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In this note, we study two matrices whose elements may be considered to be generalized

moments. The matrices are defined using the coefficients of simple Jacobi and Stieltjes
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Abstract

We study two matrices N and M defined by the parameters of equivalent S- and
J-continued fraction expansions, and compare them by examining the product N~!'M.
Using examples based on the Catalan numbers, the little Schroder numbers, and powers
of g, we indicate that this matrix product is an object worthy of study. In the case
of the little Schroder numbers, we find that the matrix N has an interleaved structure
based on two Riordan arrays.

Introduction

continued fractions.

In familiar cases, these matrices are well-known, though this study examines them from a
fresh perspective. It will be assumed that the reader is familiar with the basics of orthogonal
polynomials [4, 8, 17], Riordan arrays [14], production matrices [6, 7, 13], continued fractions

[18] and the interplay between these areas [1, 2].

Our point of departure is a sequence a,,, with a; = 1, whose elements are either integers

or polynomials with integer coefficients.
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We will use these numbers to define two lower-triangular matrices, which we then com-
pare.

In both cases, the elements of the first column will be the sequence u,, generated by the
continued fraction

1
1 ar
1_ a2
1_ asx
1—

We require that this sequence be Catalan-like, in the sense that we require all the Hankel
determinants |/ 4;|o<i j<n to be non-zero.
An equivalence transformation ensures that the sequence p,, is the same as that generated
by
1

CL16L2SL’2

1—ax— 5
a3a4T

1 —(as+as)e—---

This exhibits p,, as the moment sequence of the family of orthogonal polynomials P,(x) that
satisfy

1 —(ay+as)x —

P,(z) = (x — (agn—2 + a2n—1)) Pr_1(x) — agn_3a9,—2 Py _o(x),
with Py(z) =1, Pi(z) =2 — a;.
The first matrix M that we shall be interested in is the inverse of the matrix of coefficients

of these polynomials. The theory of production matrices and orthogonal polynomials tells
us that this production matrix is given by

ay 1 0 0 0 0
aijas  as + as 1 0 0 0

0 asas a4+ as 1 0 0

0 0 asae ag + ay 1 0

0 0 0 arag  ag + ag 1

0 0 0 0 Qg0 a0 + a1

The form of this production matrix ensures that the matrix M generated by it will be
lower-triangular with 1’s on the diagonal. We obtain a matrix which begins

1 0 0
[eY 1 0
ala+B) a+ B+ 1

- = OO0

af(a+8)% + Bv) (a+B)? + By +(a+B+7+0) a+BHy+dte
al(a+p)° +Bv2a+28+7+8) (a+B+r+5+0° —a(y+d+e) —BE+e) —e(v— @)

- MO OO0



where we have written @ = ay, 8 = a», and so on.

In order to define the second matrix /N, which again will have p, in the first column, we
also use a production matrix. To construct this production matrix, we have two alternative
routes. The first one proceeds as follows; we take the inverse of the matrix

1 0 0 0 0 O

—a; 1 0 0 0 0

0 —ay 1 0 0 O

0 0 —asz 1 0 O

0 0 0 —-ay4 1 O

0 0 0 0 —as 1

to obtain the matrix

1 0 0 0 0 0
ay 1 0 0 0 0
aas s 1 0O 0 O
a1a903 aoas as 1 0 0
a1A2a304 20304 asay agz 1 0
1

a1a2a34a5 A2a30405 Q30405 Q405 Aj

We now behead this matrix (we remove the first row) to obtain the following production
matrix.

ap 1 0 0 0

a1a9 a9 1 0 0 0
10203 o3 as 1 0 0
a10a20a304 Ao2a30a4 asay ay 1 0
102030405 A2a30405 a3a40s 405 as 1
a1a20a3a40506 A2a3040506 Q3040506 A40506 A50 Ag

The form of this production matrix ensures that the matrix N that it generates will be
lower-triangular with 1’s on the diagonal. The matrix N that we seek then begins

1 0 0 0 0

«@ 1 0 0 0

ala+B) a+p 1 0 0
a((a+ )2+ Bv) (e +B)? + By a+ B+ 1 0 ,

1

a((a+ B8 +Bv2a+28+v+6) (a+B)3+Bv2a+28+7v+6 (a+B)2+v(a+68)+(B+7)2

where we have used o« = a1, § = a9, and so on.



