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Abstract

We investigate summations of the form > ., -, (=1)F km (Z)_l. We give closed
formulae in terms of the Akiyama-Tanigawa matrix. Recurrence formulae, ordinary
generating functions and some other results are also given.

1 Introduction and notation

Binomial coefficients play an important role in many areas of mathematics, such as com-
binatorics, number theory and special functions. The inverse binomial coefficients have an
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integral representation in terms of beta function

(Z) L (n+1) /lxk (1—2)" " dz. (1)

and one can obtain (see [18])

" /n _1_n—1—1n+12k
k o oontl k-
k=0 k=1
There are many papers dealing with sums involving inverses of binomial coefficients, see for
instance [3, 11, 12, 14, 15, 17, 18, 21, 22]. For nonnegative integers n, m and p we consider

the sums . .
+n\
Tme) = N7 (—1)k (p ) . 2
>ty )
These sums have been studied by many authors. Trif [20], using (1) proved for m = 0
that )
1\ 1
TOP = (=1)" + (p+ n ) prn+t (3)
D p+n+2
Sury, Wang and Zhao [19], studied (2) for m = 1 and m = 2, they obtain

pap _ Pt (D) D)p+n+3)  (ptn+2 ‘1_<_1)n
" p+n+3 p+n+2 p+1 ’

(4)
and

(=1)™(n+1)? B (—1)™(2n + 3)
p+mn+2 p+n+3

2 p4+n+3\" 1 p+n+2\ "
+— +(-)") - — : 5
p+n+4<< p+2 ) ( )> p+n+3< p+1 ) (5)

Our aim is to give a closed form and recurrence relation for the sums (2). In order to

TP = <p+n+1)(

investigate the summation of the form SU™ = T\™ and T\™"), we shall use the following
tools [1, 6]:

e The Stirling numbers of the first kind s(n, k) (see A008275 in [13]), are defined by the
generating function

x(x—l)---(:c—n—l—l):Zs(n,k)xk,

k>0
and satisfy the recurrence relation
s(n+ 1,k) =s(n,k—1) —ns(n, k), (1<k<n),

with s(n,n) =1, s(n,0) =0 for n > 1 and s(n,k) =0 for k£ <0 or k > n.
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The Stirling numbers of the second kind {}} (see A008277 in [13]), are defined by the

generating function
L]l —jz et k

Jj=1

and satisfy the recurrence relation
n+1] n e n
kf k-1 kJ’
with {1} ={"} =1.

They also verify the following important identity

xn:i(—n"%{Z}x(x+1>-..(x+k—1). (6)

k=0

The Eulerian numbers () (see A008292 in [13]) are defined by

-gerr() nores

7

and satisfy the recursive identity
n n—1 n—1
= — 1
=4 ) e G
The Worpitzky numbers W, ;. (see A028246 in [13]), are defined by

Wor = Zk: (=) (i +1)" (f)

=0

with (}) = 1.

They can also be expressed through the Stirling numbers of the second kind as follows

n+1
= k! .
W= nfy ) @

The Worpitzky numbers satisfy the recursive relation

ka = (k —|— 1) Wn—l,k —|— kWn—l,kz—l (TL Z 1, k} Z 1) . (8)

Some simple properties are given

n

Z<Z>xk = k; (2= 1" kW1, (9)

k=0
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kno (Z) {Iz} - {72111} (10)
kn0<z> (k Jtr 1) = Wap-s. (11)

The Bernoulli numbers B,, are defined by the exponential generating function

T "
l—e® ZB”W

n>0

and

The recursive relation is

B(]:l7

n—1
n Bk
B, =1-— —TE (> 1).
\ Z(k)n_kﬂ, (n>1)

k=0

Thus we have B; = %, By = %, B3 = 0, and so on, they can also be expressed through
the Worpitzky numbers

