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Abstract

We investigate summations of the form
∑

0≤k≤n (−1)k
k

m
(

n
k

)−1
. We give closed

formulae in terms of the Akiyama-Tanigawa matrix. Recurrence formulae, ordinary
generating functions and some other results are also given.

1 Introduction and notation

Binomial coefficients play an important role in many areas of mathematics, such as com-
binatorics, number theory and special functions. The inverse binomial coefficients have an
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integral representation in terms of beta function

(

n

k

)−1

= (n + 1)

1
∫

0

xk (1 − x)n−k
dx. (1)

and one can obtain (see [18])

n
∑

k=0

(

n

k

)−1

=
n + 1

2n+1

n+1
∑

k=1

2k

k
.,

There are many papers dealing with sums involving inverses of binomial coefficients, see for
instance [3, 11, 12, 14, 15, 17, 18, 21, 22]. For nonnegative integers n,m and p we consider
the sums

T (m,p)
n :=

n
∑

k=0

(−1)k
km

(

p + n

p + k

)−1

. (2)

These sums have been studied by many authors. Trif [20], using (1) proved for m = 0
that

T (0,p)
n =

(

(−1)n +

(

p + n + 1

p

)−1
)

p + n + 1

p + n + 2
. (3)

Sury, Wang and Zhao [19], studied (2) for m = 1 and m = 2, they obtain

T (1,p)
n =

p + n + 1

p + n + 3

(

(−1)n(n + 1)(p + n + 3)

p + n + 2
−

(

p + n + 2

p + 1

)−1

− (−1)n

)

, (4)

and

T (2,p)
n = (p + n + 1)

(

(−1)n(n + 1)2

p + n + 2
−

(−1)n(2n + 3)

p + n + 3

+
2

p + n + 4

((

p + n + 3

p + 2

)−1

+ (−1)n

)

−
1

p + n + 3

(

p + n + 2

p + 1

)−1)

. (5)

Our aim is to give a closed form and recurrence relation for the sums (2). In order to

investigate the summation of the form S
(m)
n := T

(m,0)
n and T

(m,p)
n , we shall use the following

tools [1, 6]:

• The Stirling numbers of the first kind s(n, k) (see A008275 in [13]), are defined by the
generating function

x (x − 1) · · · (x − n + 1) =
∑

k≥0

s(n, k)xk,

and satisfy the recurrence relation

s(n + 1, k) = s(n, k − 1) − ns(n, k), (1 ≤ k ≤ n) ,

with s(n, n) = 1, s(n, 0) = 0 for n ≥ 1 and s(n, k) = 0 for k < 0 or k > n.
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• The Stirling numbers of the second kind
{

n

k

}

(see A008277 in [13]), are defined by the
generating function

k
∏

j=1

x

1 − jx
=
∑

n≥k

{

n

k

}

xn,

and satisfy the recurrence relation
{

n + 1

k

}

=

{

n

k − 1

}

+ k

{

n

k

}

,

with
{

n

1

}

=
{

n

n

}

= 1.

They also verify the following important identity

xn =
n
∑

k=0

(−1)n+k

{

n

k

}

x (x + 1) · · · (x + k − 1) . (6)

• The Eulerian numbers
〈

n

k

〉

(see A008292 in [13]) are defined by

〈

n

k

〉

=
k
∑

i=0

(−1)i (k − i)n

(

n + 1

i

)

, (1 ≤ k ≤ n) ,

and satisfy the recursive identity
〈

n

k

〉

= k

〈

n − 1

k

〉

+ (n − k + 1)

〈

n − 1

k − 1

〉

,

with
〈

1
1

〉

= 1.

• The Worpitzky numbers Wn,k (see A028246 in [13]), are defined by

Wn,k =
k
∑

i=0

(−1)i+k (i + 1)n

(

k

i

)

.

They can also be expressed through the Stirling numbers of the second kind as follows

Wn,k = k!

