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Abstract

Let F(z) =
∑

n>1 fnzn be the generating series of the regular paperfolding sequence.
For a real number α the irrationality exponent µ(α), of α, is defined as the supremum
of the set of real numbers µ such that the inequality |α − p/q| < q−µ has infinitely
many solutions (p, q) ∈ Z × N. In this paper, using a method introduced by Bugeaud,
we prove that

µ(F(1/b)) 6
275331112987

137522851840
= 2.002075359 · · ·

for all integers b > 2. This improves upon the previous bound of µ(F(1/b)) 6 5 given
by Adamczewski and Rivoal.
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1 A tale unfolded, and unfolded, and unfolded, and . . .

We consider a piece of paper, and choose and edge. We fold the paper in half towards the
chosen edge, then we fold it in half again towards the chosen edge, and repeat the process
indefinitely. Unfolding the paper, we are left with a sequence of ridges and valleys. Assign
to each ridge the value 0, and to each valley the value 1. Such a sequence of 0s and 1s is
called a paperfolding sequence.

Now, suppose that the paper was horizontal to start out with and consider the two
possible folds, say “up” (which we call an up–fold) and “down” (which we call a down–fold),
as indicated in Figure 1.
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Figure 1: Orientations of up– and down–folds.

In general, there is no reason to prefer one fold choice over the other, but some choices are
more traditional than others and have attracted more interest.

The most traditional choice made by paperfolders is to choose the up–fold only; the
resulting sequence of 0s and 1s is called the regular paperfolding sequence, which we will
denote by f := {fn}n>1. The sequence starts

f = {1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, . . .}.

Denote by F(z) the generating series of the regular paperfolding sequence f = {fn}n>1; that
is,

F(z) :=
∑

n>1

fnz
n.

Note that F(z) converges in the region |z| < 1. Now let b > 2 be an integer. We refer to the
numbers F(1/b) as regular paperfolding numbers.

It turns out that the regular paperfolding sequence can be produced by a finite automa-
ton; in particular f is 2-automatic and is produced by the automaton in Figure 2. Numbers
that can be produced by finite automata are very simple from the point of view of computa-
tional complexity, and as such the arithmetical properties of automatic numbers are of great
interest; see [4] for more details and specific definitions regarding automatic sequences and
[1, 2] for Diophantine properties related to automatic numbers.

Let ξ be a real number. The irrationality exponent µ(ξ), of the real number ξ, is defined
as the supremum of set of real numbers µ such that the inequality

∣

∣

∣

∣

ξ −
p

q

∣

∣

∣

∣

<
1

qµ

has infinitely many solutions (p, q) ∈ Z × N.
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Figure 2: The generating 2–automaton of the regular paperfolding sequence.

In 2009, Adamczewski and Rivoal [3] showed that µ(F(1/b)) 6 5 for each integer b > 2.
The main result of this paper is to improve upon their result. In particular, we prove that

Theorem 1. For all integers b > 2 we have

µ (F (1/b)) 6
275331112987

137522851840
= 2.002075359 · · · .

Our proof of Theorem 1 will mostly follow the method outlined by Bugeaud in [6], but
with the use of a computation. The steps are as follows: get a useful rational function
approximation to F(z), exploit a functional equation satisfied by F(z) to make this approx-
imation even more useful, and then turn these functional rational approximations into true
rational approximations to the number F(1/b). This method can be thought of as using
ideas of Mahler’s method in transcendence theory piggy–backed onto Padé’s approximation
theory. Combining this with a computation, we are able to yield the desired result.

2 Useful observations

In this section, we highlight some useful facts about the regular paperfolding sequence; see
[7, 8, 9, 11, 12, 13] for details and further information on paperfolding sequences.

The regular paperfolding sequence f = {fn}n>1 satisfies for all n > 0 the recurrences

f4n+1 = 1, f4n+3 = 0, and f2(n+1) = f(n+1).

Viewing the regular paperfolding sequence in the light of these recurrences proves extremely
useful for our purposes as they are equivalent to the generating series F(z) satisfying the
Mahler–type functional equation

F(z2) = F(z) −
z

1 − z4
. (1)

By applying (1) multiple times, for all m > 1 we have that

F(z2m

) = F(z) −
m−1
∑

j=0

z2j

1 − z2j+2
. (2)
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3 Hankel determinants and rational approximations

To apply Bugeaud’s method, we require several definitions and lemmas.
Let a = {an}n>1. The n–th Hankel matrix H1

n(a) of the sequence a is the n × n matrix

H1
n(a) := (ai+j−1)16i,j6n.

