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Abstract

Let n be a positive integer and let A be a nonempty finite set of positive integers.
We say that A is relatively prime if gcd(A) = 1, and that A is relatively prime to n if
gcd(A, n) = 1. In this work we count the number of nonempty subsets of A that are
relatively prime and the number of nonempty subsets of A that are relatively prime
to n. Related formulas are also obtained for the number of such subsets having some
fixed cardinality. This extends previous work for the case where A is an interval of
successive integers. As an application we give some identities involving Möbius and
Mertens functions, which provide solutions to certain Diophantine equations.

1 Introduction

Throughout let n and α be positive integers and let A be a nonempty finite set of positive
integers. Let #A = |A| denote the cardinality of A. We suppose in this paper that α ≤ |A|.
Let µ be the Möbius function, let M(n) =

∑n

d=1 µ(d) be the Mertens function, and let
⌊x⌋ be the floor of x. If m and n are positive integers such that m ≤ n, then we let
[m,n] = {m,m+1, . . . , n}. The set A is called relatively prime if gcd(A) = 1 and it is called
relatively prime to n if gcd(A ∪ {n}) = gcd(A, n) = 1.
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Definition 1. Let

f(A) = #{X ⊆ A : X 6= ∅ and gcd(X) = 1},

fα(A) = #{X ⊆ A : #X = α and gcd(X) = 1},

Φ(A, n) = #{X ⊆ A : X 6= ∅ and gcd(X,n) = 1},

Φα(A, n) = #{X ⊆ A : #X = α and gcd(X,n) = 1}.

Nathanson [5] introduced, among others, the functions f(n), fα(n), Φ(n), and Φα(n) (in
our terminology f([1, n]), fα([1, n]), Φ([1, n], n), and Φα([1, n], n) respectively) and found
exact formulas along with asymptotic estimates for each of these functions. Formulas
for these functions along with asymptotic estimates are found in El Bachraoui [3] and
Nathanson and Orosz [6] for A = [m,n] and in El Bachraoui [4] for A = [1,m]. Ayad and
Kihel [1, 2] considered extensions to sets in arithmetic progression and obtained identities for
these functions for A = [l,m] as consequences. Formulas connecting the functions Φk(n) and
fk(n) are found in Tang [7] and formulas for other related functions along with asymptotic
estimates are given by Tóth [8]. An analysis of the functions f , fα, Φ, and Φα obtained for
different cases of the set A lead us to more general formulas for any nonempty finite set of
positive integers. For the purpose of this work we give these functions for A = [l,m].

Theorem 2. We have

(a) f([l,m]) =
m

∑

d=1

µ(d)(2⌊
m
d
⌋−⌊ l−1

d
⌋ − 1),

(b) fα([l,m]) =
m

∑

d=1

µ(d)

(

⌊m
d
⌋ − ⌊ l−1

d
⌋

α

)

,

(c) Φ([l,m], n) =
∑

d|n

µ(d)2⌊
m
d
⌋−⌊ l−1

d
⌋,

(d) φα([l,m], n) =
∑

d|n

µ(d)

(

⌊m
d
⌋ − ⌊ l−1

d
⌋

α

)

.

By way of example, using our formula for f(A) we will get that if gcd(m,n) = 1, then
the following expression

n
∑

d=1

µ(d)2⌊
n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋

boils down to the much more simple expression
∑n

d=1 µ(d) = M(n), see Theorem 9 below.
In terms of Diophantine equations, this means that the integer pair (2, 1) is a solution to

n
∑

d=1

µ(d)
(

x⌊n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋ − y⌊n

d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋
)

= 1 ,

if gcd(m,n) = 1, see Corollary 10(a). Related to this, an open question is whether or not
other real or integer solutions exist for the previous equation.
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2 Phi functions for integer sets

Theorem 3. We have

(a) Φ(A, n) =
∑

d|n

µ(d)2
P

a∈A(⌊a
d
⌋−⌊a−1

d
⌋).

(b) Φα(A, n) =
∑

d|n

µ(d)

(∑

a∈A(⌊a
d
⌋ − ⌊a−1

d
⌋)

α

)

.

Proof. (a) We use induction on |A|. If A = {a} = [a, a], then by Theorem 2 (c)

Φ(A, n) =
∑

d|n

µ(d)2⌊
a
d
⌋−⌊a−1

d
⌋.

