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Abstract

A happy number N is defined by the condition Sn(N) = 1 for some number n

of iterations of the function S, where S(N) is the sum of the squares of the digits of
N . Up to 1020, the longest known string of consecutive happy numbers was length
five. We find the smallest string of consecutive happy numbers of length 6, 7, 8, . . . ,
13. For instance, the smallest string of six consecutive happy numbers begins with
N = 7899999999999959999999996. We also find the smallest sequence of 3-consecutive
cubic happy numbers of lengths 4, 5, 6, 7, 8, and 9.

1 Introduction

Many recreational math problems deal with various combinations of digits. Let N =∑n

j=0
aj10j with 0 ≤ aj ≤ 9 be the decimal expansion of N. Define S(N) =

∑n

j=0
a2

j , and

define Sk to be the k-fold iterate of S. Honsberger [3] (see also Beardon [1] and Grundman
and Teeple [4]) gives a simple proof that, for every positive integer N , there is a positive
integer k such that either Sk(N) = 1, a fixed point, or Sk(N) = 4, which is part of the
8-cycle {16, 37, 58, 89, 145, 42, 20, 4}.

We say a number is happy if the iterates are eventually equal to the fixed point 1. The
first happy number bigger than 1 is 7, and indeed, it seems that about 1 out of 7 numbers is
happy [7]. The smallest pair of consecutive numbers is 31 and 32, and the smallest with 3, 4
or 5 consecutive happy numbers were known; for example, 44488, 44489, 44490, 44491, 44492
is the smallest string of five consecutive happy numbers. Guy [7] asked how many consecutive
happy numbers one can have, and noted that Jud McCranie calculated that up to 1020 the
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longest consecutive string is only of length five. El-Sedy and Siksek [2] published the first
proof that there can be arbitrarily long strings of consecutive happy numbers (although H.
Lenstra knew a proof earlier; Teeple generalized his unpublished proof in her undergraduate
honors thesis [10].) See also Grundman and Teeple [5, 6], and Pan [8]. Their techniques do
not come remotely close to finding the least examples, however, and we propose to find the
smallest instance of six or more consecutive happy numbers.

J. A. Littlewood said “A technique is a trick used more than once.” In their paper
on happy numbers, El-Sedy and Siksek [2] end their paper by using a trick to calculate
a huge number l =

∑
233192

r=1
9 · 104+r + 20958 with certain properties that are critical to

their proof. We can transform their trick into a technique that could be used to calculate
a much smaller value for a number l with their desired properties; the minimal example is
l = 4699999990999999999969.

With this technique, we calculate the smallest N beginning a sequence of 6 to 13 consec-
utive happy numbers. We use a period as the concatenation operator, and list the number
of nine digits in parentheses. For example, N = 58.(11 nines).6.(144 nines).5 means

N = 58 · 10157 + 10146(1011 − 1) + 6 · 10145 + 10(10144 − 1) + 5

that is, a 159 digit number given by the digits 58 followed by eleven digits 9, then the digit
6, then one hundred forty-four digits 9, and ending with the digit 5. In this table, n is the
length of the sequence of consecutive happy numbers, digits is the number of digits in each
member of the sequence, and N is the first number of the sequence of n consecutive happy
numbers.

n digits N
2 2 31
3 4 1880
4 4 7839
5 5 44488
6 25 7899999999999959999999996
7 25 7899999999999959999999996
8 159 58.(11 nines).6.(144 nines).5
9 215 26.(137 nines).7.(74 nines).5

10 651 38.(560 nines).0.(87 nines).5
11 1571 27.(280 nines).0.(1287 nines).4
12 158162 388.(158021 nines).8.(136 nines).4
13 603699 288.(218491 nines).3.(385203 nines).3

2 Six Consecutive Happy Numbers

In this section we prove the following proposition for six consecutive happy numbers.