The n–th Hankel determinant is denoted det H1
n(a).

Given an analytic function G(z), the rational function R(x), whose numerator has degree
bounded by m and denominator has degree bounded by n, is the [m/n]G Padé approximant
to G(z) provided

G(z) − R(z) = O(zm+n+1).

Connecting Hankel determinants to Padé approximants, we will use the following lemma;
see [5, Page 35] (as stated this is not verbatim the result cited; it is the version of the result
for sequences starting at n = 1 as opposed to sequences starting at n = 0).

Lemma 2 (Brezinski [5]). Let c = {cn}n>1 and C(z) =
∑

n>1 cnz
n ∈ Z[[z]] with |z| < 1. If

det H1
k(c) 6= 0, then the [k/k]C Padé approximant exists and satisfies

C(z) − [k/k]C =
det H1

k+1(c)

det H1
k(c)

z2k+1 + O(z2k+2).

We require the following two lemmas, the first is a result of Adamczewski and Rivoal [3,
Lemma 4.1] and the second is a slight, though extremely necessary, modification of Lemma
2 of [6] (we have included its proof for completeness).

Lemma 3 (Adamczewski and Rivoal [3]). Let ξ, δ, ρ and ϑ be real numbers such that 0 <
δ 6 ρ and ϑ > 1. Let us assume that there exists a sequence {pn/qn}n>1 of rational numbers
and some positive constants c0, c1 and c2 such that both

qn < qn+1 6 c0q
ϑ
n,

and
c1

q1+ρ
n

6
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∣
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6
c2

q1+δ
n

.

Then we have that

µ(ξ) 6 (1 + ρ)
ϑ

δ
.

Lemma 4. Let K > 1 and n0 be positive integers. Let {aj}j>1 be the increasing sequence of
integers composed of all the numbers of the form k2n, where n > n0 and k ranges over all
the odd integers in [2K−1 + 1, 2K + 1]. Then

aj+1 6

(

2K−1 + 3

2K−1 + 1

)

aj.
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Proof. Let n be large enough and consider the increasing sequence {aj}j>1 of all integers of
the form k2n where k is an odd number in [2K−1 +1, 2K +1]. Note that for a given j we have
that for some m and some odd number a with 1 6 a 6 2K−1 +1 we have aj = 2m(2K−1 + a).
We consider two cases.

If a < 2K−1 + 1, then aj+1 6 2m(2K−1 + a + 2), so that

aj+1

aj

6
2K−1 + a + 2

2K−1 + a
6

2K−1 + 3

2K−1 + 1
.

If a = 2K−1 + 1, then aj+1 6 2m+1(2K−1 + 1) = 2m(2K + 2), so that

aj+1

aj

6
2K + 2

2K + 1
6

2K−1 + 3

2K−1 + 1
.

This proves the lemma.

In order to use Lemma 2, we give the following computational result.

Lemma 5. For all k 6 213 + 3 we have that det H1
k(f) 6= 0.

Lemma 5 is provided by a computation; see Appendix A for the C++ program written for this
lemma. The computation was parallelized in a trivial manner: node i ∈ [1, P ] calculates the
determinants of H1

P ·j+i(f) for j = 1, . . . , N and N as large as possible. The implementation
uses the GNU Scientific Library [10], particularly those commands that do LU-decomposition
and determinants on matrices of massive size. (Doing an LU-decomposition—in place—
before the determinant calculation improves the calculation.)

This result allows us apply Lemma 4 with K = 13. One would like to show that all
such determinants are nonzero, but this seems a daunting task at the moment, though in
the future one may be more determined; see the section on Concluding Remarks for further
discussion on this topic.

4 Proof of the main result

Proof of Theorem 1. Throughout this proof we will assume that |z| < 1 so that our big-O
terms have meaning.