There is an alternative production matrix approach to the construction of N. Multiplying

the (n, k)-th element of N by
k

1L

j=1
produces a lower triangular matrix whose first column is the same as that of N, and whose
production matrix takes the simple form of

a; aq 0 0 0
a9 A A9 0 0
a3 az a3 asg 0
Ay Qg4 G4 Q4 A4
as as as a5 a5 das
g Aag G A g (g

We can clearly reverse this process, starting with the sequence a,,, to produce N.

In order to compare the two matrices M and N, it is natural to examine the product
N=1M.

Example 1. The Catalan matrices. We let a, = 1. Thus we are interested in the
sequence generated by the continued fraction

This is the sequence of Catalan numbers C,, = #1(2:), A000108. In this instance, the

production matrix of N for both methods of generation is given by

— == =
el
e =)
— === OO
_— = —_ 0 OO
_——_0 OO o o

and N is the Riordan array
N = (c(z),zc(z)) = (1 —z,2(1 — )" A033184.
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The matrix M is given by the Riordan array

1 T
1+2’ (1+x

M = () et = 5) v

and the associated orthogonal polynomials are the Chebyshev polynomials U, (5). The pro-
duction matrix of (c(z), zc(x)?) is given by

110000
121000
012100
001210 7
000121
000012
corresponding to the generating function
1
1 -
J— x J—
2
1—20 — ————
1—2x—---

of C,,.

A straight-forward Riordan array calculation now shows that in this case,

"1—=x

N_l-M:(c(x),xc(x))_l-(c(x),xc(x)Q):<1 ° )

which is the shifted binomial matrix

O O OO O
= === O
R W NN = OO
O W RO OO
-0 O O O
_ o O O O O

Example 2. The g-case. We take the example of

n _1077,
o =0 la= Do
q q
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so that a; = 1, ays = ¢, as = ¢*, and so on.
Starting with the matrix

1 0 0 0 0 0
1 1 0 0 0 0
0 —¢ 1 0 0 0
0 0 —¢2 1 0 0 ,
0 0 0 —¢ 1 0
0 0 0 0 —¢'1

we invert it and behead the resulting matrix to get the production matrix

11 0 0 0 0

qg q 1 0 0
¢ ¢ ¢ 1 0 0
¢ ¢ ¢ ¢ 10 ,
A L A
@B qB gt g2 P P
which we use to generate the matrix N:

1 0 0 0
1 1 0 0
g+1 q+1 1 0
@ +¢*+2¢+1 @ +a*+2¢+1 ¢ +q+1 1

CH+2* +33 +3¢2+3¢+1 C+¢°+2¢" +33 +3¢2 +3¢+1  ¢®+q' +2¢> +2¢° +2¢+1

In the left column we recognize the ¢-Catalan sequence pu,, with generating function

1

T

1 —

qxr
¢’x
1—...

Alternatively we may begin with the production matrix

1 1.0 0 0 0
q q 0
0

1—
1

(S
]

o O O

2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

SN

q
q q
q q
q q

LRl
e
LRl

LR R



Let N be the matrix generated by this production matrix. Dividing column & of the M by

k

[[e:=11d =40,

i=1

we recover the matrix V.
The generating function

1
x
1—
x
1-— 1 5
I
1 —
is equivalent to
1
2
x
1—2— 1 =
¢z
1 - (q + q2)l‘ - qug
1 — 3 + 4 x —
(¢* +q*) T P
This leads to the production matrix

1 1 0 0 0 0
q q+¢ 1 0 0 0
0 ¢ G+ 1 0 0
0 0 ¢ P+ 1 0 :
0 0 0 @ T+ 1
0 0 0 0 " ¢’ +q"

which generates the matrix M, with first column equal to u,.
The inverse of the matrix M is the coefficient array of the orthogonal polynomials defined
by
Py(x) = (z = ¢*" (1 + q)) Pami(2) — ¢ Pa(a),

where Py(z) =1 and Pi(z) =2 — 1.
For N=1. M, we obtain the matrix that begins



1 0 0 0 0
0 1 0 0 0
0 ¢? 1 0 0
0 ¢° @+ q* 1 0
0 q9 q7 + q8 + q9 q4 + q5 + q6 1
0 q14 q12 + q13 + q14 + q15 qg + qlo + qll + q12 + q13 q5 + q6 + q7 + q8