Proposition 1. N0 = 7899999999999959999999996 is the smallest number that begins a

sequence of six consecutive happy numbers.
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It is easy to verify that each of these is a happy number:

7899999999999959999999996
7899999999999959999999997
7899999999999959999999998
7899999999999959999999999
7899999999999960000000000
7899999999999960000000001

Note that these are 25 digit numbers, so if there were a smaller N beginning a sequence of
six consecutive happy numbers, it must have S(N) < 2025 = 25 · 92. El-Sedy and Siksek [2]
note the following:

Lemma 2. If N1 and N2 are natural numbers with N2 < 10k then S(N1 ∗ 10k + N2) =
S(N1) + S(N2).

Let N ≤ 7899999999999959999999996 begin a string of six consecutive happy numbers.
Let N = N1.d0 where d0 is the final digit of N , and N1 is formed from the rest of the digits.
We organize our proof of the proposition by looking at the various possibilities for d0.

Let M1 = S(N1). Then S(N) = M1 + S(d0) and, as noted above, we may assume
M1 < 2025.

Lemma 3. Let N ≤ 7899999999999959999999996 and N = N1.d0. If d0 = 0, one can have

at most three successive happy numbers, N , N + 1, N + 2.

Proof: Suppose the last digit of N is d0 = 0. Note that S(N) = S(N1) = M1, S(N +1) =
S(N1)+12 = M1+12, S(N+2) = S(N1)+22 = M1+22, and S(N+3) = S(N1)+32 = M1+32.
We simply calculate that M1, M1 + 12, M1 + 22 and M1 + 32 are not simultaneously happy
for any M1 < 2025. (For the relevant Maple programs, see [9].)

Lemma 4. Let N ≤ 7899999999999959999999996 and N = N1.d0. Suppose d0 = 1, 2, 3, 4
or 5. Then there are at most four consecutive happy numbers beginning at N .

Proof: We check if M1+d2
0, M1+(d0+1)2, M1+(d0+2)2, M1+(d0+3)2 and M1+(d0+4)2

are simultaneously happy for any value of M1 ≤ 2025; our calculations show there are at
most four consecutive happy numbers for N with d0 = 1, 2, 3, 4 or 5.

Lemma 5. Let N ≤ 7899999999999959999999996 and N = N1.d0. Suppose d0 = 8 or 9.
Then there are at most five consecutive happy numbers beginning at N .

Proof: Suppose N has final digit d0 = 8. Then N + 2 would have final digit 0, so by
Lemma 2, the sequence can extend to at most N + 4. Similarly, if d0 = 9 then N + 1 has
final digit 0 and by Lemma 2 the sequence extends to at most N + 3. In neither case can
we have six consecutive happy numbers. This proves the lemma.

Lemma 6. Let N ≤ 7899999999999959999999996 and N = N1.d0. Suppose d0 = 7. Then

there are at most five consecutive happy numbers beginning at N .
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Proof: Suppose N ends in the digit d0 = 7. Using a Maple program, we checked for three
consecutive happy numbers, that is, we checked if M1 + 72, M1 + 82, and M1 + 92 are all
happy for some M1 < 2025. There are three cases: M1 = 568, 574 and 1839.

We now show that M1 = 568 cannot yield three happy numbers “after the carry.” Note
that N + 3 = (N1 + 1).0. Set N1 = N2.d.9 . . . 9 where digit d ≤ 8, and by convention N2 = 0
if N2 is empty, and N2 = 0 and d = 0 if both are empty. Let k be the number of digits
of 9 ending N1. Then S(N1) = S(N2) + d2 + 92k, so S(N2) = S(N1) − d2 − 92k. Also,
N1 + 1 = N2.(d + 1).0 . . . 0 with k zeros at the end, so S(N1 + 1) = S(N2) + (d + 1)2. Thus,
S(N1 + 1) = S(N1) + (d + 1)2 − d2 − 92k = S(N1) + (2d + 1) − 92k. Since M1 = S(N1) =
S(N2) + d2 + 92k = 568, we have 92k ≤ 568 so k ≤ 7. We now look for values (k, d), with
0 ≤ k ≤ 7 and 0 ≤ d ≤ 8, for which these three are happy:

S(N + 3) = M1 + 2d + 1 − 81k + 02,
S(N + 4) = M1 + 2d + 1 − 81k + 12,
S(N + 5) = M1 + 2d + 1 − 81k + 22.