The Akiyama-Tanigawa matrix (A, ) -, associated with initial sequence Ay = k%l

is defined by (see [2, 5, 8, 10])
App=k~+1) (A1p — A1 k41)

or equivalently by [7]

k

_ Zn: (=1 (k ij 1> T (12)

i=1



The Akiyama-Tanigawa matrix A, is then

1 1 1 1
L3 3 i 5
111 1 1
2 3 4 5 6
11 3 2 5
6 6 20 15 42

Apg=| 0o L L 2 5

30 20 35 84

1 1 _3 _1
30 30 140 105
0 L1 _1 _ 4 _1
42 28 105 28

2 Explicit formula for S%m)

For any nonnegative integer m, we consider the sums

Sim . — i (=1)F k™ (Z) o

k=0

(13)

Note that S = (I+(—=1)" )"—Jrl (identity (14) of [19] or identity (3) here for p = 0). The

following expression for S (™) holds and, in terms of computational complexity, it is better
than the sum defining SY for n > m as the expression in the theorem involves O(m)
operations.

Theorem 1. For any nonnegative integers n and m, we have

S0 — (4 1) Xm:th (1+(—1)" (”JF?H))WW

J=

)"
J+2 (14)

Proof. We can write S5 as follows



and with (6), we obtain

s =30 (1) S e (S e e

:Zfz(jﬁ,) o (b 0 -0
-3y (Do e ()

Now, from (3) and after some rearrangement, we get

BRI i ()

J

From (7) and (10), the result holds.

3 Recurrence relation for S

Theorem 2. For any nonnegative integers m and n, we have

Lg(mﬂ) — (=) (n+1D)™

glm) _ g(m) _
n+1 n n -+ 1 n

-1
")

Proof. The proof is based on the Sprugnoli [16] observation (
The recurrence relation for SY™ is given in the following
Theorem 3. For any nonnegative integers m and n, we have

m+1 m+j ;
ST = 5= (1) o+ 17 A (e (M)
J

:0n+j+2 J

with the initial condition S(gm) = Oom, where 4,5 is the Kronecker symbol.
Proof. This follows immediately from (14) and (15).

Setting m = 1 in (16), we have the following
Corollary 4. If n is nonnegative integer, then

n— (=1)" (2n* + 1703 + 49n? + 57n + 24)

g g
nt1 = o0t (n+2)(n+3) (n+a)

Our next goal is to calculate the ordinary generating functions of Sm).

6

(16)



4 Ordinary generating functions of Sﬁbm)

In 2002, Mansour [9], generalized the idea of Sury [18] and gave an approach based on
calculus to obtain the generating function for some combinatorial identities.

Theorem 5 (Mansour [9]). Let r,n > k be any nonnegative integer numbers, and let f, (n, k)
be given by

£y (k) = [+ oo a7)

n!
ul

where p (t) and q(t) are two functions defined on [uy,us]. Let {an},~o and {b,},-, be any
two sequences, and let A (x), B () be the corresponding ordinary generating functions. Then

u2

Z[Zﬂ <n,k>akbn_k] o= o [A G @) Ba)at] (18)

n=0 Lk=0

ul

n_m

We apply Theorem 5, for a,, = (—1)"n™ (m > 1) and b, = 1, we have

Afw) = ﬁ > <’}j> CON

k=0
m (_1)m+k

=N W,
E:u+mﬁ“ *

k=0
1
B (z) = Zaz" =
= 1—=x
For r = 1, formula (18) gives:
; 1 Z <ZL> (_xt)k+1
ZSflm)x" = — x/ h=0 o dt| . (19)
= dx ) (1+2t)"" (1 — 2+ xt)

Making the substitution xt = y in the right-hand side of (19), we obtain

e Smew
ZST(lm)l.n _ / k=0 — dy ’
dr ) (1+y)"" (I-z+y)

n>0 0

Since the degree of the denominator is at least one higher than that of the numerator, this
fraction decomposes into partial fractions of the form

i <TIZ> <_y)k+1 o™ () m (m)

k=0 _ as (z)
Q+y)" M (Ql-z+y) l-z+ty Z(1+y™ "t

(20)