Assume that A = {a1, a2, . . . , ak} and that the identity holds for {a2, . . . , ak}. Then

Φ({a1, . . . , ak}, n) = Φ({a2, . . . , ak}, n) + Φ({a2, . . . , ak}, gcd(a1, n))

=
∑

d|n

µ(d)2
Pk

i=2(⌊
ai
d
⌋−⌊

ai−1

d
⌋) +

∑

d|(a1,n)

µ(d)2
Pk

i=2(⌊
ai
d
⌋−⌊

ai−1

d
⌋)

= 2
∑

d|(a1,n)

µ(d)2
Pk

i=2(⌊
ai
d
⌋−⌊

ai−1

d
⌋) +

∑

d|n
d∤a1

µ(d)2
Pk

i=2(⌊
ai
d
⌋−⌊

ai−1

d
⌋)

=
∑

d|(a1,n)

µ(d)2⌊
a1
d
⌋−⌊

a1−1
d

⌋2
Pk

i=2(⌊
ai
d
⌋−⌊

ai−1

d
⌋)

+
∑

d|n
d∤a1

µ(d)2
Pk

i=1(⌊
ai
d
⌋−⌊

ai−1

d
⌋)

=
∑

d|(a1,n)

µ(d)2
Pk

i=1(⌊
ai
d
⌋−⌊

ai−1

d
⌋) +

∑

d|n
d∤a1

µ(d)2
Pk

i=1(⌊
ai
d
⌋−⌊

ai−1

d
⌋)

=
∑

d|n

µ(d)2
Pk

i=1(⌊
ai
d
⌋−⌊

ai−1

d
⌋).

(b) Similar.

Corollary 4. Let l1, l2, . . . , lk and m1,m2, . . . ,mk be nonnegative integers such that li < mi

for i = 1, 2, . . . , k and mi ≤ li+1 for i = 1, 2, . . . , k − 1. Then

(a) Φ([l1 + 1,m1] ∪ [l2 + 1,m2] ∪ . . . ∪ [lk + 1,mk], n) =
∑

d|n

µ(d)2
Pk

i=1(⌊
mi
d

⌋−⌊
li
d
⌋).

(b) Φα([l1 + 1,m1] ∪ [l2 + 1,m2] ∪ . . . ∪ [lk + 1,mk], n) =
∑

d|n

µ(d)

(∑k

i=1(⌊
mi

d
⌋ − ⌊ li

d
⌋)

α

)

.
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Proof. Apply Theorem 3 to the set

A = {l1 + 1, l1 + 2, . . . ,m1, l2 + 1, l2 + 2, . . . ,m2, . . . , lk + 1, lk + 2, . . . ,mk}.

Corollary 5. If n ∈ A, then Φ(A, n) ≡ 0 mod 2.

Proof. Note first that
∑

a∈A

(

⌊a

d

⌋

−

⌊

a − 1

d

⌋)

counts the number of multiples of d in the set A. So, if n ∈ A, then evidently
∑

a∈A(⌊a
d
⌋ −

⌊a−1
d
⌋) > 0 for all divisor d of n and thus the required congruence follows by Theorem

3(a).

3 Relatively prime subsets of integer sets

Theorem 6. We have

(a) f(A) =

sup A
∑

d=1

µ(d)
(

2
P

a∈A(⌊a
d
⌋−⌊a−1

d
⌋) − 1

)

.

(b) fα(A) =

sup A
∑

d=1

µ(d)

(∑

a∈A(⌊a
d
⌋ − ⌊a−1

d
⌋)

α

)

.

Proof. (a) We use induction on |A|. If A = {a} = [a, a], then by Theorem 2 (a)

f(A) =
a

∑

d=1

µ(d)
(

2⌊
a
d
⌋−⌊a−1

d
⌋ − 1

)

.

Assume now that A = {a1, a2, . . . , ak} and that the identity is true for {a2, . . . , ak}. Without
loss of generality we may assume that a1 < sup A. Then, with the help of Theorem 3(a), we
have

f({a1, . . . , ak}) =
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= f({a2, . . . , ak}) + Φ({a2, . . . , ak}, a1))

=

sup A
∑

d=1

µ(d)
(

2
Pk

i=2(⌊
ai
d
⌋−⌊

ai−1

d
⌋) − 1

)

+
∑

d|a1

µ(d)2
Pk

i=2(⌊
ai
d
⌋−⌊

ai−1

d
⌋)

=
∑

d|a1

µ(d)
(

2
Pk

i=2(⌊
ai
d
⌋−⌊

ai−1

d
⌋) − 1

)

