16 18 23 24 26 27
11 54 1 3 5 6 13 14 21 22 24 26 27
12 64 1 3 4 9 11 16 21 23 28 29 31 32
13 72 1 3 4 9 11 16 20 25 27 32 33 35 36
14 80 1 2 5 8 11 14 17 20 23 24 25 51 53 55
14 80 1 3 4 5 8 14 20 26 32 35 36 37 39 40
14 80 1 3 4 9 10 15 16 21 22 24 25 51 53 55
15 92 1 3 4 5 8 14 20 26 32 38 41 42 43 45 46
16 104 1 3 4 5 8 14 20 26 32 38 44 47 48 49 51 52
17 116 1 3 4 5 8 14 20 26 32 38 44 50 53 54 55 57 58
18 128 1 3 4 5 8 14 20 26 32 38 44 50 56 59 60 61 63 64
19 140 1 3 4 5 8 14 20 26 32 38 44 50 56 62 65 66 67 69 70
20 152 1 3 4 5 8 14 20 26 32 38 44 50 56 62 68 71 72 73 75 76
21 164 1 3 4 6 10 13 15 21 29 37 45 53 61 69 73 75 78 79 82 84 88
21 164 1 3 4 6 10 13 15 21 29 37 45 53 61 69 73 75 78 79 80 82 84
21 164 1 3 4 6 10 13 15 21 29 37 45 53 61 67 69 72 76 78 79 81 82
21 164 1 3 4 5 8 14 20 26 32 38 44 50 56 62 68 74 77 78 79 81 82
22 180 1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 81 83 86 87 90 92 96
22 180 1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 81 83 86 87 88 90 92
22 180 1 3 4 6 10 13 15 21 29 37 45 53 61 69 75 77 80 84 86 87 89 90
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h = 3
k n(3, k) ai

3 15 1 4 5
4 24 1 4 7 8
5 36 1 4 6 14 15
6 52 1 3 7 9 19 24
6 52 1 4 6 14 17 29
7 70 1 4 5 15 18 27 34
8 93 1 3 6 10 24 26 39 41
9 121 1 3 8 9 14 32 36 51 53

10 154 1 2 6 8 19 28 40 43 91 103
11 186 1 2 3 8 11 26 38 56 69 85 89
11 186 1 4 6 13 16 27 44 49 73 81 91
12 225 1 3 8 13 15 16 49 53 84 88 108 114
13 271 1 4 6 14 16 20 39 56 79 100 113 122 131
14 323 1 2 4 9 15 27 38 43 46 97 107 127 147 157

h = 4
k n(4, k) ai

3 26 1 5 8
4 44 1 3 11 18
5 70 1 3 11 15 32
6 108 1 4 9 16 38 49
6 108 1 5 8 27 29 44
7 162 1 4 9 24 35 49 51
7 162 1 4 10 15 37 50 71
7 162 1 5 8 25 31 52 71
8 228 1 3 8 19 33 39 92 102
9 310 1 4 10 11 28 33 78 118 143
9 310 1 5 7 22 31 36 83 117 133

10 422 1 4 9 24 26 42 104 115 174 185
11 550 1 4 9 20 34 52 62 137 149 229 242

h = 5
k n(5, k) ai

3 35 1 6 7
4 71 1 4 12 21
4 71 1 5 12 28
5 126 1 4 9 31 51
6 211 1 4 13 24 56 61
6 211 1 5 8 33 54 67
7 336 1 4 13 24 30 87 106
8 524 1 6 8 33 48 77 183 236
9 726 1 4 13 18 51 92 163 208 223

10 1016 1 6 8 21 60 93 104 154 378 414
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h = 6

k n(6, k) ai

3 52 1 7 12
4 114 1 4 19 33
5 216 1 7 12 43 52
6 388 1 7 11 48 83 115
7 638 1 4 18 31 104 145 170
8 1007 1 5 18 29 97 170 219 308
9 1545 1 6 10 32 77 114 284 447 471

k = 2

Separate formulae are given for h even and h odd:

n(2t, 2) = t(t + 3) with a2 = t + 1 or t + 2
n(2t + 1, 2) = t(t + 4) + 2 with a2 = t + 2

k = 3

h n(h, 3) a1 a2 a3

7 69 1 8 13
8 89 1 9 14
9 112 1 9 20

10 146 1 10 26
11 172 1 9 30
11 172 1 10 26
12 212 1 11 37
13 259 1 13 34
14 302 1 12 52

h n(h, 3) a1 a2 a3

15 354 1 12 52
16 418 1 15 54
17 476 1 14 61
18 548 1 15 80
19 633 1 18 65
20 714 1 17 91
21 805 1 17 91
22 902 1 19 102
22 902 1 20 92

