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Abstract

For n ∈ Z, A ⊂ Z, let δA(n) denote the number of representations of n in the form
n = a − a′, where a, a′ ∈ A. A set A ⊂ Z is called a unique difference basis of Z

if δA(n) = 1 for all n 6= 0 in Z. In this paper, we prove that there exists a unique
difference basis of Z whose growth is logarithmic. These results show that the analogue
of the Erdős-Turán conjecture fails to hold in (Z,−).

1 Introduction

For sets A and B of integers and for any integer c, we define the set

A − B = {a − b : a ∈ A, b ∈ B},

and the translations
A − c = {a − c : a ∈ A},

c − A = {c − a : a ∈ A}.

The counting function for the set A is

A(y, x) = card{a ∈ A : y ≤ a ≤ x}.

For n ∈ Z, we write

δA(n) = card{(a, a′) ∈ A × A : a − a′ = n},
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σA(n) = card{(a, a′) ∈ A × A : a + a′ = n}.

We call A ⊂ Z a difference basis of Z if δA(n) ≥ 1 for all n ∈ Z, and a unique difference
basis of Z if δA(n) = 1 for all n 6= 0 in Z. We call A a subset of N an additive asymptotic
basis of N if there is n0 = n0(A) such that σA(n) ≥ 1 for all n ≥ n0. The celebrated Erdős-
Turán conjecture [1] states that if A ⊂ N is an additive asymptotic basis of N, then the
representation function σA(n) must be unbounded. In 1990, Ruzsa [5] constructed a basis
of A ⊂ N for which σA(n) is bounded in the square mean. Pŭs [4] first established that
the analogue of the Erdős-Turán conjecture fails to hold in some abelian groups. Nathanson
[3] constructed a family of arbitrarily sparse unique additive representation bases for Z. In
2004, Haddad and Helou [2] showed that the analogue of the Erdős-Turán conjecture does
not hold in a variety of additive groups derived from those of certain fields. Let K be a finite
field of characteristic 6= 2 and G the additive group of K × K. Recently, Chi-Wu Tang and
Min Tang [6] proved there exists a set B ⊂ G such that 1 ≤ δB(g) ≤ 14 for all g 6= 0.

It is natural to consider the analogue of the Erdős-Turán conjecture in (Z,−). In this
paper, we obtain the following results.

Theorem 1. There exists a family of unique difference bases of Z.

Theorem 2. There exists a unique difference basis A of Z such that

2 log(3x + 3)

log 3
−

2 log 5

log 3
< A(0, x) ≤

2 log(x + 3)

log 2
− 2 for all x ≥ 1.

2 Proof of Theorem 1.

We shall construct an ascending sequence A1 ⊆ A2 ⊆ · · · of finite sets of nonnegative integers
such that

|Ak| = 2k, for all k ≥ 1,

δAk
(n) ≤ 1, for all n 6= 0.

We shall prove that the infinite set

A =
∞
⋃

k=1

Ak

is a unique difference basis of Z.
We construct the sets Ak by induction. Let A1 = {0, 1}. We assume that for some k ≥ 1

we have constructed sets A1 ⊆ · · · ⊆ Ak such that |Ai| = 2i and δAi
(n) ≤ 1 for all 1 6 i 6 k

and all integers n 6= 0. We define the integers

dk = max{a : a ∈ Ak},

bk = min{|b| : b 6∈ Ak − Ak}.

To construct the set Ak+1, we choose an integer ck such that ck > dk. Let

Ak+1 = Ak ∪ {2ck, bk + 2ck}.
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Then |Ak+1| = 2k + 2 = 2(k + 1) for all k ≥ 1, and Ak ⊆ [0, dk], Ak − Ak ⊆ [−dk, dk].
Note that

Ak+1 − Ak+1 = (Ak − Ak) ∪ (Ak − (bk + 2ck))

∪((bk + 2ck) − Ak) ∪ (Ak − 2ck) ∪ (2ck − Ak) ∪ {bk,−bk}. (1)

We shall show that Ak+1 − Ak+1 is the disjoint union of the above six sets.
If u ∈ Ak − Ak, then

−dk ≤ u ≤ dk. (2)

If v1 ∈ Ak − (bk + 2ck) and v2 ∈ (bk + 2ck) − Ak, then there exist a, a′ ∈ Ak such that
v1 = a − (bk + 2ck) and v2 = (bk + 2ck) − a′. Since 0 ≤ a, a′ ≤ dk, we have

−bk − 2ck ≤ v1 ≤ −bk − 2ck + dk, (3)

bk + 2ck − dk ≤ v2 ≤ bk + 2ck. (4)

If w1 ∈ Ak − 2ck and w2 ∈ 2ck − Ak, similarly, we have

−2ck ≤ w1 ≤ −2ck + dk, (5)

2ck − dk ≤ w2 ≤ 2ck. (6)

For any n ∈ Z, if n ∈ Ak − Ak, then −n ∈ Ak − Ak, thus by the definition of bk, we have

bk 6∈ Ak − Ak and − bk 6∈ Ak − Ak. (7)

Assume (2ck−Ak)∩((bk +2ck)−Ak) 6= ∅, then there exist a, a′ ∈ Ak such that bk +2ck−a =
2ck − a′, bk = a − a′ ∈ Ak − Ak which contradicts with the fact bk 6∈ Ak − Ak. Similarly, we
have (Ak − (bk + 2ck)) ∩ (Ak − 2ck) = ∅.

