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Abstract

Following a statement of the well-known Erdés-Turan conjecture, Erd6s mentioned
the following even stronger conjecture: if the n-th term a,, of a sequence A of positive
integers is bounded by an?, for some positive real constant «, then the number of
representations of n as a sum of two terms from A is an unbounded function of n.
Here we show that if a,, differs from an? (or from a quadratic polynomial with rational
coefficients g(n)) by at most o(y/logn), then the number of representations function is
indeed unbounded.

1 Introduction

In 1941, Erd6s and Turan [5] conjectured that if a sequence A = {a; < as <---<a, <---}
of positive integers is an asymptotic basis of the set N = {0,1,2,...} of natural numbers,
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i.e., if all large enough integers n are sums of two terms from A, then the number of rep-
resentations r4(n) = |{(a;,a;) € A X A: a; +a; = n}| of n, as a sum of two terms from
A, is unbounded. This is the well-known “Erdds-Turén conjecture”. A few years later (the
earliest we are aware of), in 1955 and 1956, Erdés [6], and Erdds and Fuchs [7] asserted
that an even stronger conjecture would be that if a,, < an?, for all n, with a real constant
a > 0, then limsupra(n) = co. This came to be known as the “generalized Erdés-Turdn
conjecture”. It is indeed stronger than the former one, since if A is an asymptotic basis of
N, then a,, < n? [13, p. 105].

Much work has been done concerning the “Erdés-Turdn conjecture”, e.g., [3, 7, 8, 16, 1,
21, 19], including disproofs of analogues of this conjecture in many semigroups other than N,
e.g., [20, 16, 17, 11, 12, 2, 14]. In contrast, much less has been done about the “generalized
Erdés-Turdn conjecture”. In a previous, co-authored, paper [9], we studied the class of
sequences that can replace {an?} in the condition a, < an? for all n, to imply that r(n)
is unbounded, and we gave several statements equivalent to the “generalized Erdés-Turan
conjecture”. In particular, we showed that if the conjecture holds with o = 1, then it holds
with any « > 0. Moreover, it is not difficult to see that if a, = o(n?), then the conjecture
holds [9, 10]. So we can essentially focus on the case where a,, is not too small compared to
n?, while bounded by a constant multiple of n?. In particular, we can consider the case where
a, is, in a sense, “close” to a constant multiple of n2, or to a quadratic polynomial in n. This
is basically the goal of the present paper. We thus show that if |a, —an?| = o (\/ log n), with
a real constant a > 0, or if |a, — ¢(n)| = o(y/logn), where ¢(n) is a quadratic polynomial
with rational coefficients, then the representation function r4(n) of A is unbounded.

2  Technical tools

Let C ={c; < g < -+ < ¢, <---} C R be a strictly increasing sequence, in the set
R* of real numbers > 0. For any =z € R*, let Clz] = C N [0,z2] = {c€ C:c <z}, and
C (z) = |Clx]| the cardinality of C[z]. Note that C'(z) is finite for every z > 0 if and only if
the sequence C'is unbounded. This is in particular true when ¢, .1 — ¢, > 1 for large enough
n, and more particularly if C'is a subset of the set N ={0,1,2,3,...} of natural numbers.

The sumset C' + C'is defined by C + C = {c+d: (¢,d) € C x C}.

Now let A = {a; < ay < --- < a, < ---} CN be a strictly increasing sequence of
natural numbers. In addition to the above notions, valid for A as for C, the representation
function 74 of A is defined by ra(n) = [{(a,b) € Ax A:a+b=n}|, for n € N, and we set
s(A) =supra(n),in N=NU{co}.

neN
In the sequel, i, j, k,l,m,n generally denote positive integers, unless it is specified that

they lie in N, i.e., that they are integers > 0, while z,y denote real numbers > 0, i.e., they
lie in RT.

Note that if A ={a; <ay <---<a, <---} C N where N* = {1,2,3,...} is the set of
positive integers, then a, > n for all n € N*.

For any = € R, let

Ua(x)=[{(a,b) e AxA:a+b<uz} = Z ra(n). (1)