For h ≥ 23, n(h, 3) and ai are given by
the formulae:

a2 = (6t + c21)
a3 = (2t + c31) + (2t + c32)a2

n(h, 3) = (4t + c41) + (2t + c42)a2

+(3t + c43)a3

where h = 9t + r, 0 ≤ r ≤ 8, and cij

are given by:

r c21 c31 c32 c41 c42 c43

0 3 1 1 0 0 0
1 3 1 1 0 0 1
2 5 2 1 1 0 1
3 5 2 1 1 0 2
4 7 3 1 2 0 2
5 6 2 2 2 1 2
6 8 3 2 3 1 2
7 8 3 2 3 1 3
8 10 4 2 4 1 3
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k = 4

h n(h, 4) a1 a2 a3 a4

7 165 1 5 24 37
8 234 1 6 25 65
9 326 1 5 34 60

10 427 1 6 41 67
11 547 1 7 48 85
12 708 1 7 48 126
13 873 1 9 56 155
14 1094 1 8 61 164
15 1383 1 12 65 240
16 1650 1 11 78 216
17 1935 1 11 90 252
18 2304 1 16 73 338
19 2782 1 10 99 360
20 3324 1 16 103 488
21 3812 1 16 103 488
22 4368 1 12 121 561
23 5130 1 14 142 659
24 5892 1 16 163 757
25 6745 1 20 149 860
26 7880 1 16 194 734
27 8913 1 21 177 1006
28 9919 1 21 177 1006
29 11081 1 19 230 870
30 12376 1 18 254 969
31 13932 1 25 211 1410

h n(h, 4) a1 a2 a3 a4

32 15657 1 25 236 1585
33 17242 1 25 236 1585
34 18892 1 24 225 1734
35 21061 1 28 264 1773
36 23445 1 22 355 1700
37 25553 1 29 303 2346
38 27978 1 22 355 2361
39 31347 1 30 343 2634
40 33981 1 30 343 2634
41 36806 1 31 353 3092
42 39914 1 27 465 2692
43 43592 1 34 389 3376
44 47536 1 34 423 3682
45 51218 1 34 423 3682
46 54900 1 28 564 3261
46 54900 1 34 423 3682
47 59702 1 37 460 4004
48 63891 1 38 473 4590
49 69362 1 38 509 4986
50 74348 1 38 509 4986
51 81303 1 39 563 5448
52 86751 1 39 563 5448
53 92199 1 39 563 5448
54 97836 1 41 630 6147

For 55 ≤ h ≤ 254, n(h, 4) and ai are given by one of the following three sets of formulae:

(A) : a2 = (9t + c21)
a3 = (4t + c31) + (3t + c32)a2

a4 = (7t + c41) + (2t + c42)a2 + (2t + c43)a3

n(h, 4) = (2t + c51) + (t + c52)a2 + (6t + c53)a3 + (3t + c54)a4

(B) : a2 = (9t + c21)
a3 = (2t + c31) + (3t + c32)a2

a4 = (7t + c41) + (2t + c42)a2 + (2t + c43)a3

n(h, 4) = (4t + c51) + (3t + c52)a2 + (2t + c53)a3 + (3t + c54)a4

(C) : a2 = (9t + c21)
a3 = (4t + c31) + (3t + c32)a2

a4 = (7t + c41) + (2t + c42)a2 + (2t + c43)a3

n(h, 4) = (t + c51) + (4t + c52)a2 + (6t + c53)a3 + (3t + c54)a4

where h = 12t + r, 0 ≤ r ≤ 11, and cij are given in the following table:
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k = 4 (continued)
r c21 c31 c32 c41 c42 c43 c51 c52 c53 c54 Valid for:
0 A 2 1 0 1 0 1 −3 0 4 −1 4 ≤ t ≤ 5
0 A 1 0 0 0 0 0 −2 0 1 1 6 ≤ t ≤ 11
0 B 2 2 −1 3 −1 0 −1 −2 −1 4 12 ≤ t ≤ 21
1 A 1 0 2 1 1 0 0 0 1 0 5 ≤ t ≤ 21
2 A 2 1 1 1 1 1 −3 1 4 0 5 ≤ t ≤ 6
2 A 1 0 2 1 1 0 0 0 1 1 7 ≤ t ≤ 20
2 B 5 3 −1 6 −1 0 0 −2 −1 5 21 ≤ t ≤ 21
3 A 3 1 2 2 1 1 −1 0 4 0 1 ≤ t ≤ 20
4 A 3 1 2 2 1 1 −1 0 4 1 2 ≤ t ≤ 20
5 A 3 1 2 2 1 1 −1 0 4 2 4 ≤ t ≤ 20
6 A 3 1 2 2 1 1 −1 0 4 3 5 ≤ t ≤ 20
7 A 7 3 2 5 1 2 −1 0 7 1 2 ≤ t ≤ 11
7 A 8 4 1 7 1 0 0 1 1 5 12 ≤ t ≤ 20
8 A 7 3 3 5 2 2 −1 1 7 1 1 ≤ t ≤ 16
8 A 8 4 1 7 1 0 0 1 1 6 17 ≤ t ≤ 20
9 A 7 3 3 5 2 2 −1 1 7 2 1 ≤ t ≤ 20

