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Abstract

In this paper we study the mean value of a gcd-sum function over regular integers
modulo n. In particular, we improve the previous result under the Riemann hypothesis
(RH). We also study the short interval problem for it without assuming RH.

1 Introduction

In general, an element k of a ring R is said to be (von Neumann) regular if there is an x ∈ R
such that k = kxk. Let n > 1 be an integer with prime factorization n = pν1

1 · · · pνr

r . An
integer k is called regular (mod n) if there exists an integer x such that k2x ≡ k (mod n),
i.e., the residue class of k is a regular element (in the sense of J. von Neumann) of the ring
Zn of residue classes (mod n).

Let Regn = {k : 1 ≤ k ≤ n and k is regular (mod n)}. Tóth [11] first defined the
gcd-sum function over regular integers modulo n by the relation

P̃ (n) =
∑

k∈Regn

gcd(k, n), (1)
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where gcd(a, b) denotes the greatest common divisor of a and b. It is sequence A176345 in
Sloane’s Encyclopedia. This is analogous to the gcd-function, called also Pillai’s arithmetical
function,

P (n) =
n
∑

k=1

gcd(k, n),

which has been studied recently by several authors, see [2, 3, 4, 5, 6, 9, 12]; it is Sloane’s
sequence A018804. Tóth [11] proved that P̃ (n) is multiplicative and for every n ≥ 1,

P̃ (n) = n
∏

p|n

(2 −
1

p
). (2)

He also obtained the following asymptotic formula

∑

n≤x

P̃ (n) =
x2

2ζ(2)
(K1 log x+K2) +O(x3/2δ(x)), (3)

where the function δ(x) and constants K1 and K2 are given by

δ(x) = exp(−A(log x)3/5(log log x)−1/5),

K1 =
∞
∑

n=1

µ(n)

nψ(n)
=
∏

p

(

1 −
1

p(p+ 1)

)

, (4)

K2 = K1

(

2γ −
1

2
−

2ζ ′(2)

ζ(2)

)

−
∞
∑

n=1

µ(n)(log n− α(n) + 2β(n))

nψ(n)
, (5)

where ψ(n) = n
∏

p|n(1 + 1
p
) denotes the Dedekind function, and

α(n) =
∑

p|n

log p

p− 1
, β(n) =

∑

p|n

log p

p2 − 1
.

It is very difficult to improve the exponent 3
2

in the error term of (3) unless we have
substantial progress in the study of the zero free region of ζ(s). Therefore it is reasonable to
get better improvements by assuming the truth of the Riemann hypothesis (RH). Let d(n)
denote the Dirichlet divisor function and

∆(x) :=
∑

n≤x

d(n) − x(log x+ 2γ − 1). (6)

Dirichlet first proved that ∆(x) = O(x1/2). The exponent 1/2 was improved by many
authors. The latest result reads

∆(x) ≪ xθ+ǫ, θ = 131/416, (7)
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due to Huxley [7]. Tóth [11] proved that if RH is true, then the error term of (3) can be
replaced by O(x(7−5θ)/(5−4θ) exp(B log x(log log x)−1)). For θ = 131/416 one has (7−5θ)/(5−
4θ) ≈ 1.4505.

In this paper, we will use the Dirichlet convolution method to study the mean value
of P̃ (n), and we find that the estimate of

∑

n≤x P̃ (n) is closely related to the square-free

divisor problem. Let d(2)(n) denote the number of square-free divisors of n. Note that
d(2)(n) = 2ω(n), where ω(n) is the number of distinct prime factors of n. Let

D(2)(x) =
∑

n≤x

d(2)(n).

It was shown by Mertens [8] that

D(2)(x) =
1

ζ(2)
x log x+

(

2γ − 1

ζ(2)
−

2ζ ′(2)

ζ2(2)

)

x+ ∆(2)(x), (8)

where ∆(2)(x) = O(x1/2 log x). The exponent 1
2

is also difficult to be improved, because
it is related to the zero distribution of ζ(s). One way of making progress is to assume the
Riemann hypothesis (RH). Many authors investigated this problem, and the best result
under the Riemann hypothesis is

∆(2)(x) ≪ xλ+ǫ, (9)

where λ = 4/11, due to Baker [1].
In this paper, we shall prove the following results.

Theorem 1. For any real numbers x ≥ 1 and ǫ > 0, if

∆(2)(x) ≪ xλ+ǫ,

then we have

∑

n≤x

P̃ (n) =
x2

2ζ(2)
(K1 log x+K2) +O(x1+λ+ǫ), (10)

where K1, K2 are defined by (4) and (5).

