X\, Journal of Integer Sequences, Vol. 15 (2012),

OIS Article 1255
92 0O

Asymptotic Formulae for
the n-th Perfect Power

Rafael Jakimczuk
Division Matematica
Universidad Nacional de Lujan
Buenos Aires
Argentina
jakimczu@mail.unlu.edu.ar

In memory of my sister Fedra Marina Jakimczuk (1970-2010)

Abstract

Let P, be the n-th perfect power. In this article we prove asymptotic formulae for
P,,. For example, we prove the following formula

P, =n%— o3 _257/5 1 ?nzl/:} — o7 4 9pb/5 _9p13/11 4 (n13/11> .

1 Introduction

A natural number of the form m™ where m is a positive integer and n > 2 is called a perfect
power. The first few terms of the integer sequence of perfect powers are

1,4,8,9,16,25,27, 32, 36,49, 64, 81, 100, 121, 125, 128 . ..

and they form sequence A001597 in Sloane’s Encyclopedia.
Let P, be the n-th perfect power. That is, P, =1,P, =4, P3 =8, P, =9,....
In this article we prove asymptotic formulae for P,. For example,

P, =n?—2n®3 —2n7/5 4 1—;714/3 /T 4 9p8/5 _9p13/11 4 (n13/11) '

This formula is a corollary of our main theorem (Theorem 6), which can give as many terms

in the expansion as desired.
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There exist various theorems and conjectures on the sequence P,. For example, the
following theorem:

D == k) (1— (k) =0,87446 . .

where u(k) is the Mébius function and (k) is the Riemann zeta function.
We also have the following theorem called the Goldbach-Euler theorem:

1
;Pn—lzl'

This result was first published by Euler in 1737. Euler attributed the result to a letter (now
lost) from Goldbach.
Mihailescu [4, 5, 6] proved that the only pair of consecutive perfect powers is 8 and 9,
thus proving Catalan’s conjecture.
The Pillai’s conjecture establish the following limit
lim (P41 — P,) = oc.

n—oo

This is an unsolved problem.

There exist algorithms for detecting perfect powers [1, 2].

Let N(x) be the number of perfect powers not exceeding x. M. A. Nyblom [7] proved
the following asymptotic formula

N(x) ~ vz.

M. A. Nyblom [8] also obtained a formula for the exact value of N(x) using the inclusion-
exclusion principle.

Let p, be the h-th prime. Consequently we have,

P11 = 27172 = 37p3 = 57p4 = 77p5 = 117p6 = 137 s

Jakimczuk [3] proved the following theorem where more precise formulae for N(z) are
established. This theorem will be used later.

Theorem 1. Let p;, be the h-th prime with h > 2, where h is an arbitrary but fixed positive
integer. Then

h—1 .
N(z)=> (=DM 3" zhuPu 4 (14 o(1))z'/7, (1)
k=1 1<iy<--<ip<h—1
Diy *Piy, <Ph
where the inner sum is taken over the k-element subsets {iy, ..., iy} of the set {1,2,... h — 1}

such that the inequality p;, - - - p;, < ppn holds.
If h =5 then Theorem 1 becomes,

N(x) =Vr+ o+ Ve — e+ — Ve+ (1+0(1)) Va. (2)

Note that equation (2) include the cases h = 2,3,4. In general, equation (1) for a certain
value of h = k include the cases h = 2,3,...,k — 1. This fact is a direct consequence of
equation (1).



2 Some Lemmas

The following lemma is an immediate consequence of the binomial theorem.

Lemma 2. We have
(I+2)*=14(a+o0(1))x (x — 0),
(1+2)* =1+ ar + O(z?) (x — 0),

(c

(1+x)°‘:1+ozx—|—aT—1>$2+O(x3) (x — 0).

Lemma 3. Let P, be the n-th perfect power. We have
P, ~ n?.
Proof. Equation (2) gives N(z) ~ y/x. Consequently N(P,) = n ~ /P,. Therefore P, ~
n?. O
Lemma 4. Let p, be the h-th prime. If h > 3 then we have
2 1 - 2

P13 pn

Proof. We have

2 1 2 2 2 1 1 1
=

1
Ph-1 3 Pn Phe1 DPh 3 Pt pn 6

Clearly, the last inequality is true if h > 5 since pp_1 > 7.
On the other hand, we have

11 1 1_2<1
P2 ps 3 5 15 6
1 1 1 1 2 1
—_——— e e — = — < =
ps ps D 7T 35 6

3 The Fundamental Lemma

The following lemma is a characterization of asymptotic formulae for P,. The lemma prove
the existence of asymptotic formulae for BP,.