A simple computer search shows that this never happens.
Similarly, when M1 = 574 there are no pairs (k, d) giving three consecutive happy

numbers “after the carry.” When M1 = 1839, however, we have one solution, namely
k = 9, d = 5, and S(N2) = 1085. Using the methods described in the next section, we
find that the minimal value for N2 with S(N2) = 1085 is N2 = 78999999999999. Thus,
N = N2.d.9 . . . 9.7 = 7899999999999959999999997 which of course is one more than the
minimal case we find in the next lemma.

Lemma 7. Let N ≤ 7899999999999959999999996 and N = N1.d0. Suppose d0 = 6. Then

there are at most five consecutive happy numbers beginning at N , unless

N = 7899999999999959999999996

which begins a sequence of six consecutive happy numbers.

Proof: Suppose N ends in the digit d0 = 6. We check for four consecutive happy numbers,
that is, we check whether M1+62, M1+72, M1+82 and M1+92 are happy for any M1 < 2025.
We find one case: M1 = 1839.

As before, set N1 = N2.d.9 . . . 9 where digit d ≤ 8, and by convention N2 = 0 if N2 is
empty and N2 = 0 and d = 0 if both are empty. Let k be the number of digits of 9 ending N1.
Then as before, S(N1 +1) = S(N1)+(2d+1)−92k. Since M1 = S(N1) = S(N2)+d2 +92k =
1839, we have 92k ≤ 1839 so k ≤ 22. We now look for values (k, d), with 0 ≤ k ≤ 22 and
0 ≤ d ≤ 8, for which these two are happy:

S(N + 4) = M1 + 2d + 1 − 81k + 02,
S(N + 5) = M1 + 2d + 1 − 81k + 12.

Our search yields five pairs, (k, d), each corresponding to a string of six consecutive happy
numbers. We list these pairs along with the corresponding values of S(N − 2) in the table,
below. For each value S(N2), we list the least value of N2 possible, computed using the
methods of the next section, then list the resulting value of N .
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k d S(N2) least N2 for S(N2) N
1 6 1722 27799999999999999999999 27799999999999999999999696
5 6 1398 2779999999999999999 27799999999999999996999996
9 5 1085 78999999999999 7899999999999959999999996

15 6 588 277999999 27799999969999999999999996
19 0 300 57899 57899099999999999999999996

We see that the smallest N corresponds to k = 9 and d = 5. Thus, we have proven that
the smallest N beginning a sequence of six happy numbers is 7899999999999959999999996.

Corollary 8. N0 = 7899999999999959999999996 is the smallest number that begins a se-

quence of seven consecutive happy numbers.

Proof: It is easy to verify that 7899999999999960000000002 is a happy number. Amaz-
ingly, the same value of N that begins the least sequence of six consecutive happy numbers
also begins the least sequence of seven consecutive happy numbers.

Similar arguments prove that the values of N given in the table in Section 1 are indeed
the smallest beginning sequences of 8, 9, 10, 11, 12, and 13 consecutive happy numbers.
Maple worksheets on the author’s homepage [9] contain the calculations. The optimal ex-
ample for 14 consecutive happy numbers seems to be the 34567901197532 digit number
7.(2098518518492 nines).8.(32469382679037 nines).3 which is clearly too large to checked by
these techniques.

3 Minimal N with S(N) = n

Given a positive integer n, we want to determine the least N such that S(N) = n. Define
L(n) = min{N |S(N) = n}. Clearly, if n1 6= n2 then L(n1) 6= L(n2). Also, L(n) has no zero
digits and its digits are in nondecreasing order. We now show how to calculate L(n).

Lemma 9. The largest n0 for which L(n0) has no digit of 9 is n0 = 448.

Proof: We already noted that L(n) has no digit 0. We claim that L(n) cannot contain
more than one digit 5, no more than two digits 3, no more than three digits 1 or 2 or 4 or 6
or 7, nor more than seven digits 8. This follows from the observations that S(1111) = S(2),
S(2222) = S(4), S(333) = S(115), S(4444) = S(8), S(55) = S(17), S(6666) = S(488),
S(7777) = S(2888) and S(88888888) = S(15999999). Thus, if L(n) does not contain the
digit 9, it cannot exceed

1112223344456667778888888.