Moreover, we have dk ∈ Ak − Ak, hence bk 6= dk. If bk < dk, it is easy to see that the
set {−bk, bk} is disjoint with the other five sets. If bk > dk, since dk ∈ Ak − Ak and by the
definition of bk, we have bk = dk + 1. Then 2ck − dk > 2(dk + 1) − dk = dk + 2 > bk and
−2ck + dk 6 −2(dk + 1) + dk = −dk − 2 < −bk, thus the set {−bk, bk} is disjoint with the
other five sets.

By Eq. (1)–(6) and the above discussion, we know that the sets Ak − Ak, Ak − (bk +
2ck), (bk +2ck)−Ak, Ak−2ck, 2ck−Ak, {bk,−bk} are pairwise disjoint. That is, δAk+1

(n) ≤
1 for all integers n 6= 0.

Let A =
∞
⋃

k=1

Ak. Then for all k ≥ 1, by (7) and the definition of bk, we have

{−bk + 1,−bk + 2, · · · ,−1, 1, · · · , bk − 2, bk − 1} ⊂ Ak − Ak ⊂ A − A,

and the sequence {bk}k>1 is strictly increasing, since Ak − Ak ⊂ Ak+1 − Ak+1 and ±bk ∈
Ak+1 −Ak+1 but ±bk 6∈ Ak −Ak. Thus A is a difference basis of Z. If δA(n) ≥ 2 for some n,
then by construction, δAk

(n) ≥ 2 for some k, which is impossible. Therefore, A is a unique
difference basis of Z.

It completes the proof of Theorem 1.
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3 Proof of Theorem 2.

We apply the method of Theorem 1 with

ck = dk + 1 for all k ≥ 1.

This is essentially a greedy algorithm construction, since at each iteration we choose the
smallest possible value of ck. It is instructive to compute the first few sets Ak. Since

A1 = {0, 1}, A1 − A1 = {−1, 0, 1},

we have b1 = 2, d1 = 1, and c1 = d1 + 1 = 2. Then

A2 = {0, 1, 4, 6}, A2 − A2 = {−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6},

hence b2 = 7, d2 = 6, c2 = d2 + 1 = 7. The next iteration of the algorithm produces the sets

A3 = {0, 1, 4, 6, 14, 21},

A3 − A3 = {−21,−20,−17,−15,−14,−13,−10,−8,

−7, 7, 8, 10, 13, 14, 15, 17, 20, 21} ∪ (A2 − A2),

so we obtain b3 = 9, d3 = 21, c3 = 22, and

A4 = {0, 1, 4, 6, 14, 21, 44, 53}.

We shall compute upper and lower bounds for the counting function A(0, x). We observe
that if x ≥ d1 and k is the unique integer such that dk ≤ x < dk+1, by the construction of
A, we know Ak = |2k| and Ak+1 = Ak ∪ {2ck, 2ck + bk}, then

A(0, x) = Ak+1(0, x) =

{

2k, if dk ≤ x < 2ck,

2k + 1, if 2ck ≤ x < 2ck + bk = dk+1.

For k ≥ 1, we have 1 < bk ≤ dk + 1 = ck and ck+1 = dk+1 + 1 = 2ck + bk + 1, hence

2ck + 2 < ck+1 ≤ 3ck + 1.

Since c1 = d1 + 1 = 2, it follows by induction on k that

2k+1 − 2 ≤ ck ≤
5

2
· 3k−1 −

1

2
,

and so

log
6

5

(

ck +
1

2

)

log 3
≤ k ≤

log
ck + 2

2
log 2

for all k ≥ 1.

We obtain an upper bound for A(0, x) as follows. If dk ≤ x < 2ck, then ck ≤ x + 1, and

A(0, x) = Ak+1(0, x) = 2k ≤ 2
log

ck + 2

2
log 2

=
2 log(ck + 2)

log 2
− 2 ≤

2 log(x + 3)

log 2
− 2.
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If 2ck ≤ x < dk+1, then ck ≤
x

2
, and

A(0, x) = Ak+1(0, x) = 2k + 1 ≤
2 log

ck + 2

2
log 2

+ 1 ≤
2 log

(x

4
+ 1

)

log 2
+ 1 =

2 log(x + 4)

log 2
− 3.

Therefore,

A(0, x) ≤
2 log(x + 3)

log 2
− 2 for all x ≥ 1.

Similarly, we obtain a lower bound for A(0, x). If dk ≤ x < 2ck, then

A(0, x) = 2k ≥
2 log

6

5

(

ck +
1

2

)

log 3
>

2 log
3

5
(x + 1)

log 3
=

2 log(3x + 3)

log 3
−

2 log 5

log 3
.

If 2ck ≤ x < dk+1, then dk+1 = bk + 2ck ≤ 3ck. So ck ≥ 1

3
dk+1 > 1

3
x and

A(0, x) = 2k + 1 ≥
2 log

6

5

(

ck +
1

2

)

log 3
+ 1 >

2 log
6

5

(x

3
+

1

2

)

log 3
+ 1 =

2 log(2x + 3)

log 3
+ 1 −

2 log 5

log 3
.

Therefore,

A(0, x) >
2 log(3x + 3)

log 3
−

2 log 5

log 3
for all x ≥ 1.

This completes the proof of Theorem 2.
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