Lemma 5. Let p, (h > 3) be the h-th prime. We have

Po=n?—20°3 £ 3" din% + (—2 4 o(1))n" o, (3)
=1

where 2 > 5/3 > gy > -+ > gy, > 1+ p%, the d; are rational coefficients and in equation

2
(3) appear the terms —2n' "% (i =2,... h—1). Besides the rational exponents 5/3 and g;
(1 =1,...,m) are of the form % where b; and c; are relatively prime and the ¢; are squarefree
integers with prime divisors bounded by pp_1.



Proof. We shall use mathematical induction. First, we shall prove that the lemma is true
for h = 3.
If h = 2 then Theorem 1 becomes (see (2))

N(@) = Va+ (1+0(1)) V.

Substituting x = P, into this equation and using Lemma 3 we obtain

N(Py) =n =Py + (14 0(1))3/ Py = /P + (1+ 0o(1))n*/?,
That is
VP, =n+ (=1+o0(1))n*?.
Therefore
P, = (n+(-1+ 0(1))712/3)2

= n24+2(=1+0(1))n®? + (=1 + o(1))*n*/3

= n?+ (=24 o(1))n*3. (4)
If h = 3 then Theorem 1 becomes (see (2))

N(@) = VE+ Y + (1 + (1) V2.

Substituting = = P, into this equation and using equation (4), Lemma 3 and Lemma 2 we
obtain

N(P) = n=PY2+ P+ (1+0(1)n* = P2 4 (n® + (=2 + o(1))n*?) "’
+ (14 o(1)n® = P2 4 023 (14 (=2 + o(1))n %) 4 (1 + o(1))n?/?
= PY2 402 (14 ((~2/3) + o(1))n~11?)

T (14 o0(1)n® = P2 23 1 (14 o(1))n2/5,

That is
P2 =n —n?3 £ (=14 o(1))n?>.
Therefore
P,=(n- n? 4 (-1 + 0(1))712/5)2 =n? — 2% + (=2 + o(1))n".
That is

P, =n?— 20" + (=24 o(1))n"/". (5)

Equation (5) is Lemma 5 for h = 3. Consequently the lemma is true for A = 3.
Suppose that the lemma is true for h —1 > 3. We shall prove that the lemma is also true
for h > 4.



We have (see (1))

>

= 1
N(LL’) = (_1)k+1 Z Pl P (1 + 0(1))$1/ph _ I1/2

1 1<iy <---<ip<h—1
Piy Pip, <Ph

i

1

=2 k=2

1<ig < <ip<h—1
Piq - Pip, <Ph

+ (L+o(1)zP (b >4). (6)
Substituting x = P, into (6) and using Lemma 3 we obtain

h—1 h—1
no= PP Py (—pktt N p
=2 k=2

1<i] < <ip<h—1

Piq - Piy, <Ph
+ (14 o(1))n¥P (h > 4). (7)
By inductive hypothesis we have
s 2
Po=n? =207 + 3 am" + (=2 +o(1)n 1 (h>4), (8)
i=1
where 2 > 5/3 > 71y > - >r, > 1+ zﬁ’ the a; are rational coefficients and in equation

(8) appear the terms _opltu (1 =2,...,h—2). Besides the rational exponents 5/3 and r;
(1=1,...,s) are of the form jc_ where [; and f; are relatively prime and the f; are squarefree
integers with prime divisors bounded by pj,_».

Equation (8) gives

P, =n’ (1 =2y am T (2 0(1))711““) : (9)

i=1
where s
2
—2n 7V S an T (=24 (1)) T~ 20,

i=1

Consequently
s I
—2n Y am T (<24 o(D))n T = 0 (n7Y) = o(1), (10)

i=1



Let t > 3 be a positive integer. Equations (9), (10) and Lemma 2 give

. 1/t
_ 2
Pé/t = nt (1 —on Y3 4 E a2+ (=24 o(1)n 1+ph1>

i=1
1 2
= nt (1 + n ( n~l3 4 Za 2t 4 (=24 0o(1))n th—l))

+ O(n_Q/g))—n/ ——n_§+t +Z —-a;n ~2tritg

1 _ 2 2 2
s v 0 ("‘ﬁ) - (1)

Note that if ¢ > 3 then (see Lemma 4)

1 —14-2-42
;(—2 +o(l))n 1t =0 (nQ/ph) : (12)
and if ¢ > 3 then
@) <n’%+%) = o (n*™). (13)
Consequently (11) becomes (see (12) and (13))
2
p;/t :nZ/t_;n*§+t _|_Z_an 24+ _|_0( 2/1%)' (14)