Corollary 2. If RH is true, then

∑

n≤x

P̃ (n) =
x2

2ζ(2)
(K1 log x+K2) +O(x15/11+ǫ). (11)

Remark. Note that 15/11 ≈ 1.3636, which improves the previous result.
In order to avoid assuming the truth of the Riemann hypothesis, we study the short

interval problem for it.
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Theorem 3. For

xθ+3ǫ ≤ y ≤ x,

we have

∑

x<n≤x+y

P̃ (n) =
1

2ζ(2)

∫ x+y

x

u (2K1 log u+K1 + 2K2) du+O(yx1−ǫ + x1+θ+2ǫ). (12)

where θ is defined by (7).

Corollary 4. For
x131/416+3ǫ ≤ y ≤ x,

we have

∑

x<n≤x+y

P̃ (n) =
1

2ζ(2)

∫ x+y

x

u (2K1 log u+K1 + 2K2) du+O(yx1−ǫ + x
547

416
+2ǫ). (13)

Notation. Throughout the paper ǫ always denotes a fixed but sufficiently small positive
constant. We write f(x) ≪ g(x), or f(x) = O(g(x)), to mean that |f(x)| ≤ Cg(x). For any
fixed integers 1 ≤ a ≤ b ,we consider the divisor function

d(a, b;n) =
∑

n=makb

1.

2 Proof of Theorem 1

Let s be complex numbers with ℜs > 1. We consider the mean value of the arithmetic

function P̃ ∗(n) = P̃ (n)
n
. Define

F (s) :=
∞
∑

n=1

P̃ ∗(n)

ns
. (14)

By Euler product representation we have

F (s) =
∏

p

(

1 +
2p− 1

ps+1
+

2p2 − p

p2s+2
+

2p3 − p2

p3s+3
+ · · ·

)

= ζ(s)
∏

p

(

1 −
1

ps

)(

1 +
2

ps
−

1

ps+1
+

2

p2s
−

1

p2s+1
+ · · ·

)

= ζ(s)
∏

p

(

1 +
1

ps
−

1

ps+1

)

=
ζ2(s)

ζ(2s)

∏

p

(

1 −
1

ps

)

∏

p

(

1 −
1

p2s

)−1(

1 +
1

ps
−

1

ps+1

)

=
ζ2(s)

ζ(2s)
G(s),
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where

G(s) =
∏

p

(

1 −
1

ps+1 + p

)

. (15)

From the above formula, it is easy to see that G(s) can be expanded to a Dirichlet series,
which is absolutely convergent for ℜs > 0. Write

G(s) =
∞
∑

n=1

g(n)

ns
, (16)

then we can easily get

g(n) ≪ nǫ,
∑

n≤x

|g(n)| = O(xǫ). (17)

Notice that

ζ2(s)

ζ(2s)
=

∞
∑

m=1

d(2)(m)

ms
. (18)

By the Dirichlet convolution, we have
∑

n≤x

P̃ ∗(n) =
∑

mℓ≤x

d(2)(m)g(ℓ) =
∑

ℓ≤x

g(ℓ)
∑

m≤x/ℓ

d(2)(m),

and formula (8) applied to the inner sum gives

∑

n≤x

P̃ ∗(n) =
∑

ℓ≤x

g(ℓ)

{

x

ζ(2)ℓ

(

log(
x

ℓ
) + 2γ − 1 −

2ζ ′(2)

ζ(2)

)

+O
(

(
x

ℓ
)λ+ǫ

)

}

=
x

ζ(2)

{

(

log x+ 2γ − 1 −
2ζ ′(2)

ζ(2)

)

∑

ℓ≤x

g(ℓ)

ℓ
−
∑

ℓ≤x

g(ℓ) log ℓ

ℓ

}

+O

(

xλ+ǫ
∑

ℓ≤x

|g(ℓ)|

ℓλ+ǫ

)

.

=
x

ζ(2)

{

(

log x+ 2γ − 1 −
2ζ ′(2)

ζ(2)

) ∞
∑

ℓ=1

g(ℓ)

ℓ
−

∞
∑

ℓ=1

g(ℓ) log ℓ

ℓ
+O(x−1+ǫ)

}

+O
(

xλ+ǫ
)

,

if we notice by (17) that both of the infinite series
∞
∑

ℓ=1

g(ℓ)
ℓ

and
∞
∑

ℓ=1

g(ℓ) log ℓ
ℓ

are absolutely

convergent.
From (15), (16) and the definitions of K1, K2, we have

∞
∑

ℓ=1

g(ℓ)

ℓ
= G(1) =

∏

p

(

1 −
1

p2 + p

)

= K1, (19)

∞
∑

ℓ=1

g(ℓ) log ℓ

ℓ
=

∞
∑

n=1

µ(n)(log n− α(n) + 2β(n))

nψ(n)
(20)
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= K1

(

2γ −
1

2
−

2ζ ′(2)

ζ(2)

)

−K2.