Dividing each element M, ; of M by

(4

q :
we obtain the matrix

10 0 0 0

0 1 0 0 0

0 1 1 0 0

0 1 q(1+ q) 1 0

01 ¢FA+q+q) F(l+q+4¢°) 1

01 Fl+g+¢+¢*) ¢*Q+g+2¢+E+¢") Fl+q+E+¢°)

which is the Hadamard product of the matrices

10 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 1 1+gq 1 0 0
01 1+qg+q 1+q+¢ 1 0
01 14+g+¢P+¢ 14+q¢+2@+¢F+¢* 1+g+3+¢ 1

and
10 0 0 0 O
01 0 0 0 O
01 1 0 0 O
01 ¢g 1 00 7
01 ¢ ¢ 10
0 1 q3 q4 q3 1

_ o O O O O

_ o O O OO




where the first matrix is the ¢-Riordan array [Z:}C

n—k)‘

}q [3], and the second matrix is a shifted

version of the matrix ¢*(
The production matrix of N=! - M begins

0 1 0 0 0 0

0 ¢ 1 0 0 0

0 ¢°(¢—1) *(*+q-1) 1 0 0

0 0 (-1 @+ 1) 1 0 ,
0 0 0 @ -1 ¢'(¢"+¢ 1) 1

0 0 0 0 (" =1) @ +q¢" 1)

indicating that in this case, the inverse matrix (N~'- M)~ = M~!. N is the coefficient array
of a family of orthogonal polynomials whose parameters are given by the production matrix
above.

We look more closely at the case of ¢ = 2. We find that

1 0 0 0 0 O
1 1 0 0 0 O
3 7 1 0 0 0
M = 17 7 31 1 0 0 :
171 1471 1333 127 1 0
3113 51653 98487 21717 511 1
while
1 0 0 0O 0 O
1 1 0 0O 0 O
3 3 1 0O 0 0
N = 17 17 7 1 0 0
171 171 77 51 1 0
3113 3113 1471 325 31 1
Then
1 0 0 0 0 O
0 1 0 0 0 O
0 4 1 0 0 0
Nt. =10 32 24 1 0 O
0 512 896 112 1 0
0 16384 61440 17920 480 1




Looking at the reduced matrix

1 0 0 0 0 0

4 1 0 0 0 O
32 24 1 0 0 0
512 896 112 1 0 0
16384 61440 17920 480 1 0
1

1048576 8126464 5079040 317440 1984

we see that it is the moment array of the family of orthogonal polynomials whose parameters
are given in the production matrix

4 1 0 0 0 0
16 20 1 0 0 0
0 384 88 1 0 0
0 0 7168 368 1 0
0 O 0 122880 1504 1
0 O 0 0 2031616 6080

We deduce that the sequence 1,4,32,512,16384, ... or 2"("+3)/2 A(36442 has a generating
function given by

1
1622 ’
1—4dx —
384722
1—20x —
1_ 88 716822
T 13687 — -
or equivalently,
1
4z
1 —
4z
1 —
16x
1—
24x
1—
64x
1—...

In this latter expression, the coefficients are given by the sequence

b(n) = 2" — 2 D/2(1 — (1)),

10
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The Hankel transform of 27("*3)/2 is then given by [10, 11, 12]

n—1

h = [ J(0(2k + 1)b(2k + 2))" "

k=0
A similar analysis can be carried out for ¢"("+3)/2,

Example 3. The little Schroder numbers. In this example, we take a base sequence a,,
given by
1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,-- - .

The sequence with generating function

1 1
a1 X
1— ! 1—
QAo 2z
1— 1—
asxr xr
R 1—
1— 1—

is the sequence of little Schroder numbers A001003
1,1,3,11,45,197,903, . .. .