=1

Note that (see (14)) if ¢ > 3 the exponent 2 < 1 and consequently also —3 4+ 2 < 1 and
—247r;+ 2 < 1since =2+ 1; < 0 (see (8))
Substituting (14) into (7) we find that

n o= sz(%__n me—az )+Z
/ k=2
> (_2 W)

1<ig <o <ig<h—1

PiqPiy, <Ph
: 1 - T —2
+ Z—ain IR [ (1 + o(1))n*/rn
— piy - iy
!
= P24 bint 4 (L4 o(1)n*P (b >4), (15)
i=1

where 1 > s; > -+ > 5§, > p%. That is
!
PV —=p — Z bin® + (=1 4 o(1))n*"n. (16)
i=1
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Note that all positive exponents in equation (15), that is, the positive exponents of the
form

2 1
R __+_7 _2+T2+_
Dj 3P j
2 1 2
) -5+ ; -2+ T +
Diy Diy, 3 Diy Dy, i1 Diy,

are (see (8)) of the form ™ where m; and n; are relatively prime and the n; are squarefree
integers with prime divisors bounded by p;,_;. Therefore these exponents are different from
p%l and consequently the exponents s; (i = 1,...,1) in (16) are of this same form.

Note that 1 + plh > 2 plh, since plh < 1. Consequently equation (16) gives

! 2 ! 2
=1 i=1

s q
2 2
+ (=24 o(1)n' TP =n? —2n%3 E amn” —on' TP 4 E ki
i=1 i=1

2

+ (=2+o(1))n' T (h>4), (17)

Where2>5/3>r1>~-->rs>1+zﬁ>k:1>--->k;q>1+plh,
Note also that the first terms in equation (17) are the terms of equation (8). On the

2
other hand in equation (17) appear the term —on' T (see equation (8)). We now prove
these facts.
Equation (17) can be written in the form

P,=Q(n)+ Z cin® (=2 + 0(1))n1+% =Q(n)+o (anh%l) , (18)

where @)(n) is a sum of terms of the form e;n% <qi > 1+ ph2_1>.

On the other hand, equation (8) can be written in the form

s 2 2
=1

Equations (18) and (19) give

2

° _2
0= Pn - Pn - <Q(n) — <n2 — 2n5/3 4 Zam” — 2n1+}7h—1 >> +o0 <n1+Ph—1> .
i=1

If

2

Q(n) #n* — 203 + Z an’ — 2n' TPt
=1



then we obtain

0= (P,— PB,) ~ant (a#0) (q21+ 2 )
Ph—1

That is, an evident contradiction. Consequently

2

Q(n) = 2n5/3+za, i o' T (20)

Finally, equations (18) and (20) give (17). O

Lemma 5 is constructive, we can build the next formula using the former formula. Next,
we build the formula that correspond to h = 4. We shall need this formula.
If h =4 equation (6) is (see (2))

N(z) = a2 4+ 213 4+ 2Y5 — 26 4 (1 4 o(1))2/". (21)
On the other hand (Lemma 5) equation (8) is (see (5))
P, =n%—2n°3 + (=24 o(1))n"/>.

Consequently equation (15) is

n = Pé/2+(n2/3—gn_§+‘

w
wln
N~
+
N
3
%)
~~
at
|
ot b
3|
W=
-
~_
|
N
3
™)
~
(=)
|
[N
3|
W=
+
[N
~_

v (14 o(1))n¥T = PY? 4 p2/3 §n1/3 125 §n1/15 N VE
)
= PY2 4?8y p?h— §n1/3+ (1+o(1))n¥".

Therefore .
PY2 = —n?3 —p?5 4 §n1/3 + (=14 o(1))n*".

Consequently (see (17))
2
P, = (n —n*3 —p?5 4 gn /3 ) + (=2 + o(1))n*"
13
= n? =23 — 2/ 4 gnS/G + (=24 0(1))n".

That is 13
P, =n?—2n%3 — 2075 4 §n8/6 + (=2 + o(1))n". (22)



4 Main Result

The following theorem is the main result of this article. In this theorem we obtain explicit
formulae for P,.