Then

∑

n≤x

P̃ ∗(n) =
x

ζ(2)

(

(log x−
1

2
)K1 +K2

)

+O(xλ+ǫ). (21)

From the definitions of P̃ ∗(n)and Abel’s summation formula, we can easily get

∑

n≤x

P̃ (n) =
∑

n≤x

P̃ ∗(n)n =

∫ x

1

td

(

∑

n≤t

P̃ ∗(n)

)

=
x2

2ζ(2)
(K1 log x+K2) +O(x1+λ+ǫ).

Corollary 2 follows by taking λ = 4/11.

3 Proof of Theorem 3

From the proof of Theorem 1, we have

F (s) =
∞
∑

n=1

P̃ ∗(n)

ns
=
ζ2(s)

ζ(2s)
G(s). (22)

Let

ζ2(s)G(s) =
∞
∑

n=1

h(n)

ns
, ℜs > 1. (23)

Then we have

Lemma 5. For any real numbers x ≥ 1 and ǫ > 0, we have

∑

n≤x

h(n) = x

((

log x−
1

2
+

2ζ ′(2)

ζ(2)

)

K1 +K2

)

+O(xθ+ǫ), (24)

where θ is defined in (7).

Proof. Recall that
∞
∑

n=1

g(n)

ns
= G(s), g(n) ≪ nǫ.

Then we have

h(n) =
∑

n=mℓ

d(m)g(ℓ), h(n) ≪ nǫ. (25)
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Thus from (6),(7) we get
∑

n≤x

h(n) =
∑

mℓ≤x

d(m)g(ℓ) =
∑

ℓ≤x

g(ℓ)
∑

m≤x

ℓ

d(m)

=
∑

ℓ≤x

g(ℓ)
{x

ℓ

(

log(
x

ℓ
) + 2γ − 1

)

+O
(

(
x

ℓ
)θ+ǫ

)}

= x

{

(log x+ 2γ − 1)
∑

ℓ≤x

g(ℓ)

ℓ
−
∑

ℓ≤x

g(ℓ) log ℓ

ℓ

}

+O

(

xθ+ǫ
∑

ℓ≤x

|g(ℓ)|

ℓθ+ǫ

)

= x

{

(log x+ 2γ − 1)
∞
∑

ℓ=1

g(ℓ)

ℓ
−

∞
∑

ℓ=1

g(ℓ) log ℓ

ℓ
+O(x−1+ǫ)

}

+O
(

xθ+ǫ
)

Then Lemma 5 follows from the above formula and (19), (20).

Lemma 6. For any real numbers x ≥ 1 and x < u ≤ 2x, we have
∑

x<n≤u

P̃ ∗(n) = M(u) −M(x) + E(u, x), (26)

where

M(x) =
x

ζ(2)

(

(log x−
1

2
)K1 +K2

)

is the main term of
∑

n≤x P̃
∗(n), and

E(u, x) ≪ (u− x)x−ǫ + xθ+2ǫ.

Proof. From (22) and (23), we have

P̃ ∗(n) =
∑

n=ℓm2

h(ℓ)µ(m).

Then
∑

x<n≤u

P̃ ∗(n) =
∑

x<ℓm2≤u

h(ℓ)µ(m) =
∑

1

+
∑

2

, (27)

where
∑

1

=
∑

m≤x2ǫ

µ(m)
∑

x

m2
<ℓ≤ u

m2

h(ℓ),

∑

2

=
∑

x<ℓm2≤u

m>x2ǫ

h(ℓ)µ(m).