10 A 7 3 3 5 2 2 −1 1 7 3 4 ≤ t ≤ 19
10 C 11 6 1 10 1 0 0 3 0 7 20 ≤ t ≤ 20
11 A 10 4 3 7 2 2 0 1 7 3 2 ≤ t ≤ 7
11 B 11 4 2 10 1 2 3 1 1 6 8 ≤ t ≤ 20

The extremal bases of type A were independently investigated by Mossige [4], who devel-
oped a procedure for determining the corresponding h-range. Selmer [7] showed the others
to be given by similar formulae of type B. Type C is a variant of type A.

k = 5
h n(h, 5) a1 a2 a3 a4 a5

7 345 1 8 11 64 102
8 512 1 9 15 78 115
8 512 1 9 15 80 118
9 797 1 9 23 108 181

10 1055 1 8 27 119 194
11 1475 1 10 34 165 270
12 2047 1 10 26 195 320
13 2659 1 13 34 242 409
14 3403 1 11 48 278 720
15 4422 1 14 50 325 782
16 5629 1 14 61 381 984
17 6865 1 13 67 326 1191
18 8669 1 14 75 500 1306
19 10835 1 14 89 523 1892
20 12903 1 14 102 589 1912
21 15785 1 14 88 727 2060
22 18801 1 18 97 858 2156
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k = 5 (continued)

h n(h, 5) a1 a2 a3 a4 a5

23 22456 1 20 91 894 3330
24 26469 1 16 148 843 3894
25 31108 1 16 148 975 4554
26 36949 1 22 136 1168 4227
27 42744 1 22 162 1372 4889
28 49436 1 25 139 1510 5657
29 57033 1 23 170 1610 5811
30 66771 1 24 201 1718 7596
31 75558 1 23 192 1976 7018
32 86303 1 25 180 1916 8793
33 96852 1 28 202 2150 9867
34 110253 1 29 209 2434 11256
35 123954 1 27 231 2495 11464
36 140688 1 30 227 2839 12993
37 158389 1 31 234 2926 13391
38 178811 1 30 275 2947 16472
39 197293 1 29 300 3671 16677
40 223580 1 29 266 3382 18856
41 247194 1 32 294 3739 20847
42 273443 1 34 325 4133 23063
43 300747 1 33 342 4560 25414
44 331461 1 32 393 4562 25751
45 368894 1 32 457 5137 28671
46 401350 1 37 421 5602 31205
47 443231 1 33 336 5224 34431
48 490325 1 36 515 6304 35400
49 536399 1 34 422 6065 38741
50 586322 1 42 444 6906 45542
51 634430 1 36 482 7132 40052
52 699698 1 35 570 6602 50446
53 754166 1 40 462 7666 50721
54 823136 1 39 474 7840 51893
55 892139 1 42 511 8494 56238
56 968914 1 39 489 8580 65052
57 1052562 1 43 617 10091 66380
58 1150377 1 46 606 9531 72397
59 1236682 1 44 552 10237 77846
60 1325927 1 41 631 11205 74232
61 1420882 1 44 623 10432 89278
62 1547688 1 49 646 12050 91649
63 1678695 1 49 664 12338 93848
64 1782370 1 52 705 13100 99644
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k = 5 (continued)

h n(h, 5) a1 a2 a3 a4 a5

65 1888725 1 48 698 12988 111755
66 2036874 1 48 746 13252 113747
67 2165553 1 51 793 14087 120914

k = 6

h n(h, 6) a1 a2 a3 a4 a5 a6

7 664 1 7 12 64 113 193
8 1045 1 9 14 65 170 297
9 1617 1 6 31 48 256 373

10 2510 1 9 31 96 366 411
11 3607 1 7 41 105 490 815
12 5118 1 6 47 120 565 946
13 7066 1 10 35 133 759 1304
14 9748 1 11 49 188 810 2109
15 12793 1 8 71 192 1215 1993
16 17061 1 15 49 285 1292 3043
17 22342 1 13 82 387 1723 4789
18 28874 1 13 94 354 1968 5062
19 36560 1 16 87 408 2351 6452
20 45754 1 17 93 436 2898 6897
21 57814 1 14 129 469 3585 8757
22 72997 1 17 109 624 3998 9618
23 87555 1 12 117 541 4487 11496
24 106888 1 19 138 782 5346 13991
25 129783 1 19 157 896 5656 19313

k = 7

h n(h, 7) a1 a2 a3 a4 a5 a6 a7

7 1137 1 7 18 62 104 244 259
7 1137 1 8 13 66 115 254 415
8 2001 1 6 28 47 127 412 602
9 3191 1 7 30 86 189 607 920

10 5047 1 6 29 96 246 857 1179
11 7820 1 10 34 153 380 1342 1487
12 11568 1 8 49 127 419 1566 2604
13 17178 1 12 40 223 544 2479 3253

k = 8

h n(h, 8) a1 a2 a3 a4 a5 a6 a7 a8

7 1911 1 4 17 31 117 209 513 550
7 1911 1 6 20 41 109 228 509 580
8 3485 1 8 13 58 169 295 831 1036
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