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Abstract

Let Pn be the n-th perfect power. In this article we prove asymptotic formulae for

Pn. For example, we prove the following formula

Pn = n
2 − 2n

5/3 − 2n
7/5 +

13

3
n

4/3 − 2n
9/7 + 2n

6/5 − 2n
13/11 + o

(

n
13/11

)

.

1 Introduction

A natural number of the form mn where m is a positive integer and n ≥ 2 is called a perfect
power. The first few terms of the integer sequence of perfect powers are

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128 . . .

and they form sequence A001597 in Sloane’s Encyclopedia.
Let Pn be the n-th perfect power. That is, P1 = 1, P2 = 4, P3 = 8, P4 = 9, . . ..
In this article we prove asymptotic formulae for Pn. For example,

Pn = n2 − 2n5/3 − 2n7/5 +
13

3
n4/3 − 2n9/7 + 2n6/5 − 2n13/11 + o

(

n13/11
)

.

This formula is a corollary of our main theorem (Theorem 6), which can give as many terms
in the expansion as desired.
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There exist various theorems and conjectures on the sequence Pn. For example, the
following theorem:

∞
∑

n=2

1

Pn

=
∞
∑

k=2

µ(k) (1 − ζ(k)) = 0, 87446 . . .

where µ(k) is the Möbius function and ζ(k) is the Riemann zeta function.
We also have the following theorem called the Goldbach-Euler theorem:

∞
∑

n=2

1

Pn − 1
= 1.

This result was first published by Euler in 1737. Euler attributed the result to a letter (now
lost) from Goldbach.

Mihăilescu [4, 5, 6] proved that the only pair of consecutive perfect powers is 8 and 9,
thus proving Catalan’s conjecture.

The Pillai’s conjecture establish the following limit

lim
n→∞

(Pn+1 − Pn) = ∞.

This is an unsolved problem.
There exist algorithms for detecting perfect powers [1, 2].
Let N(x) be the number of perfect powers not exceeding x. M. A. Nyblom [7] proved

the following asymptotic formula
N(x) ∼

√
x.

M. A. Nyblom [8] also obtained a formula for the exact value of N(x) using the inclusion-
exclusion principle.

Let ph be the h-th prime. Consequently we have,

p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, p6 = 13, . . .

Jakimczuk [3] proved the following theorem where more precise formulae for N(x) are
established. This theorem will be used later.

Theorem 1. Let ph be the h-th prime with h ≥ 2, where h is an arbitrary but fixed positive
integer. Then

N(x) =
h−1
∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤h−1

pi1
···pik

<ph

x
1

pi1
···pik + (1 + o(1))x1/ph , (1)

where the inner sum is taken over the k-element subsets {i1, . . . , ik} of the set {1, 2, . . . , h − 1}
such that the inequality pi1 · · · pik < ph holds.

If h = 5 then Theorem 1 becomes,

N(x) =
√

x + 3
√

x + 5
√

x − 6
√

x + 7
√

x − 10
√

x + (1 + o(1)) 11
√

x. (2)

Note that equation (2) include the cases h = 2, 3, 4. In general, equation (1) for a certain
value of h = k include the cases h = 2, 3, . . . , k − 1. This fact is a direct consequence of
equation (1).
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2 Some Lemmas

The following lemma is an immediate consequence of the binomial theorem.

Lemma 2. We have
(1 + x)α = 1 + (α + o(1))x (x → 0),

(1 + x)α = 1 + αx + O(x2) (x → 0),

(1 + x)α = 1 + αx +
α(α − 1)

2
x2 + O(x3) (x → 0).

Lemma 3. Let Pn be the n-th perfect power. We have

Pn ∼ n2.

Proof. Equation (2) gives N(x) ∼ √
x. Consequently N(Pn) = n ∼

√
Pn. Therefore Pn ∼

n2.

Lemma 4. Let ph be the h-th prime. If h ≥ 3 then we have

2

ph−1

− 1

3
<

2

ph

.

Proof. We have

2

ph−1

− 1

3
<

2

ph

⇔ 2

ph−1

− 2

ph

<
1

3
⇔ 1

ph−1

− 1

ph

<
1

6
.

Clearly, the last inequality is true if h ≥ 5 since ph−1 ≥ 7.
On the other hand, we have

1

p2

− 1

p3

=
1

3
− 1

5
=

2

15
<

1

6

1

p3

− 1

p4

=
1

5
− 1

7
=

2

35
<

1

6

3 The Fundamental Lemma

The following lemma is a characterization of asymptotic formulae for Pn. The lemma prove
the existence of asymptotic formulae for Pn.