Note that S(1112223344456667778888888) = 809 so if n > 809 then L(n) has at least one
digit 9.

We now find all values of L(n) for n ≤ 809. Clearly, L(1) = 1, L(2) = 11, L(3) = 111 and
L(4) = 2. If d0 is the last digit of L(n) and n > d2

0, then L(n − d2
0) must be (L(n) − d0)/10

(i.e., remove the last digit of L(n)). Of course, we do not know what the last digit is, so
we look at L(n − d2) · 10 + d for each potential last digit d. If we know L(k) for all k < n
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then L(n) = mind=1,2,...,9{L(n− d2) · 10 + d}. Direct calculation shows that every L(n) with
448 < n ≤ 809 has a digit 9, thus, the largest n for which L(n) has no digit 9 is n = 448, for
which L(448) = 8888888, ending the proof of this lemma.

Lemma 10. For n ≥ 486, let q = ⌊ n
81
⌋ − 5 and n0 = n − 81q. Then L(n) = L(n0) · 10q +

(10q − 1).

Proof: For n ≥ 6 ∗ 92 = 486, we have q ≥ 1 and n0 < 486. By Lemma 7, since
n ≥ 486 > 448, the last digit of L(n) must be a nine, so L(n) = L(n − 92) · 10 + 9. We
proceed by induction on q. If q = 1, then L(n) = L(n − 92) · 10 + 9 = L(n0) + (101 − 1).
Assuming the inductive hypothesis, L(n − 92) = L(n0) · 10q−1 + (10q−1 − 1), and so L(n) =
L(n− 92) · 10 + 9 = L(n0) · 10q−1+1 + (10q−1 − 1) · 10 + 9 = L(n0) · 10q + (10q − 1). In other
words, L(n) is simply q digits of 9 concatenated to the end of L(n0). This ends our proof.

In Section 4, we will need the cubic happy number analogies to Lemmas 7 and 8. Define
L3(n) = min{N |S3,10(N) = n} where S3,10(

∑n

i=0
ai10i) =

∑n

i=0
a3

i . We can show that the
cubic case analog to the quadratic extremal case N = 1112223344456667778888888 above is

N = 11111112222223333444445555666777777888888888

which has S(N) = 8297. Arguments analogous to those in Lemmas 7 and 8 show the
following:

Lemma 11. The largest n0 for which L3(n0) has no digit of 9 is n0 = 4609. For n ≥ 5832,
let q = ⌊ n

93 ⌋ − 7 and n0 = n − 93q. Then L3(n) = L3(n0) · 10q + (10q − 1).

As an aside, we provide a table of the largest n for which L(n) does not contain certain
digits, and the corresponding table for L3(n).

largest allowable digit in L(n) nmax L(nmax)
1 3 111
2 12 222
3 23 1233
4 48 444
5 48 444
6 112 2666
7 151 2777
8 448 8888888

largest allowable digit in L3(n) nmax L3(nmax)
1 7 1111111
2 50 11222222
3 124 223333
4 329 1244444
5 572 245555
6 932 555566
7 2183 5777777
8 4609 1888888888
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Note that it is possible that n2 > n1 and L(n2) < L(n1), for instance, L(243) = 999 <
L(7) = 1112. This extreme difference of 243 − 7 = 236 does not happen again, but since
L(162+92m) < L(54+92m) for all nonnegative integers m, L(n2) < L(n1) with n2−n1 = 108
does occur infinitely often.

4 Sequences of Cubic Happy Numbers

Grundman and Teeple [4] define generalized e-power b-happy numbers in terms of the gen-
eralized digit power function

Se,b(
n∑

i=0

aib
i) =

n∑

i=0

ae
i ,

where 0 ≤ ai < b. If for some m we have Sm
e,b(N) = 1 then N is an e-power b-happy number.

The classic happy numbers have e = 2 and b = 10, and the well-studied cubic happy numbers
have e = 3 and b = 10. Grundman and Teeple note that each e-power b-happy number is
congruent to 1 modulo d = gcd(e, b − 1). So Grundman and Teeple define a d-consecutive
sequence as an arithmetic sequence with common difference d. They prove one can find
arbitrarily long such sequences for many choices of {e, b}, in particular, for the cubic happy
numbers where e = 3, b = 10, and d = 3.