{

n + 1

k + 1

}

. (7)

The Worpitzky numbers satisfy the recursive relation

Wn,k = (k + 1) Wn−1,k + kWn−1,k−1 (n ≥ 1, k ≥ 1) . (8)

Some simple properties are given

n
∑

k=0

〈

n

k

〉

xk =
n
∑

k=0

(x − 1)n−k
kWn−1,k−1, (9)
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n
∑

k=0

(

n

k

){

k

t

}

=

{

n + 1

t + 1

}

, (10)

and
n
∑

k=0

〈

n

k

〉(

k + 1

t

)

= Wn,n−t. (11)

• The Bernoulli numbers Bn are defined by the exponential generating function

x

1 − e−x
=
∑

n≥0

Bn

xn

n!
.

The recursive relation is

B0 = 1,

Bn = 1 −

n−1
∑

k=0

(

n

k

)

Bk

n − k + 1
, (n ≥ 1) .

Thus we have B1 = 1
2
, B2 = 1

6
, B3 = 0, and so on, they can also be expressed through

the Worpitzky numbers

Bn =
n
∑

k=0

(−1)k Wn,k

k + 1
.

• The Akiyama-Tanigawa matrix (An,k)n,k≥0 associated with initial sequence A0,k = 1
k+1

is defined by (see [2, 5, 8, 10])

An,k = (k + 1) (An−1,k − An−1,k+1) ,

or equivalently by [7]

An,k =
1

k!

k
∑

i=0

(−1)k
s(k + 1, i + 1)Bn+i,

=
n
∑

i=1

(−1)i−1

(

k + i + 1

k + 1

)−1

Wn,i. (12)
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The Akiyama-Tanigawa matrix An,k is then

An,k =











































1 1
2

1
3

1
4

1
5

· · ·

1
2

1
3

1
4

1
5

1
6

· · ·

1
6

1
6

3
20

2
15

5
42

· · ·

0 1
30

1
20

2
35

5
84

· · ·

− 1
30

− 1
30

− 3
140

− 1
105

0 · · ·

0 − 1
42

− 1
28

− 4
105

− 1
28

· · ·
...

...
...

...
...











































.

2 Explicit formula for S
(m)
n

For any nonnegative integer m, we consider the sums

S(m)
n :=

n
∑

k=0

(−1)k
km

(

n

k

)−1

. (13)

Note that S
(0)
n = (1 + (−1)n)n+1

n+2
(identity (14) of [19] or identity (3) here for p = 0). The

following expression for S
(m)
n holds and, in terms of computational complexity, it is better

than the sum defining S
(m)
n for n ≥ m as the expression in the theorem involves O(m)

operations.

Theorem 1. For any nonnegative integers n and m, we have

S(m)
n = (n + 1)

m
∑

j=0

(−1)m+j

n + j + 2

(

1 + (−1)n

(

n + j + 1

j

))

Wm,j. (14)

Proof. We can write S
(m)
n as follows

S(m)
n =

n
∑

k=0

(−1)k

(

n

k

)−1

((k + 1) − 1)m

=
n
∑

k=0

(−1)k

(

n

k

)−1 m
∑

i=0

(−1)m−i

(

m

i

)

(k + 1)i
,
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and with (6), we obtain

S(m)
n =

n
∑

k=0

(−1)k

(

n

k

)−1 m
∑

i=0

(−1)m−i

(

m

i

) i
∑

j=0

(−1)i+j

{

i

j

}

(k + 1) · · · (k + j)

=
n
∑

k=0

m
∑

i=0

i
∑

j=0

(−1)k

n!
(−1)m+j

(

m

i

){

i

j

}

k! (k + 1) · · · (k + j) (n − k)!

=
m
∑

i=0

i
∑

j=0

(−1)m+j

(

m

i

){

i

j

}

(n + 1) · · · (n + j)
n
∑

k=0

(−1)k

(

n + j

k + j

)−1

.

Now, from (3) and after some rearrangement, we get

S(m)
n = (n + 1)

m
∑

j=0

(−1)m+j

n + j + 2

(

1 + (−1)n

(

n + j + 1

j

))

j!
m
∑

i=0

(

m

i

){

i

j

}

.

From (7) and (10), the result holds.