+

sup A
∑

d=1
d∤a1

µ(d)
(

2
Pk

i=2(⌊
ai
d
⌋−⌊

ai−1

d
⌋) − 1

)

+
∑

d|a1

µ(d)2
Pk

i=2(⌊
ai
d
⌋−⌊

ai−1

d
⌋)

= 2
∑

d|a1

µ(d)2
Pk

i=2(⌊
ai
d
⌋−⌊

ai−1

d
⌋) −

∑

d|a1

µ(d) +

sup A
∑

d=1
d∤a1

µ(d)
(

2
Pk

i=2(⌊
ai
d
⌋−⌊

ai−1

d
⌋) − 1

)

=
∑

d|a1

µ(d)
(

2
Pk

i=1(⌊
ai
d
⌋−⌊

ai−1

d
⌋) − 1

)

+

sup A
∑

d=1
d∤a1

µ(d)
(

2
Pk

i=1(⌊
ai
d
⌋−⌊

ai−1

d
⌋) − 1

)

=

sup A
∑

d=1

µ(d)
(

2
Pk

i=1(⌊
ai
d
⌋−⌊

ai−1

d
⌋) − 1

)

.

(b) Similar.

Corollary 7. Let l1, l2, . . . , lk and m1,m2, . . . ,mk be nonnegative integers such that li < mi

for i = 1, 2, . . . , k and mi ≤ li+1 for i = 1, 2, . . . , k − 1. Then

(a) f([l1 + 1,m1] ∪ [l2 + 1,m2] ∪ . . . ∪ [lk + 1,mk]) =

sup A
∑

d=1

µ(d)
(

2
Pk

i=1(⌊
mi
d

⌋−⌊
li
d
⌋) − 1

)

.

(b) fα([l1 + 1,m1] ∪ [l2 + 1,m2] ∪ . . . ∪ [lk + 1,mk], n) =

sup A
∑

d=1

µ(d)

(∑k

i=1(⌊
mi

d
⌋ − ⌊ li

d
⌋)

α

)

.

Proof. Apply Theorem 6 to the set

A = {l1 + 1, l1 + 2, . . . ,m1, l2 + 1, l2 + 2, . . . ,m2, . . . , lk + 1, lk + 2, . . . ,mk}.

Alternatively, we have the following formulas for f(A) and fα(A).

Theorem 8. Let A = {a1, a2, . . . , ak}, let τ be a permutation of {1, 2, . . . , k}, and let Aτ(j) =
{aτ(1), aτ(2), . . . , aτ(j)} for j = 1, 2, . . . , k. Then

(a) f(A) =
∑

d|aτ(1)

µ(d) +
k

∑

j=2

∑

d|aτ(j)

µ(d)2
Pj−1

i=1 (⌊
aτ(i)

d
⌋−⌊

aτ(i)−1

d
⌋).

(b) fα(A) =
k

∑

j=1

∑

d|aτ(j)

µ(d)

(∑j−1
i=1 (⌊

aτ(i)

d
⌋ − ⌊

aτ(i)−1

d
⌋)

α − 1

)

.
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Proof. For simplicity we assume that τ is the identity permutation. As to part (a) we have
with the help of Theorem 3

f({a1, . . . , ak}) = f({a1, . . . , ak−1}) + Φ({a1, . . . , ak−1}, ak)

= f({a1}) + Φ({a1}, a2) + . . . + Φ({a1, . . . , ak−1}, ak)

=
∑

d|a1

µ(d) +
∑

d|a2

µ(d)2⌊
a1
d
⌋−⌊

a1−1
d ⌋

+ . . . +
∑

d|ak

µ(d)2
Pk−1

i=1 (⌊
ai
d
⌋−⌊

ai−1

d
⌋)

=
∑

d|a1

µ(d) +
k

∑

j=2

∑

d|aj

µ(d)2
Pj−1

i=1 (⌊
ai
d
⌋−⌊

ai−1

d
⌋),

where the third formula follows from Theorem 3. Part (b) follows similarly.

4 Combinatorial identities and Diophantine equations

We now give some identities involving Mertens function which provide solutions to a type of
Diophantine equations.

Theorem 9. Let m and n be positive integers such that 1 < m < n. Then

n
∑

d=1

µ(d)2⌊
n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋ =

{

M(n), if gcd(m,n) > 1;

1 + M(n), if gcd(m,n) = 1.