Lemma 5. Let ph (h ≥ 3) be the h-th prime. We have

Pn = n2 − 2n5/3 +
m
∑

i=1

din
gi + (−2 + o(1))n

1+
2

ph , (3)

where 2 > 5/3 > g1 > · · · > gm > 1 + 2

ph
, the di are rational coefficients and in equation

(3) appear the terms −2n
1+

2

pi (i = 2, . . . , h − 1). Besides the rational exponents 5/3 and gi

(i = 1, . . . ,m) are of the form bi

ci
where bi and ci are relatively prime and the ci are squarefree

integers with prime divisors bounded by ph−1.
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Proof. We shall use mathematical induction. First, we shall prove that the lemma is true
for h = 3.

If h = 2 then Theorem 1 becomes (see (2))

N(x) =
√

x + (1 + o(1)) 3
√

x.

Substituting x = Pn into this equation and using Lemma 3 we obtain

N(Pn) = n =
√

Pn + (1 + o(1)) 3

√

Pn =
√

Pn + (1 + o(1))n2/3.

That is
√

Pn = n + (−1 + o(1))n2/3.

Therefore

Pn =
(

n + (−1 + o(1))n2/3
)2

= n2 + 2(−1 + o(1))n5/3 + (−1 + o(1))2n4/3

= n2 + (−2 + o(1))n5/3. (4)

If h = 3 then Theorem 1 becomes (see (2))

N(x) =
√

x + 3
√

x + (1 + o(1)) 5
√

x.

Substituting x = Pn into this equation and using equation (4), Lemma 3 and Lemma 2 we
obtain

N(Pn) = n = P 1/2

n + P 1/3

n + (1 + o(1))n2/5 = P 1/2

n +
(

n2 + (−2 + o(1))n5/3
)1/3

+ (1 + o(1))n2/5 = P 1/2

n + n2/3
(

1 + (−2 + o(1))n−1/3
)1/3

+ (1 + o(1))n2/5

= P 1/2

n + n2/3
(

1 + ((−2/3) + o(1))n−1/3
)

+ (1 + o(1))n2/5 = P 1/2

n + n2/3 + (1 + o(1))n2/5.

That is
P 1/2

n = n − n2/3 + (−1 + o(1))n2/5.

Therefore

Pn =
(

n − n2/3 + (−1 + o(1))n2/5
)2

= n2 − 2n5/3 + (−2 + o(1))n7/5.

That is
Pn = n2 − 2n5/3 + (−2 + o(1))n7/5. (5)

Equation (5) is Lemma 5 for h = 3. Consequently the lemma is true for h = 3.
Suppose that the lemma is true for h−1 ≥ 3. We shall prove that the lemma is also true

for h ≥ 4.
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We have (see (1))

N(x) =
h−1
∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤h−1

pi1
···pik

<ph

x
1

pi1
···pik + (1 + o(1))x1/ph = x1/2

+
h−1
∑

i=2

x1/pi +
h−1
∑

k=2

(−1)k+1
∑

1≤i1<···<ik≤h−1

pi1
···pik

<ph

x
1

pi1
···pik

+ (1 + o(1))x1/ph (h ≥ 4). (6)

Substituting x = Pn into (6) and using Lemma 3 we obtain

n = P 1/2

n +
h−1
∑

i=2

P 1/pi
n +

h−1
∑

k=2

(−1)k+1
∑

1≤i1<···<ik≤h−1

pi1
···pik

<ph

P
1

pi1
···pik

n

+ (1 + o(1))n2/ph (h ≥ 4). (7)

By inductive hypothesis we have

Pn = n2 − 2n5/3 +
s
∑

i=1

ain
ri + (−2 + o(1))n

1+
2

ph−1 (h ≥ 4), (8)

where 2 > 5/3 > r1 > · · · > rs > 1 + 2

ph−1

, the ai are rational coefficients and in equation

(8) appear the terms −2n
1+

2

pi (i = 2, . . . , h − 2). Besides the rational exponents 5/3 and ri

(i = 1, . . . , s) are of the form li
fi

where li and fi are relatively prime and the fi are squarefree
integers with prime divisors bounded by ph−2.

Equation (8) gives

Pn = n2

(

1 − 2n−1/3 +
s
∑

i=1

ain
−2+ri + (−2 + o(1))n

−1+
2

ph−1

)

, (9)

where

−2n−1/3 +
s
∑

i=1

ain
−2+ri + (−2 + o(1))n

−1+
2

ph−1 ∼ −2n−1/3.