Theorem 6. Let p;, be the h-th prime with h > 3, where h is an arbitrary but fixed positive
nteger.
Let us consider the formula (see (1))

1

N(x) = (_1)k+1 Z PP + (1 + 0(1)>x1/ph‘ (23)
k=1 1<i] < <ip<h—1
Diy *Piy, <Ph
We have
13 32 - 2
_ 2 19 8/6 | 94 3230 \k —
Pn—n+3n +15n —i—Z( 1) Z on PPy,
k=1 1<y <o <ig<h—1
Piy Pij, <Ph, Pij - Pip# 2, 6, 30
2

+ (=24 o(1))n" . (24)

Proof. We shall see that everything relies on Theorem 1. The theorem is true for h = 3 (see
Lemma 5) and for h =4 (see (21) and (22)). Suppose h > 5, that is p, > 11. Equation (23)
can be written in the form (see (21))

N(z) = a2+ 23 4 215 — 20 4 Y “(—1)t gt/ 4 (14 (1)), (25)
=1

where a; is the number of different prime factors in n; and the exponents are in decreasing

order,
1 1 1 1

>—>— >0 > — > —, (26)
6 m Ns P

For example, if h = 5 then equation (25) becomes equation (2).
On the other hand, we have (Lemma 5 and equation (22))

> - >

DN | —
Wl =
U] =

13 d 2
Pn _ n? o 2n5/3 - 2n7/5 + gnS/G + Zdznrl + (_2 + 0(1))n1+”h, (27)
i=1

where the exponents are in decreasing order,

5 7 8 2
2>-—>—->=>r;>-->r>14+—. 28
3 5 6 1 Tt +ph ( )

Equation (27) gives
13 : :
P, =n’ (1 —on M3 —op 5 4 ?7{4/6 + Z din™ > + (—2+ 0(1))n_1+ph) (29)
i=1

9



where

—on V3 —op T30 4 S0 g Z dn" % 4+ (=2 + o(1))n i~ —on~1/3,

since (see (28))

1 3 4 2
—s > - > == > —=2>- > —2> -1+ —.

3 5 6 h
Consequently
A, = =273 o3 *4/6+Zdnﬂ 2 (224 o(1))n
= O (n7) =o(1).
Besides

t
13 iz
B, = <—2n1/3 — o735 ¢ gn*‘*/‘i + din" T+ (=2 4 o(1))n T

1 2
= (—271‘”3 — o073 4 (; + 0(1)) n_4/6)

= 4n 723 4 8n W L O (n’l) )

Substituting = P, into equation (25) and using Lemma 3 we obtain

n — P;/2 + P$/3 + Pé/5 _ Pé/6 + Z(_l)l-‘rdip’i/ni + n2/pn +o (ng/ph) ]

=1

Equations (29), (31), (32) and Lemma 2 give

1(1_
pi? = n<1+%An+—2<22 1>Bn+0(n_1)>

N BT 13 2/6+Z d; il

n?Pr o (n?/Pr) — %nQ/G — 3 1 0(1).

Equations (29), (31), (30) and Lemma 2 give

P13 = p?/3 (1 + %An +0 (n_2/3)) = n?3 — gnQ/G - §n2/30 +O(1).

2

1
PY® = n2? (1 + 24,40 (n—2/3)) =" — =¥ 4 o(1).

10

(30)

(31)

(34)



pUS — 218 (1 N %An L0 (n2/3)) —n2/% £ O(1). (37)

1
PLmi = p?/m (1 +—A4,+0 (n‘m)) =M to(l)  (i=1,....5).  (38)
n;

Substituting equations (34), (35), (36), (37) and (38) into equation (33) we find that

t

di .1 < W a3l
OzZ;nl 1+Z(_1)1+ in2/mi Bn2/30+0(n2/”h) . (39)
i=1 i=1

Note that (see (28) and (26)) r; — 1 > plh and n% > 2

ph’
If p, < 29 then —2n?30 = ¢ (n?/71). Consequently we have

t s

i=1 i=1

where t = s, d; = (—1)%2 (i=1,...,s) and r;, = 1+ 2 (i = 1,...,s). Since in contrary
case we have 0 ~ an® where a # 0 and b > plh, an evident contradiction. Substituting these
values into (27) we obtain (24) (see (25)).

If p, > 31 then % > p% and there exists k& such that ny = 30 = 2.3.5 (see (23)).

Consequently we have

S

di ri—1 @i, 2/n; 31 2/30
Z;n :Z(—l) n +En ,

i=1 i=1

where t = s, d; = (=1)"2 (i £ k), d, = 2(=1+ %) = 2 and r; = 1—1—% (1=1,...,9).

15
Since in contrary case we have 0 ~ an® where a # 0 and b > plh, an evident contradiction.
Substituting these values into (27) we obtain (24) (see (25)). O

Example 7. If h = 5 equation (23) is (see (2))
N(a:) _ 331/2 +x1/3 —|-£U1/5 . 1,1/6 _{_3:1/7 . :L,l/lO + (1 + 0(1))$1/11_

Consequently Theorem 6 gives

13
P, =n?—2n°3 — 20"/ 4 §n4/3 — 207 4 2n5/5 - (=2 4 o(1))n!3/M
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