0<n<x



Then
Uae) = S mam < S s(A) = (A+A) (2) - 5(A) 2)

ne(A+A)|z] ne(A+A)[z]

and

Ax) ={(a,b) e AxA:ab<z} <|{(a,d) € Ax A:a+b<2z} =Us(2z) <

< (A+A4)(2z) - s(A), (3)
so that, for all x € RT,
(A+ A) (22) (A)> 1. )
A(x)
Define Ao AV (D
h(A) = liming AT A (20) (5)
Lemma 1. If h(A) =0, then s (A) = cc.
Proof. This follows immediately from (4). O
A A+ A
Corollary 2. If liminf (z) > 0 and lim infﬂ =0, then h(A) =0, and therefore
n—00 \/E n—o00 xr
s(A) = oo.
Proof. By assumption, lim sup A‘{E) = —1 sy s finite, while lim inf %‘M = 0. So, using
oo T LTS nee
properties of the lower and upper limits, we get
A2 (A A)22) (VT ]
MA) = liminf 0o — = 2liminf —— Ay ) =
2
<2 liminfM - lim sup VT =0
T—00 2x 200 A(T)
The conclusion follows from Lemma 2.1. O]
Lemma 3. Let A = {a; < as < -+ < a, < ---} C N* be a strictly increasing sequence

of positive integers, and C' = {¢; < ca < +++ < ¢, < -} C RT. For x € R, set e(x) =
sup |a, — ¢,|. We then have, for all x € RT,

(A+A)(x) <(de(x)+1)- (C+C)(x+2e(x)). (6)

If we further assume that ¢y > 1 and c,y1 — ¢, > 1 for allm > 1, we then also have, for
all v € R,
A(z) > C(x —e(x)). (7)



Proof. Note first that the function e(z) is increasing, in the sense that x < y implies e(x) <

e(y).

Note also that, since A C N*, we have ¢ < q; for all 7. So, for n < z, if n = a; + a;,
then ¢ < a; <n <z and similarly j < z, and therefore |n —¢; — ¢j| = |a; + a; — ¢; — ¢j| <
la; — ;| + |a; — ¢j| < 2e(x). Hence

(A+A)[z]={n<z:3i,j, n=a;,+a;} C{n<z:3i7 [n—c—c| <2(z)},

and setting s =c¢; +c¢j, weget s € C+C and |n—s| <2e(x), so that s <n+2e(z) <
x + 2e(x), and therefore

{n<z:3i,j,|In—c —c¢| <2e(x)} C{n:3s e (C+ C)[z+ 2e(x]),|n —s| < 2e(x)}.

Thus
(A4 A)[z] C U ([s — 2e(x), s + 2e(x)] NN),
s€(C+C) [z42¢e(z)]

and therefore

(A+A)(z) < > (de(z) +1) = (C +C) (x + 2e(x)) - (de(x) +1).

ne(C+C)[z+2e(x)]

This proves (6).

Now, if ¢; > 1 and ¢,11 — ¢, > 1 for all n, then ¢, > n for all n. So if ¢, < z — e(x),
then n < ¢, <z, so that |a, — ¢,| < e(x), and therefore a,, < ¢, + e(z) < z.

Hence {n:c, <z —e(x)} C{n:a, <z}, and thus

Clr—e(@)) =Hn: e <w—e(@)} <{n:a, <a}| = Alx),
which proves (7). O

Lemma 4. Let A={a1 <ay < - <a, < -} CNand C ={c1 <cg < - <¢,<
<} C R be two strictly increasing sequences in N* and in R, respectively. For x € RT,
set e(x) = supla, — c,|. Assume that e(x) is not identically zero, and that ¢y > 1 and

n<z

Cni1 — Cn > 1 for all n > 1. Then the condition

i €(22) - (C + C) (22 + 2¢ (22))
o Clo— (@)

=0 (H)

implies that h (A) = 0, and therefore s (A) = oc.

Proof. Since e(z) is increasing and not identically zero, there exists a real constant ¢t > 0

such that e(z) > i for large enough x. In view of the inequalities (6) and (7) in Lemma 2.3,

we have

(A+ A) (2x)

(4de (2z) +1) - (C+C) (2x + 2e(22))
Al(z)” '

C(z —e(z))’

<



Moreover, for large enough x, we have t-e(2x) > 1, and therefore 4e (2z)4+1 < (4 +t)-e (2x).
Thus

(A—l—A)gZ:c) <(4+1) e(2z) - (C+0) (2$—i2-2€(233))’
A(x) C(z —e(x))
A+ A) (2
for large enough x, so that the condition (H) implies that lim inf% =0, ie.,
T—00 x
h (A) = 0, and therfore, by Lemma 2.1, s(A) = oc. O

Remark 5. The scope of Lemma 2.4 is broader than it seems to be. Indeed, for a subset A of
N, modifying, removing or adding finitely many elements does not modify the fact that s(A)
is infinite or finite. Thus Lemma 2.4 can be used in more general situations than specified
by its assumptions, as shown by the next result.

Fundamental Lemma 6. Let B = {b; < by < -+- < b, < ---} C Nand D = {d; <
dy < -+ <dy <---} CRT be two strictly increasing sequences in N and in R™ respectively.
Assume that there exists an increasing function f : RT — R and a positive integer m such
that dp, > 1, dyyy —dp > 1 forn > m, and sup |b, —d,| < f(z) for x > m. Then the

m<n<z
condition

oo £ (22) - (D + D) (22 + 2f (22))

e Do~ F(2)) - "
implies that s (B) = oc.