Consequently

−2n−1/3 +
s
∑

i=1

ain
−2+ri + (−2 + o(1))n

−1+
2

ph−1 = O
(

n−1/3
)

= o(1). (10)
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Let t ≥ 3 be a positive integer. Equations (9), (10) and Lemma 2 give

P 1/t
n = n2/t

(

1 − 2n−1/3 +
s
∑

i=1

ain
−2+ri + (−2 + o(1))n

−1+
2

ph−1

)1/t

= n2/t

(

1 +
1

t

(

−2n−1/3 +
s
∑

i=1

ain
−2+ri + (−2 + o(1))n

−1+
2

ph−1

))

+ O
(

n−2/3
))

= n2/t − 2

t
n− 1

3
+

2

t +
s
∑

i=1

1

t
ain

−2+ri+
2

t

+
1

t
(−2 + o(1))n

−1+
2

ph−1

+
2

t + O
(

n− 2

3
+

2

t

)

. (11)

Note that if t ≥ 3 then (see Lemma 4)

1

t
(−2 + o(1))n

−1+
2

ph−1

+
2

t = o
(

n2/ph
)

, (12)

and if t ≥ 3 then

O
(

n− 2

3
+

2

t

)

= o
(

n2/ph
)

. (13)

Consequently (11) becomes (see (12) and (13))

P 1/t
n = n2/t − 2

t
n− 1

3
+

2

t +
s
∑

i=1

1

t
ain

−2+ri+
2

t + o
(

n2/ph
)

. (14)

Note that (see (14)) if t ≥ 3 the exponent 2

t
< 1 and consequently also −1

3
+ 2

t
< 1 and

−2 + ri + 2

t
< 1 since −2 + ri < 0 (see (8))

Substituting (14) into (7) we find that

n = P 1/2

n +
h−1
∑

j=2

(

n2/pj − 2

pj

n
− 1

3
+

2

pj +
s
∑

i=1

1

pj

ain
−2+ri+

2

pj

)

+
h−1
∑

k=2

(−1)k+1

∑

1≤i1<···<ik≤h−1

pi1
···pik

<ph

(

n
2

pi1
···pik − 2

pi1 · · · pik

n
− 1

3
+

2

pi1
···pik

)

+
s
∑

i=1

1

pi1 · · · pik

ain
−2+ri+

2

pi1
···pik

)

+ (1 + o(1))n2/ph

= P 1/2

n +
l
∑

i=1

bin
si + (1 + o(1))n2/ph (h ≥ 4), (15)

where 1 > s1 > · · · > sl > 2

ph
. That is

P 1/2

n = n −
l
∑

i=1

bin
si + (−1 + o(1))n2/ph . (16)
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Note that all positive exponents in equation (15), that is, the positive exponents of the
form

2

pj

, −1

3
+

2

pj

, −2 + ri +
2

pj

2

pi1 · · · pik

, −1

3
+

2

pi1 · · · pik

, −2 + ri +
2

pi1 · · · pik

are (see (8)) of the form mi

ni
where mi and ni are relatively prime and the ni are squarefree

integers with prime divisors bounded by ph−1. Therefore these exponents are different from
2

ph
and consequently the exponents si (i = 1, . . . , l) in (16) are of this same form.

Note that 1 + 2

ph
> 2 2

ph
, since 2

ph
< 1. Consequently equation (16) gives

Pn =

(

n −
l
∑

i=1

bin
si + (−1 + o(1))n2/ph

)2

=

(

n −
l
∑

i=1

bin
si

)2

+ (−2 + o(1))n
1+

2

ph = n2 − 2n5/3 +
s
∑

i=1

ain
ri − 2n

1+
2

ph−1 +

q
∑

i=1

cin
ki

+ (−2 + o(1))n
1+

2

ph (h ≥ 4), (17)

where 2 > 5/3 > r1 > · · · > rs > 1 + 2

ph−1

> k1 > · · · > kq > 1 + 2

ph
.

Note also that the first terms in equation (17) are the terms of equation (8). On the

other hand in equation (17) appear the term −2n
1+

2

ph−1 (see equation (8)). We now prove
these facts.

Equation (17) can be written in the form

Pn = Q(n) +

q
∑

i=1

cin
ki + (−2 + o(1))n

1+
2

ph = Q(n) + o
(

n
1+

2

ph−1

)

, (18)

where Q(n) is a sum of terms of the form ein
qi

(

qi ≥ 1 + 2

ph−1

)

.

On the other hand, equation (8) can be written in the form

Pn = n2 − 2n5/3 +
s
∑

i=1

ain
ri − 2n

1+
2

ph−1 + o
(

n
1+

2

ph−1

)

. (19)

Equations (18) and (19) give

0 = Pn − Pn =

(

Q(n) −
(

n2 − 2n5/3 +
s
∑

i=1

ain
ri − 2n

1+
2

ph−1

))

+ o
(

n
1+

2

ph−1

)

.