Proof. If gcd(m,n) > 1, then clearly have f({m,n}) = 0. If 1 < m ≤ n and gcd(m,n) = 1,
then clearly f({m,n}) = 1. On the other hand, by Theorem 6 (a) applied to the set {m,n}
we have

f({m,n}) =
n

∑

d=1

µ(d)
(

2⌊
n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋ − 1

)

=
n

∑

d=1

µ(d)2⌊
n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋ − M(n).

Combining the identities for f({m,n}) for the case gcd(m,n) > 1 gives

M(n) =
n

∑

d=1

µ(d)2⌊
n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋

and for the case 1 < m ≤ n and gcd(m,n) = 1 gives

1 + M(n) =
n

∑

d=1

µ(d)2⌊
n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋.

This completes the proof.
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In terms of Diophantine equations Theorem 9 translates into the following.

Corollary 10. Let 1 < m < n be positive integers. Then (a) If gcd(m,n) = 1, then (2, 1) is
a solution to the equation

n
∑

d=1

µ(d)
(

x⌊n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋ − y⌊n

d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋
)

= 1.

(b) If gcd(m,n) > 1, then (1, 2) and (2, 1) are solutions to the equation

n
∑

d=1

µ(d)
(

x⌊n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋ − y⌊n

d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋
)

= 0.

Proof. Immediate from Theorem 9.

Theorem 11. Let l, m, and n be integers such that 1 < l < m < n. Then

n
∑

d=1

µ(d)2⌊
n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋+⌊ l

d
⌋−⌊ l−1

d
⌋ =































4 + M(n), if gcd(l,m) = gcd(l, n) = gcd(m,n) = 1;

3 + M(n), if exactly two pairs from {l,m, n} are co-prime;

2 + M(n), if exactly one pair from {l,m, n} is co-prime;

1 + M(n), if no pair from {l,m, n} is co-prime and gcd(l,m, n) = 1;

M(n), otherwise.

Proof. Suppose that 1 < l < m < n and gcd(l,m) = gcd(l, n) = gcd(m,n) = 1. Then the
relatively prime subsets of {l,m, n} are

{l,m}, {l, n}, {m,n}, and {l,m, n},

implying that f({l,m, n}) = 4. Combining this with the formula for f({l,m, n}) obtained
by using Theorem 6 (a) we get

n
∑

d=1

µ(d)(2⌊
n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋+⌊ l

d
⌋−⌊ l−1

d
⌋ − 1) = 4,

which is equivalent to the first case of the desired identity. As to the second case, if exactly
two pairs are co-prime, then f({l,m, n}) = 3 and the result follows from Theorem 6 (a).
The remaining three cases follow similarly and the proof is completed.

In terms of Diophantine equations Theorem 11 means the following.
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Corollary 12. Let l,m, n be integers such that 1 < l < m < n. Then
(a) If gcd(l,m) = gcd(l, n) = gcd(m,n) = 1, then (2, 1) is a solution to

n
∑

d=1

µ(d)
(

x⌊n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋ − y⌊n

d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋
)

= 4.

(b) If exactly two pairs from {l,m, n} are co-prime, then (2, 1) is a solution to

n
∑

d=1

µ(d)
(

x⌊n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋ − y⌊n

d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋
)

= 3.

(c) If exactly one pair from {l,m, n} is co-prime, then (2, 1) is a solution to

n
∑

d=1

µ(d)
(

x⌊n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋ − y⌊n

d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋
)

= 2.

(d) If no pair from {l,m, n} is co-prime and gcd(l,m, n) = 1, then (2, 1) is a solution to

n
∑

d=1

µ(d)
(

x⌊n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋ − y⌊n

d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋
)

= 1.

(e) Otherwise, the integer pairs (1, 2) and (2, 1) are solutions to

n
∑

d=1

µ(d)
(

x⌊n
d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋ − y⌊n

d
⌋−⌊n−1

d
⌋+⌊m

d
⌋−⌊m−1

d
⌋
)

= 0.

Proof. Straightforward from Theorem 11.

We close the paper by some open questions which are suggested by our results.

Open Questions.

Question 1. Do the Diophantine equations in Corollary 10 and Corollary 12 have any
other real solutions?
Question 2. Do the Diophantine equations in Corollary 10 and Corollary 12 have any other
integer solutions?
Question 3. It is clear that any real pair (x, x) is a solution to the equation in part (b) of
Corollary 10 and to the equation in part (e) of Corollary 12. These solutions might be called
trivial. Is the number of non-trivial integer solutions to the equations in Corollary 10 and
Corollary 12 finite?
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