Proof. For n € N* set a, = byym and ¢, = dpypm, and let A = {a1 <ay <---<a, <---} C
N*and C ={c; <y <-+-<¢, < -} CR" be the strictly increasing sequences, in N* and
R*, obtained by deleting the first m terms of B and D respectively. Then ¢; = dp,11 > 2
and ¢, 1 — ¢y = dpymy1 — dpem > 1 for n > 1. Moreover, setting e (x) = sup |a,, — ¢, |, for

n<x

x € RT, and using the assumptions on B and D, we have

e(z) = sup|a, — | =sup |bpim — dpnem| =  sup | —di| < f(x + m).

n<x n<x m<i<z+m
Thus, setting y = z+m, we have e(x) < f(y), and since the functions e and f are increasing,
e(2z) < f(2x+m) < f(2y).

Also, taking into account that C' C D and C+C C D+ D, so that (C+ C) (t) < (D + D) (t)
for all t € RT, and that the function ¢ — (C' 4 C)(¢) is increasing, we get

(C+C)2r+2e(22)) <(C+C)2y+2f(2y)) < (D+ D)2y +2f(2y)).

Thus
e(2z) - (C+C) (2 +2¢(22)) < f(2y) - (D + D) (2y +2f (2y)) , (8)

for x € RT, and y = 2+ m.



Moreover, for t > m, we have
Dt)—C(t)=|{d, €D :d, <t} —{ch, € C:cp=dpim <t} =m
and
Cty—Ct—m)=H{c, €C:t—m<c, <t} <m,

since ¢,41 — ¢, > 1 for all n € N*| so that C'(t) < C(t—m)+mand D (t) = C(t) + m <
C (t —m) + 2m. Therefore C' (t —m) > D (t) — 2m for t > m. Hence, taking into account
that the function t — C(t) is increasing and that e(z) < f(y) we get, for large enough z,

Cle—e(@)=Cx—fu)=Cly—m=f(y)=D(y—fly)—2m. (9)
It follows from (8) and (9) that, for large enough « and for y = z + m,
e(2z) - (C+C) (22 + 2¢(22)) - fQy)-(D+ D)2y +2f(2y))
Clr —e(x))? T (D f)-2m)
Set P(z) = f(2z)-(D+ D)2z +2f (2z)) and Q (z) = D (x — f(z)), and suppose that the

condition (K) is satisfied, i.e., that liminf—=

(10)

= (. Then there exists a strictly increasing

P (z, . :
sequence (), -, in RT, tending to infinity, such that lim % = 0. Since P(z) is an
- n—00 Ty,

increasing unbounded function, lim P (x,) = oo, and therefore the sequence (Q (z,)),, is
n—oo el

unbounded. So there exists a subsequence (z,, ),cy- Of (2),,5, such that lim Q (z,

k—o0 ) = %%

k

while lim i"k)z = 0. Hence lim P (@) 5 = 0, and therefore
k=00 Q () k=00 (Q (ny) — 2m)
2y) - (D+ D) (2 2f (2 P
limingd (29) (D + D) (2y + f2( ) _tining (z) 0

Yoo (D (y = f(y)) —2m) 7o (Q () —2m)

It then follows from (10) that lim inf< (22) - (C + C) 22 + 2 (21)) = 0. Thus the condition
i Cla— (@)

(H) of Lemma 2.4 holds, and therefore, in view of this Lemma, s(A) = co. As A C B, it
follows that s (B) = oo too. O

Remark 7. In the statement of Lemma 2.6, we may replace D by D' = D + ~, i.e., d, by
dl =d,+v (n € N*), where v is any fixed real number, since a translation of the general
term of D does not affect the condition (K).

3 Main results

Theorem 8. Let A = {a; < ay < -+ < a, < ---} C N be a strictly increasing sequence
of natural numbers, and q(xr) = ax?® with a real number o > 0. If the function e(x) =
sup |a, — q(n)| (@ € RY) satisfies e (x) = o (v/Iogx) as x — oo, then s (A) = co.

n<x



Proof. We apply Lemma 2.6 to B = A and D = {¢(1) < ¢(2) <--- <q(n) <---}. Indeed,
the sequence (g(n)),~, is strictly increasing and unbounded, with ¢(n+1)—¢(n) = a (2n + 1)
unbounded too, so that g(n) > 1 and ¢(n +1) —g(n) > 1 for large enough n. There remains
to show that the condition (K) holds for f(z) = e(x).