7



We note in passing that (20) is equivalent to

S (Y = W e @) (- )Y () el @) )
k=0 5=0

Z m+k+1 1 + y)m—k Wm—l,k—l-
k=0

For y = —1 and using the fact that W), , = p! for p > 0, we immediately obtain the well-

known identity
Em TN o,
k

k=0

Next, if we set y = 0 in (21) then we obtain a relation between o™ (r) and al™ (x)

> o) (@) = 220 2

and

a0 = Y () - 21

Proof. We verify that (23) and (24) satisfy (21). Denote the right-hand side of (21) by
R (y), after some rearrangement, we get

m

R =3 <7Z>

k=0

(1 + y>m+1

k+1
xm+l (1 - I) ’

+(l—z+y)> (1+y)° (Is_iil <k+ 1)




using binomial formula and for k& < m, we obtain
. /m w (14+y)° = (k+1
-3 ()| S L () e

@ —iﬂ;) Zm: (1 ;y)s i(_l)j:ﬂj <’f+ 1>

J

s=m-+1

Finally,




According to (7) and (11), we have

o= S (1) ()

i=0
B Z (=)™ (m — s +10)! m+ 1
_i:0 gitl m—s+1+1
S _1 1+s+1
= Z ( )i+1 Wm,mferi
= (@)
m -1 m+j+1
= ()WWM
' xrs—m J k
Jj=m—s

It follows from (9) that

m m
a()(x>:xm+1 <k> - k+1

1 — 2 — metk m—
= > (-1 R W1
k=1
o m+k
=(1-x Z ka Win—1k-1
—0
S mik K S m+k K
= Z (—1)m oy Win—15-1 — Z (—1)"** EWmekq
k=0 k=0
m m—1
k k+1
m+k m+k
- Z (=1) ' xkz+1Wm*1»k*1 + (-1) ’ s} W1,k
k=0 k=0
Using (8), we get a(™ (z) as desired. This completes the proof. O

Now, integrating the right-hand side of (20) over y, we obtain

23D () el m
/( =0 dy = o™ (z)In(1 — 2?) + °

L+y)"" (=2 +y) = M7T°

m=l d (m) .
ZSém)x" = In(1 — 2?)—a'™ (z) + Z dme_ i ) (1-1+2)""])
+ - (Q+z)™ Lalm) (z)) — ] 39;2 ) () | (26)



with

d T (s—mA+14g) (=)™
A m) (N .
70" (@) = jEm_S Y W j-

With Proposition 6, we can now rewrite (26) as follows

Theorem 7. For any real numbers x and for all nonnegative integer m, we have

m).n - +j )erj 2
> S =<Z S Wiy | (1= 2%

n>0 J:

+ Z x(s__ii Wonm—; (—8 —J 1 (1-QQ+2)"™™) —z(1+ x)s_m_1>

. m — S
0<j<s<m—1

In particular for m =0 and m = 1, we get

In (1 — 2?)
ZS T 1- ZE2 * 2

n>0

and

2+3 2 —
Zsr(ll)zn - ST 5+ 337 In (1-27).
= z(l+x) T

5 The asymptotic expansion

In the previous sections, S becomes more complex when, m grows, so it is important to
have asymptotic expansion of Sim)

Theorem 8. For m > 0, we have

S (20)™ and Sé;n}rl ~—2n+1)"
Proof. Write
K" =co+c(k+1)+ek+1)(E+2)--+ep(k+1)---(k+m),
where ¢;’s depend on m (¢, = 1). we immediately have
Sim) — coi (—1)" (Z) 1+01i (=D)" (k+1) (n> o +Z Fk4+1)-- (k+m) (Z) 1.
k=0 k=0
After some rearrangement and using the fact that (k + 1) (Z)_l =(n+1) (Zﬂ)fl, we have

St = coTOY fey (n+ 1) TOY +ea(n+1)(n+2) T + .4 (n+1)--- (n+m) 7™,
Since Ty0? — 1 and Tio?) — —1, the result holds. O
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6 A connection to the Akiyama-Tanigawa matrix

In this section we consider ™. The following lemma will be useful in the proof of the

main theorem of this section.