Our methods can be extended to find the least 3-consecutive sequence of cubic happy
numbers. A naive search shows that the smallest 3-consecutive sequence of two cubic happy
numbers is {1198, 1201}, and that the smallest of length three is {169957, 169960, 169963}.
Here is a table of our results:

n digits N
2 4 1198
3 6 169957
4 16 1555599999999916
5 29 35588899999799999999999999989
6 101 28888.(21 nines).1.(72 nines).89
7 234 3577.(228 nines).45
8 242 1126.(229 nines).1.(6 nines).89
9 276 12777.(151 nines).5.(117 nines).86

We will illustrate our method in the proof below.

Proposition 12. N0 = 28888.(21 nines).1.(72 nines).89 is the smallest number that begins

a sequence of six 3-consecutive cubic happy numbers.

Proof: Let S = S3,10. Since N0 has 101 digits, we do not need to check any N with
S(N) ≥ 101 · 93 = 73629. Whereas in the classic happy number case above we split off
the final digit, in the cubic happy number case it is more convenient to split off the final
two digits. Suppose N ≤ N0 begins a sequence of six 3-consecutive cubic happy numbers.
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Let N = N1.d1.d0 where 0 ≤ d0, d1 ≤ 9 are the last two digits, and set M1 = S(N1) and
M2 = S(N1+1). Note that M1 ≤ 99·93 < 73629 and that M2 = S(N1+1) < 100·93 < 73629.
For convenience let t = d1.d0.

We first check each set {M +S(u),M +S(u+3),M +S(u+6),M +S(u+9),M +S(u+
12)} with 0 ≤ u ≤ 87 and M < 73629, and verify that no set has all five numbers cubic
happy. In fact, our calculations show more; if M < 73629 and u = 0, 1, or 2, then no set
{M + S(u),M + S(u + 3),M + S(u + 6),M + S(u + 9)} has four cubic happy numbers.

Suppose N = N1.t begins a 3-consecutive sequence of six cubic happy numbers with
t ≤ 87. Then {M1 + S(t),M1 + S(t + 3),M1 + S(t + 6),M1 + S(t + 9),M1 + S(t + 12)}
would need to be a set of five cubic happy numbers, which we just noted cannot happen for
M1 < 73629.

Suppose N = N1.t begins a 3-consecutive sequence of six cubic happy numbers with
t = 97, 98, or 99. Then N + 3 = (N1 + 1).0.d3 where d3 = 0, 1, or 2. Thus, {M2 +
S(d3),M2 + S(d3 + 3),M2 + S(d3 + 6),M2 + S(d3 + 9),M2 + S(d3 + 12)} would be a set of
five cubic happy numbers, which we noted never happens for M2 < 73629.

Similarly, suppose N = N1.t begins a 3-consecutive sequence of six cubic happy numbers
with t = 94, 95, or 96. Then N + 6 = (N1 + 1).0.d6 where d6 = 0, 1, or 2. Thus,
{M2 + S(d6),M2 + S(d6 + 3),M2 + S(d6 + 6),M2 + S(d6 + 9)} would be a set of four cubic
happy numbers with d6 equal to 0, 1 or 2; as we noted above, this cannot happen for
M2 < 73629.

Calculations for all M1 < 73629 and t = 91 show that {M1 + S(t),M1 + S(t + 3),M1 +
S(t + 6)} can never be a set of three cubic happy numbers. Further calculation shows that
for all M1 < 73629 and t = 88 or 90, {M1 +S(t),M1 +S(t+3),M1 +S(t+6),M1 +S(t+9)}
is never a set of four cubic happy numbers.

When t = 93, only when M1 = 45001 or M1 = 54019 does the set {M1 +S(t),M1 +S(t+
3),M1 + S(t + 6)} have three cubic happy numbers.