If

Q(n) 6= n2 − 2n5/3 +
s
∑

i=1

ain
ri − 2n

1+
2

ph−1
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then we obtain

0 = (Pn − Pn) ∼ anq (a 6= 0)

(

q ≥ 1 +
2

ph−1

)

.

That is, an evident contradiction. Consequently

Q(n) = n2 − 2n5/3 +
s
∑

i=1

ain
ri − 2n

1+
2

ph−1 . (20)

Finally, equations (18) and (20) give (17).

Lemma 5 is constructive, we can build the next formula using the former formula. Next,
we build the formula that correspond to h = 4. We shall need this formula.

If h = 4 equation (6) is (see (2))

N(x) = x1/2 + x1/3 + x1/5 − x1/6 + (1 + o(1))x1/7. (21)

On the other hand (Lemma 5) equation (8) is (see (5))

Pn = n2 − 2n5/3 + (−2 + o(1))n7/5.

Consequently equation (15) is

n = P 1/2

n +

(

n2/3 − 2

3
n− 1

3
+

2

3

)

+

(

n2/5 − 2

5
n− 1

3
+

2

5

)

−
(

n2/6 − 2

6
n− 1

3
+

2

6

)

+ (1 + o(1))n2/7 = P 1/2

n + n2/3 − 2

3
n1/3 + n2/5 − 2

5
n1/15 − n1/3 +

1

3
+ (1 + o(1))n2/7

= P 1/2

n + n2/3 + n2/5 − 5

3
n1/3 + (1 + o(1))n2/7.

Therefore

P 1/2

n = n − n2/3 − n2/5 +
5

3
n1/3 + (−1 + o(1))n2/7.

Consequently (see (17))

Pn =

(

n − n2/3 − n2/5 +
5

3
n1/3

)2

+ (−2 + o(1))n9/7

= n2 − 2n5/3 − 2n7/5 +
13

3
n8/6 + (−2 + o(1))n9/7.

That is

Pn = n2 − 2n5/3 − 2n7/5 +
13

3
n8/6 + (−2 + o(1))n9/7. (22)
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4 Main Result

The following theorem is the main result of this article. In this theorem we obtain explicit
formulae for Pn.

Theorem 6. Let ph be the h-th prime with h ≥ 3, where h is an arbitrary but fixed positive
integer.

Let us consider the formula (see (1))

N(x) =
h−1
∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤h−1

pi1
···pik

<ph

x
1

pi1
···pik + (1 + o(1))x1/ph . (23)

We have

Pn = n2 +
13

3
n8/6 +

32

15
n32/30 +

h−1
∑

k=1

(−1)k
∑

1≤i1<···<ik≤h−1

pi1
···pik

<ph, pi1
···pik

6= 2, 6, 30

2n
1+

2

pi1
···pik

+ (−2 + o(1))n
1+

2

ph . (24)

Proof. We shall see that everything relies on Theorem 1. The theorem is true for h = 3 (see
Lemma 5) and for h = 4 (see (21) and (22)). Suppose h ≥ 5, that is ph ≥ 11. Equation (23)
can be written in the form (see (21))

N(x) = x1/2 + x1/3 + x1/5 − x1/6 +
s
∑

i=1

(−1)1+aix1/ni + (1 + o(1))x1/ph , (25)

where ai is the number of different prime factors in ni and the exponents are in decreasing
order,

1

2
>

1

3
>

1

5
>

1

6
>

1

n1

> · · · >
1

ns

>
1

ph

. (26)

For example, if h = 5 then equation (25) becomes equation (2).
On the other hand, we have (Lemma 5 and equation (22))

Pn = n2 − 2n5/3 − 2n7/5 +
13

3
n8/6 +

t
∑

i=1

din
ri + (−2 + o(1))n

1+
2

ph , (27)

where the exponents are in decreasing order,

2 >
5

3
>

7

5
>

8

6
> r1 > · · · > rt > 1 +

2

ph

. (28)

Equation (27) gives

Pn = n2

(

1 − 2n−1/3 − 2n−3/5 +
13

3
n−4/6 +

t
∑

i=1

din
ri−2 + (−2 + o(1))n

−1+
2

ph

)

(29)
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where

−2n−1/3 − 2n−3/5 +
13

3
n−4/6 +

t
∑

i=1

din
ri−2 + (−2 + o(1))n

−1+
2

ph ∼ −2n−1/3,

since (see (28))

−1

3
> −3

5
> −4

6
> r1 − 2 > · · · > rt − 2 > −1 +

2

ph

. (30)