Lemma 9. For m > 1, we have

n . m 5 k+1
> ket = kZ:OWm,k (1 _Z)

k=0

m

— "t Z (7:) (n+1)""* ;0 (=)W, (1 — 2)7F L,

s=0

Proof. Recall that, for m > 1

k=0 k=0 k=0
we have
DR DU S
k=0 k=0 k=n-+1
m . k+1 e’} A
D2 (o B U
k=0 =0
m P k+1 oo m m '
O e O D 3 [ [CRSVRE
k=0 =0 s=0
m . k+1 m m 0 '
= Wk (1 — z) — My ( S) (n4+1)"" Zz’sz’,
k=0 s=0 =0
as desired. ]

For an alternative proof see Boyadzhiev [4]. The main result of this section is to prove
the following theorem which expresses explicitly the alternating sums of the reciprocals of
binomial coefficients, T.™", in terms of the Akivama-Tanigawa matrix Ak

Theorem 10. For nonnegative integers n,m and p, we have

_1 m
TP = (";p) Som + (n+p+1) Y (—1)"H (m

S

) (TL + 1)m—s As,n—i—p—i—l

s=0

n+p+ e Jfn+s+p+2\7

- -1 Wins, (28
n+1 ;( )( p+s+1 s (28)

where A; ; is the Akiyama-Tanigawa matriz.
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Proof. By the Beta function we can write

1
n

T,(Lm’p):Z( DY E™ (p+n+1) /x”+k )R da
k=0 )
1 . N
:(p+n+1)/a:p(1—a:)” kM(l_x> d.
9 k=0 -t

Using the lemma, we get

™ = (p+n+1) /x”l—x ( D Wi (=)™
0

_ i(?) (n+1)"""° : (—1)"+ Wi (—2)™ (1 — x)k_”> 0

s=0 k=0
1) & k 2\
_(ptn+1) S (- k+1(n+ +p+> Wik
n+1 pr p+k+1
m m - (_1)n+s+k+1 n—l—k‘+2+p —1
— 1 1 —_ W k.
(p+n+t );Oko(s>(n+ ) k+1 k+1+p *
Finally, from (12) we obtain
m -1
TT(Lm,p):(p+n+1)z(_1>k+1 n+k+p+2 W
n+1 — p+k+1 ’
m 1)n+s n+p+1
" 2,k + 1) Byrp.
+(n+p+1 Z( ) n+ n+p+ !Z s(n+p+2,k+1)Byyy
As desired, this completes the proof. O]

Setting p = 0 in (28) we can rewrite (14) as follows
Corollary 11.

Sy(Lm) = 60m — m+1 n + Z n+s ( ) (n ‘I‘ 1)m78+1 As,n+1.

7 A recurrence relation For Tr(bm’p )

Theorem 12. For any nonnegative integers m,n and p
T(m’p) n+1 1

= DTS qplmp) o © plmale) (1) (g 4 1) 29
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Proof. Using the identity

(n—i—p—i—l)l_ n+1 <n+p)1_ k (n+p)1

k+p n+p+1\k+p n+p+1\k+p/

we get the relation (29). O
Now, from (28) and (29), we have the recurrence relation for T

Theorem 13. For nonnegative integers n,m and p, we have

m+1 S
+1 (-1 (m+1
T = ) (1t (a1 Asn

n+1 n +p_'_ 1 n ( ) (Tl + ) et (n + 1)5 s ,n+p+1

1

m+1 —1
s(n+ts+p+2 n m
+ _1 m s _1 7’L—|—1 )
ol P (I W G )

with the initial condition To(m’p) = (";p)_léom.
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