When t = 89, {M1+S(t),M1+S(t+3),M1+S(t+6),M1+S(t+9)} is a set consisting solely
of cubic happy numbers only when M1 = 16736, 69854 or 70736. Since S(N1.98) = S(N1.89),
we conclude that each member of the set {S(N), S(N + 3), S(N + 6), S(N + 9)} = {M1 +
S(89),M1 +S(92),M1 +S(95),M1 +S(98)} with N = N1.89 is a cubic happy number if and
only if the set {S(N), S(N + 3), S(N + 6)} = {M1 + S(92),M1 + S(95),M1 + S(98)} with
N = N1.92 consists solely of cubic happy numbers. Therefore, we do not need to consider
N with t = 92.

Summarizing, we only need to consider five cases: (t,M1) = (93, 45001), (93, 54019),
(89, 16736), (89, 69854), and (89, 70736).

We begin by considering the two cases with t = 93. As in the proof of Proposition 1,
we set N1 = N2.d2.9 . . . 9 where digit d2 ≤ 8 and there are exactly k digits of 9 ending
N1; by convention, N2 = 0 if N2 is empty, and N2 = 0 and d2 = 0 if both are empty.
When t = 93, N + 9 = N2.(d2 + 1).(0 . . . 0).02, N + 12 = N2.(d2 + 1).(0 . . . 0).05 and
N + 15 = N2.(d2 + 1).(0 . . . 0).08 where the (0 . . . 0) is a string of exactly k zeros. Since
M1 = S(N1) = S(N2) + d3

2 + k · 93, we have S(N + 9) = S(N2) + (d2 + 1)3 + 23 = (M1 − d3
2 −

k ·93)+(d2 +1)3 +23; similarly, S(N +12) = M1−d3
2−k ·93 +(d2 +1)3 +53 and S(N +15) =

M1−d3
2−k ·93 +(d2 +1)3 +83. Therefore we need only check if the following are cubic happy

numbers for some pair (d2, k) where 0 ≤ d2 ≤ 8 and 0 ≤ k < (M1 − d3
2 + (d2 + 1)3 + 23)/93:
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S(N + 9) = M1 − d3
2 − k · 93 + (d2 + 1)3 + 23,

S(N + 12) = M1 − d3
2 − k · 93 + (d2 + 1)3 + 53,

S(N + 15) = M1 − d3
2 − k · 93 + (d2 + 1)3 + 83.

A quick computation shows that this never happens for M1 = 45001 or 54019.
Finally, we consider the cases d = 89 and M1 = 16736, 69854, or 70736. Letting N =

N1.89, we have N + 3 = N1.92, N + 6 = N1.95 and N + 9 = N1.98. We again decompose
N1 = N2.d2.9 . . . 9 where d2 is a digit not equal to 9, and there are exactly k digits of 9
ending N1 (by convention, N2 = 0 if N2 is empty, and N2 = 0 and d2 = 0 if both are empty).
Then N + 12 = N2.(d2 + 1).(0 . . . 0).01 and N + 15 = N2.(d2 + 1).(0 . . . 0).04 where the
(0 . . . 0) is a string of exactly k zeros. Again we have M1 = S(N1) = S(N2) + d3

2 + k · 93,
so S(N + 12) = S(N2) + (d2 + 1)3 + 13 = M1 − d3

2 − k · 93 + (d2 + 1)3 + 13 and similarly
S(N + 15) = M1 − d3

2 − k · 93 + (d2 + 1)3 + 43.
A short calculation with M1 = 16736 finds only one nonnegative integer k < (M1 −

d3
2 + (d2 + 1)3 + 13)/93 for which S(N + 12) is cubic happy (this in fact gives the least

example of a 3-consecutive sequence of five cubic happy numbers), but the corresponding
S(N +15) is not a cubic happy number. Calculations with M1 = 70736 yield no (k, d2) with
both S(N + 12) and S(N + 15) cubic happy. When M1 = 69854, both k = 1, d2 = 1 and
also k = 72, d2 = 1 yield a pair of cubic happy numbers {S(N + 12), S(N + 15)}. Using
Lemma 9, we can calculate that the smaller N comes from k = 72 and d2 = 1, resulting in
N = 28888 · 1096 + (1021 − 1) · 1075 + 1 · 1074 + (1072 − 1) · 102 + 89.

Thus, our claimed value of N is indeed the lowest that begins a 3-consecutive sequence
of six cubic happy numbers.
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