3 Recurrence relation for S
(m)
n

Theorem 2. For any nonnegative integers m and n, we have

S
(m)
n+1 = S(m)

n −
1

n + 1
S(m+1)

n − (−1)n (n + 1)m
. (15)

Proof. The proof is based on the Sprugnoli [16] observation
(

n+1
k

)−1
=
(

n

k

)−1
− k

n+1

(

n

k

)−1
.

The recurrence relation for S
(m)
n is given in the following

Theorem 3. For any nonnegative integers m and n, we have

S
(m)
n+1 = S(m)

n − (−1)n (n + 1)m +
m+1
∑

j=0

(−1)m+j

n + j + 2

(

1 + (−1)n

(

n + j + 1

j

))

Wm+1,j, (16)

with the initial condition S
(m)
0 = δ0m, where δij is the Kronecker symbol.

Proof. This follows immediately from (14) and (15).

Setting m = 1 in (16), we have the following

Corollary 4. If n is nonnegative integer, then

S
(1)
n+1 = S(1)

n +
n − (−1)n (2n4 + 17n3 + 49n2 + 57n + 24)

(n + 2) (n + 3) (n + 4)
.

Our next goal is to calculate the ordinary generating functions of S
(m)
n .
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4 Ordinary generating functions of S
(m)
n

In 2002, Mansour [9], generalized the idea of Sury [18] and gave an approach based on
calculus to obtain the generating function for some combinatorial identities.

Theorem 5 (Mansour [9]). Let r, n ≥ k be any nonnegative integer numbers, and let fr (n, k)
be given by

fr (n, k) =
(n + r)!

n!

u2
∫

u1

pk (t) qn−k (t) dt, (17)

where p (t) and q (t) are two functions defined on [u1, u2] . Let {an}n≥0 and {bn}n≥0 be any

two sequences, and let A (x) , B (x) be the corresponding ordinary generating functions. Then

∞
∑

n=0

[

n
∑

k=0

fr (n, k) akbn−k

]

xn =
dr

dxr



xr

u2
∫

u1

A (xp (t)) B (xq (t)) dt



 . (18)

We apply Theorem 5, for an = (−1)n
nm (m ≥ 1) and bn = 1, we have

A (x) =
1

(1 + x)m+1

m
∑

k=0

〈

m

k

〉

(−x)k+1

=
m
∑

k=0

(−1)m+k

(1 + x)k+1
Wm,k,

B (x) =
∑

n≥0

xn =
1

1 − x
.

For r = 1, formula (18) gives:

∑

n≥0

S(m)
n xn =

d

dx









x

1
∫

0

m
∑

k=0

〈

m

k

〉

(−xt)k+1

(1 + xt)m+1 (1 − x + xt)
dt









. (19)

Making the substitution xt = y in the right-hand side of (19), we obtain

∑

n≥0

S(m)
n xn =

d

dx









x
∫

0

m
∑

k=0

〈

m

k

〉

(−y)k+1

(1 + y)m+1 (1 − x + y)
dy









,

Since the degree of the denominator is at least one higher than that of the numerator, this
fraction decomposes into partial fractions of the form

m
∑

k=0

〈

m

k

〉

(−y)k+1

(1 + y)m+1 (1 − x + y)
=

α(m) (x)

1 − x + y
+

m
∑

s=0

α
(m)
s (x)

(1 + y)m−s+1 , (20)
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We note in passing that (20) is equivalent to

m
∑

k=0

〈

m

k

〉

(−y)k+1 = (1 + y)m+1
α(m) (x) + (1 − x + y)

m
∑

s=0

(1 + y)s
α(m)

s (x) (21)

=
m
∑

k=0

(−1)m+k+1
y (1 + y)m−k

Wm−1,k−1.

For y = −1 and using the fact that Wp,p = p! for p ≥ 0, we immediately obtain the well-
known identity

m
∑

k=0

〈

m

k

〉

= m!.