These numbers are also generated by

1
. 202
. 212
1—3z—
1-3 2
I 3=
We have
1 0 0 0 0 0 - 100000
11 0 0 0 0 110000
0 -2 1 0 0 0 221000
0 0 -1 1 0 0 221100 ,
0 0 0 -2 1 0 442210
0 0 0 -1 1 442211

11
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so that the matrix IV in this case begins

1 0O 0 0 00
1 0 0 00
3 31 0 00
1 11 4 1 00
45 45 17 6 1 0
197 197 76 31 7 1

with production matrix

00 R NN
0 = = NN =
RN NN R RO
RN NN R OO
O == O OO
N = OO OO

For instance, we have
17=1-114+1-442-142-0+-- -,

and
45 =1-1142- 1142 - 444 - 1+ --- .

The matrix M is given by

1 0 0O 0 0 0
1 1 0 0 0 0
3 4 10 0 O
1 17 7 1 0 0
45 76 40 10 1 O
197 353 216 72 13 1

This is the Riordan array A172094
(1+x—\/1—6a:—|—$2 1—3$—\/1—4$—|—ZL‘2>_( 1 x )1

4x 4 1+2" 14 3z + 222

12
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with production matrix

SO OO N
O OO N W
OO WO
O N W OO

W~k O OO
Wk O O OO

The matrix N is a “mixture” (in left to right interleaved fashion) [5] of this Riordan array
and the related Riordan array

(1’1—3x—\/1—6x~|—$2):<1 x >1,

4z "1+ 3x + 222

which has production matrix

O OO o oo
SO OO N W
OO N WO
O N W OO
W= O OO
W R O O OO

We have b2
n]l+x—v1—-6z+z2 [ 1-3x—V1—6x+z2 : : .
N ("] i I ) , if k is even;
n,k — k (130 vi—GaTa? (k+1)/2 . .
[z™]x (%) : if k is odd.

We note that in like fashion, the matrix N~!, which begins

1 0 0 0 0 0
-1 1 0 0 0 0
0 -3 1 0 0 0
0 1 -4 1 0 0 ,
0 0 7 -6 1 0
0 0 -1 11 -7 1

is a “mixture” (in shifted alternate row fashion) of the two matrices

1 T d 1 T
an )
1432+ 222" 1+ 3x + 222 142" 14 3z + 222

13



For instance, the array ( ) begins

1 T
14-3z+222 7 1434222

1 0 0 0 0 O
-3 1 0 0 0 O
7 =6 1 0 0 O
—15 23 -9 1 0 O ’
31 =72 48 -—-12 1 O
—63 201 —-198 82 —15 1
while the array (H%, m) begins
1 0 0 0 0 0
-1 1 0 0 0 0
1 —4 1 0 0 0
-1 11 —7 1 0 0
1 —-26 30 —-10 1 O
-1 57 —=102 58 —-13 1
We have
10 0 0 00
01 0 0 00
01 1 0 00
N! - 102 3 1 00
02 5 4 10
0 4 12 13 6 1

We find that the production matrix of the inverse of this matrix is given by

o1 0 0 0 O
0O -1 1 0 0 0
o 0 -2 1 0 0
o 0 0 -1 1 0
o 0 0 0 -2 1
o o 0 0 0 -1

14



This is the beheading of the inverse of the matrix

B e B R R e R
=N N
=N NN = O
N = = O O
N = O OO
_ o O O O

The form of the production matrix of the inverse is reflected in the structure of N~ - M
as follows: the internal elements of each even row satisfy

tij =1t +1-ti1y,

while for odd rows we have
tz‘,j =1- ti—l,j—l +2- ti—l,j'

We remark that it is clear that the interleaved structure of N, based on two Riordan arrays,
will be replicated in the case of any sequence a,, of the form 1,1, 1,7, 1,r 1,....

2 Conclusion

Using the parameters of equivalent Stieltjes and Jacobi continued fractions, we have defined
two matrices N and M, and we have studied the product N~1M in three specific cases. In
each case, some noteworthy results have emerged. We conclude that the matrix N='M is
worthy of further study.
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