Let S = {n?:n € N*} . By a classical result of Landau [15], there exists a constant

¢ > 0 such that (S—i—S)(:c)Nc\/le

x
For m,n € N* and x € R, as q(m) + ¢(n) < z is equivalent to m? + n? < =, we have
a

(D+D)(x)=(S+8) (2) ~ =

as r — OQ.

c
for large enough z, with a constant ¢; > —.

Moreover, as ¢(n) < z if and only if n < \/E’ we also have D(z) = { > /——1L
a \

It follows that, for large enough =,

o8

e(2z)- (D+ D) (2x + 2e(2x)) - c1-e(2z) - (2x + 2e(2x))

D(z — e(x))? N Vog (22 + 2¢ (21)) (@ a 1)2

B ca-e(2z) - 2z + 2e (2x))

- /log 37 2 (29)) <\/x —e(x) — \/5>2.

As e(z) = o (vIog),
e (2z) - (22 + 2e (2x)) 2z - e (22) 2e(2x)

VIog (22 + 2¢ (2)) (%37 —e(x) — \/a>2 " Vlog(20) - /flog (22)]

2e(27)
log (2x)

and, since e (x) = o (\/ log x), we have lim,_, = 0. Therefore

lim (2x) - (D + D) (2x + 2e (2x))

S5 Dz — c(@)) -0

and the condition (K) holds. Thus, by Lemma 2.6, s (B) = oo, i.e., s (A) = 0. O

Remark 9. In the statement of Theorem 3.1, we may replace q(z) = az? by ¢(z) = az? + 7,
where v is any real constant, in view of Remark 2.7.

Also, if A= {a, = [an®+ 7] : n € N} is the set of the integral parts [an? + ] = [¢(n)],
then s(A) = oo, since e(x) = sup |a, — q(n)| <1 trivially satisfies the condition in Theorem

n<x
3.1.



Theorem 10. Let A = {a1 < ag < -+ < a, < ---} C N and q(z) be a quadratic poly-
nomial with rational coefficients and positive leading coefficient. If the function e(x) =
sup |a, — q(n)| (@ € RY) satisfies e (x) = o (v/Iogx) as x — oo, then s (A) = co.

n<

Proof. As q(z) has rational coefficients, there exist integers a, b, ¢, d, with a,d > 0, such that
dg(z) = (az +b)* +c.

Let b, = da,, — ¢ and d,, = (an + b)?, for n € N*. Clearly, there exists m € N* such that
by > 1, dy, > 1and dy1—d, > 1forn >m. Set B={b,:n>m}and D ={d, :n >m}.
Then B and D are strictly increasing sequences in N, and, for all n > m,

|d, — bu| = |(an + b)* — da,, + c| = d|q(n) — a,|.

For © > m, Let f(z) = sup |d, —b,], for x € R*. Then f(z) is an increasing nonnegative
m<n<z

function satisfying f(z) < d - e(z), so that f(z) = o(yv/logz) (like e(x)). Thus, we may
apply Lemma 2.6, provided we show that the condition (K) is satisfied.

Let S = {n?:n € N}. Then D C S, and therefore D+ D C S+ S, so that (D + D)(z) <
(S + 9)(x), for x € RT.

By Landau’s theorem [15], (S +S5)(z) ~ ¢ with a constant ¢ > 0. So there

x
Viogx’

exists a constant ¢; > 0 such that (D + D)(z) < (S+ 9)(z) < and therefore

T
Viogz’
20+ 2f(2x)

(D+ D)2z +2f(2x)) <1 Tt @)

(11)

Moreover, for x > max(m, b?), if n < @, then d, = (an + b)*> < x. Hence, for large
enough x,

D(@)={{n>m:d, <z} > {nzm;ng@}‘
> @—chm/E—cs,
with constants ¢z, ¢5 > 0, and therefore
D(x — f(x)) > cov/w = f(x) — 3. (12)
It follows from (11) and (12) that, for large enough z,
f(20) (D+D) (2027 20) _ f(22) - (22 + 2f (22)) )
Dz — f(z)) Vlog 2z + 2f (21)) (CQ\/x ~ @) — 63)
and, since f (z) = o (v/Iogz) , we have
 (22) - (20 +2f (20)) L2

Viog (27 + 2f (27)) (62 = (o) — 63)2 3\/logzr

8



Therefore 5 Dt D) (25 4 25 (2
i £ 20) (D4 D) 22+ 25 21)
700 D (z — f(x))
Thus the condition (K) is satisfied, and by Lemma 2.6, s(B) = co. As B is a translate of a

homothetic of a subsequence A,, = {a, : n > m} of A, namely B = d- A,, + |¢|, we conclude,
e.g., see [9], that s(A,,) = s(B) = oo, and therefore s (A) = co. O

= 0.
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