Next, if we set y = 0 in (21) then we obtain a relation between α(m) (x) and α
(m)
s (x)

m
∑

s=0

α(m)
s (x) =

α(m) (x)

x − 1
. (22)

Proposition 6. For m ≥ 1, we have

α(m)
s (x) =

s
∑

i=0

(−1)i+s+1

xi+1

m
∑

k=0

〈

m

k

〉(

k + 1

s − i

)

(23)

=
m
∑

j=m−s

(−1)m+j+1

xs−m+1+j
Wm,j,

and

α(m) (x) =
1

xm+1

m
∑

k=0

〈

m

k

〉

(1 − x)k+1 (24)

=
m
∑

j=0

(−1)m+j

xj+1
Wm,j,

= −α(m)
m (x) .

Proof. We verify that (23) and (24) satisfy (21). Denote the right-hand side of (21) by
R(m)(y), after some rearrangement, we get

R(m)(y) =
m
∑

k=0

〈

m

k

〉

[

(1 + y)m+1

xm+1
(1 − x)k+1

+ (1 − x + y)
m
∑

s=0

(1 + y)s

s
∑

j=0

(−1)j+1

xs−j+1

(

k + 1

j

)

]

,
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using binomial formula and for k ≤ m, we obtain

R(m)(y) =
m
∑

k=0

〈

m

k

〉

[

m+1
∑

s=m+1

(1 + y)s

xs

s
∑

j=0

(

k + 1

j

)

(−1)j
xj

−
(1 − x + y)

x

m
∑

s=0

(1 + y)s

xs

s
∑

j=0

(−1)j
xj

(

k + 1

j

)

]

=
m
∑

k=0

〈

m

k

〉

[

m+1
∑

s=m+1

(1 + y)s

xs

s
∑

j=0

(

k + 1

j

)

(−1)j
xj

+
m
∑

s=0

(1 + y)s

xs

s
∑

j=0

(−1)j
xj

(

k + 1

j

)

−
m
∑

s=0

(1 + y)s+1

xs+1

s
∑

j=0

(−1)j
xj

(

k + 1

j

)

]

=
m
∑

k=0

〈

m

k

〉

[

m+1
∑

s=0

(1 + y)s

xs

s
∑

j=0

(−1)j
xj

(

k + 1

j

)

−
m
∑

s=0

(1 + y)s+1

xs+1

s
∑

j=0

(−1)j
xj

(

k + 1

j

)

]

=
m
∑

k=0

〈

m

k

〉

[

m+1
∑

s=0

(1 + y)s

xs

(

s
∑

j=0

(−1)j
xj

(

k + 1

j

)

−
s−1
∑

j=0

(−1)j
xj

(

k + 1

j

)

)]

.

Finally,

R(m)(y) =
m
∑

k=0

〈

m

k

〉

[

k+1
∑

s=0

(1 + y)s

(

(−1)s

(

k + 1

s

))

]

=
m
∑

k=0

〈

m

k

〉

(−y)k+1
.
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According to (7) and (11), we have

α(m)
s (x) =

s
∑

i=0

(−1)i+s+1

xi+1

m
∑

k=0

〈

m

k

〉(

k + 1

s − i

)

=
s
∑

i=0

(−1)i+s+1 (m − s + i)!

xi+1

{

m + 1

m − s + i + 1

}

=
s
∑

i=0

(−1)i+s+1

(x)i+1 Wm,m−s+i

=
m
∑

j=m−s

(−1)m+j+1

xs−m+1+j
Wm,j.

It follows from (9) that

α(m) (x) =
1

xm+1

m
∑

k=0

〈

m

k

〉

(1 − x)k+1

=
1 − x

xm+1

m
∑

k=1

(−1)m+k
xm−kkWm−1,k−1

= (1 − x)
m
∑

k=0

(−1)m+k k

xk+1
Wm−1,k−1

=
m
∑

k=0

(−1)m+k k

xk+1
Wm−1,k−1 −

m
∑

k=0

(−1)m+k k

xk
Wm−1,k−1

=
m
∑

k=0

(−1)m+k k

xk+1
Wm−1,k−1 +

m−1
∑

k=0

(−1)m+k k + 1

xk+1
Wm−1,k.

Using (8), we get α(m) (x) as desired. This completes the proof.