By Lemma 2 and Lemma 5, for all k 6 213 + 3 there exist polynomials Pk,0(z), Qk,0(z) ∈
Z[z], with

deg Pk,0(z) 6 k and deg Qk,0(z) 6 k,

and a nonzero hk ∈ Q such that

F(z) −
Pk,0(z)

Qk,0(z)
= hkz

2k+1 + O(z2k+2).

Thus, sending z 7→ z2m
we have that

F(z2m

) −
Pk,0(z

2m
)

Qk,0(z2m)
= hkz

2m(2k+1) + O(z2m(2k+2)),
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and using the functional equation (2) for F(z) it follows that

F(z) −
m−1
∑

j=0

z2j

1 − z2j+2
−

Pk,0(z
2m

)

Qk,0(z2m)
= hkz

2m(2k+1) + O(z2m(2k+2)).

Define Pk,m(z) and Qk,m(z) by

Pk,m(z)

Qk,m(z)
:=

m−1
∑

j=0

z2j

1 − z2j+2
+

Pk,0(z
2m

)

Qk,0(z2m)
,

so that

F(z) −
Pk,m(z)

Qk,m(z)
= hkz

2m(2k+1) + O(z2m(2k+2)).

Let b > 2 be an integer and z = 1/b; for ε > 0, we have for large enough m, say
m > m0(k), that

(1 − ε)hkb
−2m(2k+1)

6

∣

∣

∣

∣

F(1/b) −
Pk,m(1/b)

Qk,m(1/b)

∣

∣

∣

∣

6 (1 + ε)hkb
−2m(2k+1).

It remains to determine the degree of Pk,m(z) and Qk,m(z). To this end, note that writing

Pm(z)

Qm(z)
=

m−1
∑

j=0

z2j

1 − z2j+2
,

we have that
deg Qm(z) 6 deg(1 − z2m+1

) = 2m+1

and that

deg Pm(z) 6 max
06j6m−1

{

z2j
(1 − z2m+1

)

1 − z2j+2

}

= max
06j6m−1

{2m+1 − 2j+2 − 2j}

= 2m+1 − 5

6 2m+1.

Using the definitions of Pm(z) and Qm(z),

deg Qk,m(z) = deg Qm(z)Qk,0(z
2m

) = deg Qm(z) + deg Qk,0(z
2m

) < 2m(k + 2),

and
deg Pk,m(z) = max{deg Pm(z)Qk,0(z

2m

), Pk,0(z
2m

)} < 2m(k + 2).

We continue following Bugeaud [6] by defining the integers

pk,m := b2m(k+2)Pk,m(1/b)
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and
qk,m := b2m(k+2)Qk,m(1/b).

Since hk is nonzero there exist positive real constants ci(k) (i = 1, . . . , 4) depending only
on k so that

c1(k)b2m(k+2)
6 qk,m 6 c2(k)b2m(k+2), (3)

and
c3(k)

b2m+1(k+1/2)
6

∣

∣

∣

∣

F(1/b) −
pk,m

qk,m

∣

∣

∣

∣

6
c4(k)

b2m+1(k+1/2)
. (4)

Note that

2m(k + 2) = 2m(k + 1/2)

(

k + 2

k + 1/2

)

,

so that by (3) there are positive constants c5(k) and c6(k) such that

c5(k)

q
2·

k+1/2

k+2

k,m

6
1

b2m+1(k+1/2)
6

c6(k)

q
2·

k+1/2

k+2

k,m

.

Applying this to (4) yields

c3(k)c5(k)

q
1+ k−1

k+2

k,m

6

∣

∣

∣

∣

F(1/b) −
pk,m

qk,m

∣

∣

∣

∣

6
c4(k)c6(k)

q
1+ k−1

k+2

k,m

. (5)

Let K > 3 be an integer and denote by m1(k) an integer such that the sequence
{qk−2,m}m>m1(k) is increasing. We define the sequence of positive integers {QK,n}n>1 as
the sequence of all the integers qk−2,m with k odd, 2K−1 − 1 6 k 6 2K − 1, m > m1(k), put
in increasing order. Thus by (3), (5), and Lemma 4, there exist positive constants C1(K),
C2(K) and C3(K) such that both

QK,n < QK,n+1 6 C1(K) · Q
2
K−1

+3

2K−1+1

K,n

and
C2(K)

Q
1+ 2K

2K+3

K,n

6

∣

∣

∣

∣

F(1/b) −
PK,n

QK,n

∣

∣

∣

∣

6
C3(K)

Q
1+ 2K−1

2K−1+3

K,n

,

where we have chosen the PK,n as the pk,m that corresponds with the identity QK,n = qk,m.