Consequently

An = −2n−1/3 − 2n−3/5 +
13

3
n−4/6 +

t
∑

i=1

din
ri−2 + (−2 + o(1))n

−1+
2

ph

= O
(

n−1/3
)

= o(1). (31)

Besides

Bn =

(

−2n−1/3 − 2n−3/5 +
13

3
n−4/6 +

t
∑

i=1

din
ri−2 + (−2 + o(1))n

−1+
2

ph

)2

=

(

−2n−1/3 − 2n−3/5 +

(

13

3
+ o(1)

)

n−4/6

)2

= 4n−2/3 + 8n−14/15 + O
(

n−1
)

. (32)

Substituting x = Pn into equation (25) and using Lemma 3 we obtain

n = P 1/2

n + P 1/3

n + P 1/5

n − P 1/6

n +
s
∑

i=1

(−1)1+aiP 1/ni
n + n2/ph + o

(

n2/ph
)

. (33)

Equations (29), (31), (32) and Lemma 2 give

P 1/2

n = n

(

1 +
1

2
An +

1

2

(

1

2
− 1
)

2
Bn + O

(

n−1
)

)

= n − n2/3 − n2/5 +
13

6
n2/6 +

t
∑

i=1

di

2
nri−1

− n2/ph + o
(

n2/ph
)

− 1

2
n2/6 − n2/30 + O(1). (34)

Equations (29), (31), (30) and Lemma 2 give

P 1/3

n = n2/3

(

1 +
1

3
An + O

(

n−2/3
)

)

= n2/3 − 2

3
n2/6 − 2

3
n2/30 + O(1). (35)

P 1/5

n = n2/5

(

1 +
1

5
An + O

(

n−2/3
)

)

= n2/5 − 2

5
n2/30 + o(1). (36)

10



P 1/6

n = n2/6

(

1 +
1

6
An + O

(

n−2/3
)

)

= n2/6 + O(1). (37)

P 1/ni
n = n2/ni

(

1 +
1

ni

An + O
(

n−2/3
)

)

= n2/ni + o(1) (i = 1, . . . , s). (38)

Substituting equations (34), (35), (36), (37) and (38) into equation (33) we find that

0 =
t
∑

i=1

di

2
nri−1 +

s
∑

i=1

(−1)1+ain2/ni − 31

15
n2/30 + o

(

n2/ph
)

. (39)

Note that (see (28) and (26)) ri − 1 > 2

ph
and 2

ni
> 2

ph
.

If ph ≤ 29 then −31

15
n2/30 = o

(

n2/ph

)

. Consequently we have

t
∑

i=1

di

2
nri−1 =

s
∑

i=1

(−1)ain2/ni ,

where t = s, di = (−1)ai2 (i = 1, . . . , s) and ri = 1 + 2

ni
(i = 1, . . . , s). Since in contrary

case we have 0 ∼ anb where a 6= 0 and b > 2

ph
, an evident contradiction. Substituting these

values into (27) we obtain (24) (see (25)).
If ph ≥ 31 then 2

30
> 2

ph
and there exists k such that nk = 30 = 2.3.5 (see (23)).

Consequently we have

t
∑

i=1

di

2
nri−1 =

s
∑

i=1

(−1)ain2/ni +
31

15
n2/30,

where t = s, di = (−1)ai2 (i 6= k), dk = 2(−1 + 31

15
) = 32

15
and ri = 1 + 2

ni
(i = 1, . . . , s).

Since in contrary case we have 0 ∼ anb where a 6= 0 and b > 2

ph
, an evident contradiction.

Substituting these values into (27) we obtain (24) (see (25)).

Example 7. If h = 5 equation (23) is (see (2))

N(x) = x1/2 + x1/3 + x1/5 − x1/6 + x1/7 − x1/10 + (1 + o(1))x1/11.

Consequently Theorem 6 gives

Pn = n2 − 2n5/3 − 2n7/5 +
13

3
n4/3 − 2n9/7 + 2n6/5 + (−2 + o(1))n13/11

5 Acknowledgements

The author would like to thank the anonymous referee for his/her valuable comments and
suggestions for improving the original version of this article. The author is also very grateful
to Universidad Nacional de Luján.

11



References

[1] E. Bach and J. Sorenson, Sieve algorithms for perfect power testing, Algorithmica 9

(1993), 313–328.

[2] D. Bernstein, Detecting perfect powers in essentially linear time, Math. Comp. 67

(1998), 1253–1283.

[3] R. Jakimczuk, On the distribution of perfect powers, J. Integer Seq. 14 (2011), Article
11.8.5.
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