By Lemma 5 we have

∑

1

=
∑

m≤x2ǫ

µ(m)
(

H(
u

m2
) −H(

x

m2
) +O(

x

m2
)θ+ǫ

)

(28)
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=
∑

m≤x2ǫ

µ(m)
(

H(
u

m2
) −H(

x

m2
)
)

+O(xθ+2ǫ),

where
H(x) := ax log x+ bx

is the main term of
∑

n≤x h(n), and a = K1, b =
(

2ζ′(2)
ζ(2)

− 1
2

)

K1 +K2. Then

∑

m≤x2ǫ

µ(m)
(

H(
u

m2
) −H(

x

m2
)
)

=
∑

m≤x2ǫ

µ(m)

(

H(u) −H(x)

m2
+

2(ax− au)

m2
logm

)

= (H(u) −H(x))
∑

m≤x2ǫ

µ(m)

m2
+ 2(ax− au)

∑

m≤x2ǫ

µ(m) logm

m2

= (H(u) −H(x))
∞
∑

m=1

µ(m)

m2
+ 2(ax− au)

∞
∑

m=1

µ(m) logm

m2
+O

(

(u− x)x−2ǫ
)

.

It is well known that
1

ζ(s)
=

∞
∑

m=1

µ(m)

ms
, ℜs > 1,

which gives by differentiation

ζ ′(s)

ζ2(s)
=

∞
∑

m=1

µ(m) logm

ms
,

and hence

∑

1

=
H(u) −H(x)

ζ(2)
+ 2(ax− au)

ζ ′

ζ2
(2) +O(xθ+2ǫ + (u− x)x−2ǫ)

= M(u) −M(x) +O
(

xθ+2ǫ + (u− x)x−2ǫ
)

, (29)

where

M(x) =
x

ζ(2)

(

(log x−
1

2
)K1 +K2

)

.

For
∑

2, if we notice that h(n) ≪ nǫ, then

∑

2

≪ xǫ
∑

x<ℓm2≤u

m>x2ǫ

1 := xǫ
∑

3

, (30)
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where

∑

3

=
∑

x<ℓm2≤u

m>x2ǫ

1 =
∑

x<ℓm2≤u

1 −
∑

x<ℓm2≤u

m≤x2ǫ

1 (31)

=
∑

x<n≤u

d(1, 2;n) −
∑

x<ℓm2≤u

m≤x2ǫ

1 =
∑

31

−
∑

32

,

say. From Richert [10] we have

∑

n≤x

d(1, 2;n) = ζ(2)x+ ζ(1/2)x1/2 +O(x2/9 log x).

Then

∑

31

= ζ(2)(u− x) +O
(

(u− x)x−1/2 + x2/9 log x
)

. (32)

For
∑

32 we have

∑

32

=
∑

m≤x2ǫ

∑

x

m2
<ℓ≤ u

m2

1 =
∑

m≤x2ǫ

(

u− x

m2
+O(1)

)

(33)

= ζ(2)(u− x) +O
(

(u− x)x−2ǫ + x2ǫ
)

.

Then from (31)–(33) we have

∑

3

≪ (u− x)x−2ǫ + x2/9 log x, (34)

and hence

∑

2

≪ (u− x)x−ǫ + x2/9+ǫ. (35)

Lemma 6 follows from (27), (29) and (35).

Now we prove Theorem 3. From the definitions of P̃ ∗(n) and Abel’s summation formula,
we have

∑

x<n≤x+y

P̃ (n) =
∑

x<n≤x+y

P̃ ∗(n)n =

∫ x+y

x

ud

(

∑

x<n≤u

P̃ ∗(n)

)

,

and Lemma 6 applied to the sum in the right side gives

∑

x<n≤x+y

P̃ (n) =

∫

1

+

∫

2

, (36)
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where

∫

1

=

∫ x+y

x

ud (M(u) −M(x)) ,

∫

2

=

∫ x+y

x

ud (E(u, x)) .

In view of the definition of M(x) in Lemma 6, we obtain

∫

1

=

∫ x+y

x

uM ′(u)du =
1

2ζ(2)

∫ x+y

x

u (2K1 log u+K1 + 2K2) du. (37)

For
∫

2
, we integrate it by parts, to get

∫

2

=

∫ x+y

x

ud (E(u, x))

= (x+ y)E(x+ y;x) −

∫ x+y

x

E(u, x)du.

By Lemma 6 we get
E(u, x) ≪ (u− x)x−ǫ + xθ+2ǫ.

Therefore
∫

2

≪ x(yx−ǫ + xθ+2ǫ) +

∫ x+y

x

(

(u− x)x−ǫ + xθ+2ǫ
)

du (38)

≪ yx1−ǫ + x1+θ+2ǫ + y2x−ǫ + yxθ+2ǫ

≪ yx1−ǫ + x1+θ+2ǫ,

if we notice that y ≤ x.
Now Theorem 3 follows from (36)–(38). If we take θ = 131/416, then we can get Corollary

4.
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