Now, integrating the right-hand side of (20) over y, we obtain

x
∫

0

m
∑

k=0

〈

m

k

〉

(−y)k+1

(1 + y)m+1 (1 − x + y)
dy = α(m)

m (x) ln(1 − x2) +
m−1
∑

s=0

α
(m)
s (x)

m − s

[

1 − (1 + x)s−m
]

. (25)

By differentiating (25) we get the ordinary generating function of S
(m)
n

∑

n≥0

S(m)
n xn = ln(1 − x2)

d

dx
α(m)

m (x) +
m−1
∑

s=0

d
dx

α
(m)
s (x)

m − s

([

1 − (1 + x)s−m
])

+
m−1
∑

s=0

(

(1 + x)s−m−1
α(m)

s (x)
)

−
2x

1 − x2
α(m)

m (x) , (26)
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with
d

dx
α(m)

s (x) =
m
∑

j=m−s

(s − m + 1 + j) (−1)m+j

xs−m+2+j
Wm,j.

With Proposition 6, we can now rewrite (26) as follows

Theorem 7. For any real numbers x and for all nonnegative integer m, we have

∑

n≥0

S(m)
n xn =

(

m
∑

j=0

(1 + j) (−1)m+j

x2+j
Wm,j

)

ln(1 − x2)

+
∑

0≤j≤s≤m−1

(−1)j

xs−j+2
Wm,m−j

(

s − j + 1

m − s

(

1 − (1 + x)s−m
)

− x (1 + x)s−m−1

)

+
2

1 − x2

m
∑

j=0

(−1)m+j

xj
Wm,j. (27)

In particular for m = 0 and m = 1, we get

∑

n≥0

S(0)
n xn =

2

1 − x2
+

ln (1 − x2)

x2
,

and
∑

n≥0

S(1)
n xn =

2 + 3x

x (1 + x)2 +
2 − x

x3
ln
(

1 − x2
)

.

5 The asymptotic expansion

In the previous sections, S
(m)
n becomes more complex when, m grows, so it is important to

have asymptotic expansion of S
(m)
n .

Theorem 8. For m > 0, we have

S
(m)
2n ∼ (2n)m

and S
(m)
2n+1 ∼ − (2n + 1)m

.

Proof. Write

km = c0 + c1 (k + 1) + c2 (k + 1) (k + 2) · · · + cm (k + 1) · · · (k + m) ,

where ci’s depend on m (cm = 1). we immediately have

S(m)
n = c0

n
∑

k=0

(−1)k

(

n

k

)−1

+c1

n
∑

k=0

(−1)k (k + 1)

(

n

k

)−1

+· · ·+
n
∑

k=0

(−1)k (k + 1) · · · (k + m)

(

n

k

)−1

.

After some rearrangement and using the fact that (k + 1)
(

n

k

)−1
= (n + 1)

(

n+1
k+1

)−1
, we have

S(m)
n = c0T

(0,0)
n + c1 (n + 1) T (0,1)

n + c2 (n + 1) (n + 2) T (0,2)
n + · · · + (n + 1) · · · (n + m) T (0,m)

n .

Since T
(0,p)
2n → 1 and T

(0,p)
2n+1 → −1, the result holds.
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6 A connection to the Akiyama-Tanigawa matrix

In this section we consider T
(m,p)
n . The following lemma will be useful in the proof of the

main theorem of this section.

Lemma 9. For m ≥ 1, we have

n
∑

k=0

kmzk =
m
∑

k=0

Wm,k

(

z

1 − z

)k+1

− zn+1

m
∑

s=0

(

m

s

)

(n + 1)m−s

s
∑

k=0

(−1)s+k
Ws,k(1 − z)−k−1.

Proof. Recall that, for m ≥ 1

∞
∑

k=0

kmzk =
m
∑

k=0

Wm,k

(

z

1 − z

)k+1

=
m
∑

k=0

(−1)m+k
Wm,k(1 − z)−k−1,

we have

n
∑

k=0

kmzk =
∞
∑

k=0

kmzk −

∞
∑

k=n+1

kmzk

=
m
∑

k=0

Wm,k

(

z

1 − z

)k+1

− zn+1

∞
∑

i=0

(i + n + 1)m
zi

=
m
∑

k=0

Wm,k

(

z

1 − z

)k+1

− zn+1

∞
∑

i=0

m
∑

s=0

(

m

s

)

(n + 1)m−s
iszi

=
m
∑

k=0

Wm,k

(

z

1 − z

)k+1

− zn+1

m
∑

s=0

(

m

s

)

(n + 1)m−s

∞
∑

i=0

iszi,

as desired.