Applying Lemma 3 with ρ = 2K

2K+3
, δ = 2K−1

2K−1+3
and ϑ(K) = 2K−1+3

2K−1+1
, we have that

µ(F(1/b)) 6
(2K+1 + 3)(2K−1 + 3)2

(2K−1 + 1)(2K + 3)2K−1
. (6)

Since we may take K up to 13, we have that

µ(F(1/b)) 6
275331112987

137522851840
= 2.002075359 · · ·

for all b > 2. This proves the theorem.
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5 Concluding remarks

Note that using (6), the larger the available K the better your bound. Thus (6) provides
the following immediate corollary.

Corollary 6. If det H1
k(f) 6= 0 for all k, then µ(F(1/b)) = 2 for all integers b > 2.

While the proof of the assumption in the previous corollary is not in hand, computational
evidence lends some credence. Indeed, using some simple computations we are led to believe
that the sequence {det H1

n(f)}n>1 satisfies some nice properties. One such property that
could be conjectured is that if one writes |H1

n(f)| for the determinant modulo 2, we have

∑

n>1

|H1
n(f)|zn =

z + z2 + z5 + z8 + z9 + z10

1 − z10
;

that is, the sequence {|H1
n(f)}n>1 is periodic with period 10 and 6 out of every 10 values is

odd.

6 Acknowledgements

The first author thanks Yann Bugeaud for introducing him to this beautiful topic and for
providing a copy of his preprint [6]. Both authors thank the anonymous referee for valuable
comments which improved the exposition of this paper.

A C++ program used for Lemma 5

#include <iomanip>
#include <fstream>
#include <iostream>
#include <sys / time . h>
#include <g s l / g s l m a t r i x f l o a t . h>
#include <g s l / g s l pe rmutat i on . h>
#include <g s l / g s l l i n a l g . h>

using namespace std ;

int as ( int n) {
// genera te paper f o l d i n g sequence
i f (n % 4 == 1) {

return 1 ;
} else i f (n % 4 == 3){

return 0 ;
} else {

return as (n /2 ) ;
}

}
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int main ( int argc , char ∗argv [ ] ) {
int n ;

o fstream out f ( argv [ 1 ] ) ;

for (n=8555; n>0; n+=2) {
// c rea t e an n x n matrix
g s l mat r i x ∗ gs lMatr ix = g s l ma t r i x a l l o c (n , n ) ;

// f i l l matrix
for ( int i = 0 ; i < n ; i++) {

for ( int j = 0 ; j < n ; j++) {
g s l ma t r i x s e t ( gs lMatr ix , i , j , as ( i+1+j ) ) ;

}
}

int s i gn = 0 ;
g s l pe rmutat i on ∗perm = g s l p e rmu t a t i o n a l l o c (n ) ;
g s l l ina lg LU decomp ( gs lMatr ix , perm , &s i gn ) ;

int r e s ;

// t e s t f o r zero−determinant
i f ( g s l l i n a l g LU de t ( gs lMatr ix , s i gn )==0) {

r e s = 1 ;
} else {

r e s = 0 ;
} ;

g s l ma t r i x f r e e ( gs lMatr ix ) ;
g s l p e rmu t a t i o n f r e e (perm ) ;

}

return 0 ;
}

References

[1] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers. I. Expan-
sions in integer bases, Ann. of Math. (2) 165 (2007), 547–565.

[2] B. Adamczewski and J. Cassaigne, Diophantine properties of real numbers generated
by finite automata, Compos. Math. 142 (2006), 1351–1372.

[3] B. Adamczewski and T. Rivoal, Irrationality measures for some automatic real numbers,
Math. Proc. Cambridge Philos. Soc. 147 (2009), 659–678.

[4] J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge University Press, Cam-
bridge, 2003.

9



[5] C. Brezinski, Padé-type Approximation and General Orthogonal Polynomials, Interna-
tional Series of Numerical Mathematics, Vol. 50, Birkhäuser Verlag, 1980.
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