For an alternative proof see Boyadzhiev [4]. The main result of this section is to prove
the following theorem which expresses explicitly the alternating sums of the reciprocals of
binomial coefficients, T

(m,p)
n , in terms of the Akiyama-Tanigawa matrix An,k.

Theorem 10. For nonnegative integers n,m and p, we have

T (m,p)
n =

(

n + p

p

)−1

δ0m + (n + p + 1)
m
∑

s=0

(−1)n+s

(

m

s

)

(n + 1)m−s
As,n+p+1

−
n + p + 1

n + 1

m
∑

s=0

(−1)s

(

n + s + p + 2

p + s + 1

)−1

Wm,s, (28)

where Ai,j is the Akiyama-Tanigawa matrix.
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Proof. By the Beta function we can write

T (m,p)
n =

n
∑

k=0

(−1)k
km (p + n + 1)

1
∫

0

xp+k (1 − x)n−k
dx

= (p + n + 1)

1
∫

0

xp (1 − x)n

n
∑

k=0

km

(

−x

1 − x

)k

dx.

Using the lemma, we get

T (m,p)
n = (p + n + 1)

1
∫

0

xp (1 − x)n

(

m
∑

k=0

Wm,k (−x)k+1

−
m
∑

s=0

(

m

s

)

(n + 1)m−s

s
∑

k=0

(−1)s+k
Ws,k (−x)n+1 (1 − x)k−n

)

dx

=
(p + n + 1)

n + 1

m
∑

k=0

(−1)k+1

(

n + k + p + 2

p + k + 1

)−1

Wm,k

− (p + n + 1)
m
∑

s=0

s
∑

k=0

(

m

s

)

(n + 1)m−s (−1)n+s+k+1

k + 1

(

n + k + 2 + p

k + 1 + p

)−1

Ws,k.

Finally, from (12) we obtain

T (m,p)
n =

(p + n + 1)

n + 1

m
∑

k=0

(−1)k+1

(

n + k + p + 2

p + k + 1

)−1

Wm,k

+ (n + p + 1)
m
∑

s=0

(

m

s

)

(n + 1)m−s (−1)n+s

(n + p + 1)!

n+p+1
∑

k=0

(−1)k
s(n + p + 2, k + 1)Bs+k.

As desired, this completes the proof.

Setting p = 0 in (28) we can rewrite (14) as follows

Corollary 11.

S(m)
n = δ0m − Am+1,n +

m
∑

s=0

(−1)n+s

(

m

s

)

(n + 1)m−s+1
As,n+1.

7 A recurrence relation For T
(m,p)
n

Theorem 12. For any nonnegative integers m,n and p

T
(m,p)
n+1 =

n + 1

n + p + 1
T (m,p)

n −
1

n + p + 1
T (m+1,p)

n − (−1)n (n + 1)m
. (29)
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Proof. Using the identity

(

n + p + 1

k + p

)−1

=
n + 1

n + p + 1

(

n + p

k + p

)−1

−
k

n + p + 1

(

n + p

k + p

)−1

,

we get the relation (29).

Now, from (28) and (29), we have the recurrence relation for T
(m,p)
n

Theorem 13. For nonnegative integers n,m and p, we have

T
(m,p)
n+1 =

n + 1

n + p + 1
T (m,p)

n − (−1)n (n + 1)m+1
m+1
∑

s=0

(−1)s

(n + 1)s

(

m + 1

s

)

As,n+p+1

+
1

n + 1

m+1
∑

s=0

(−1)s

(

n + s + p + 2

p + s + 1

)−1

Wm+1,s − (−1)n (n + 1)m
,

with the initial condition T
(m,p)
0 =

(

n+p

p

)−1
δ0m.
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