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Abstract

Let (a0, · · · , ak−1) be a sequence of positive integers and m a positive integer. We
prove that “almost every” real quadratic unit ǫ of norm (−1)k admits at leastm distinct
factorizations into a product of purely periodic irrationals of the form

ǫ = [a0; a1, . . . , ak−1, x, y]× [a1; a2, . . . , x, y, a0] × · · · × [y; a0, . . . , ak−1, x].

Periods exhibited in this expression are not assumed minimal. The analogous assertion
holds for real quadratic units ǫ > 1 with prime trace and m = 1. The proofs are based
on the fact that an integral polynomial map of the form f(x, y) = axy + by + cx + d,
gcd(a, bc) = 1, a > 1, b, c > 0, assumes almost every positive integral value and almost
every prime value when evaluated over the positive integers.

1 Introduction

To a sequence of positive integers ν = (a0, a1, a2, . . . , ak−1), k ≥ 1, we associate the real
quadratic unit ǫ > 1 obtained by taking the following product of purely periodic quadratic
irrationals

ǫ =
k−1
∏

i=0

[ai; ai+1, . . . , ak−1, a0, ai−1]. (1)

Deviating from the standard convention we allow periods exhibited in this expression to
be multiples of the minimal period. This convention is retained throughout. An induction
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shows that ǫ > 1 is a quadratic unit [13]. Alternatively, this fact follows easily from the
matrix approach to the continued fraction algorithm (see van der Poorten [12] and §4); from
this point of view (1) corresponds to the matrix relation

(

a0 1
1 0

)(

a1 1
1 0

)

· · ·
(

ak−1 1
1 0

)(

α
1

)

= ǫ

(

α
1

)

(2)

where
α = [a0; a1, . . . , ak−1].

Note from (2) that ǫ has norm (−1)k.
Every real quadratic unit ǫ > 1 has a trivial factorization of the form given in (1). Let

N denote the trace of ǫ. For ǫ with norm −1 we have ǫ = [N ;]; otherwise when the norm is
+1 we have ǫ = [1;N − 2]× [N − 2; 1].

We call a product of the form given in (1) a cyclic factorization of the corresponding
unit ǫ. Such factorizations are of interest from a variety of different points of view. Distinct
factorizations of ǫ may be taken to represent distinct conjugacy classes of hyperbolic matrices
in GL(2,Z) with dominant eigenvalue ǫ. These classes, in the study of hyperbolic automor-
phisms of the torus, correspond to topological conjugacy classes of homeomorphisms, the
invariants ǫ and ν having natural topological interpretations [1]. By a result due to Latimer
and MacDuffee [7] there is a further identification with ideal classes of the order Z[ǫ]. If
ǫ0 is the fundamental unit of Q[

√
d] (d square-free), then, as explained by Yamamoto [13],

the field class number h(d) can be identified with the number of cyclic factorizations of ǫ0
satisfying the special condition that the factors have discriminant d.

With the aid of a computer the complete family of cyclic factorizations of a real quadratic
unit ǫ > 1, for ǫ not too large, can be determined. Looking at such families one observes
in general a profusion of cyclic factorizations, the associated sequences ν displaying a great
deal of randomness. A natural question is the extent to which these sequences ν may vary
over the family of factorizations determined by a unit ǫ. We call a sequence of integers whose
terms are known with the exception of d integers in fixed positions a d-pattern. We consider
the extent to which units ǫ admit cyclic factorizations instantiating a given d-pattern. If the
length of the pattern is odd, it may be assumed the corresponding units have norm −1, a
condition noted above to be necessary.

For a 1-pattern ν(x) = (a0, . . . , ak−1, x), k ≥ 2, it is not hard to see that a significant
proportion of real quadratic units ǫ > 1 of norm (−1)k+1 have no factorization instantiating
ν(x). This is a consequence of the fact that the existence of a corresponding cyclic factor-
ization would induce a constraint on the congruence class, relative to certain moduli, of the
trace of ǫ. The same constraint arises also for certain d-patterns, d > 1, for instance for the
patterns (a, x, a − 1, a + 1, y), a > 1. However, if a d-pattern has at least two adjacent free
variables, a corresponding cyclic factorization almost always exits. We prove

Theorem 1. Let ν = (a0, a1, · · · , ak−1) be a sequence of positive integers and m be an
arbitrary positive integer. Almost every real quadratic unit ǫ > 1 of norm (−1)k admits a
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factorization over Q[ǫ] of the form

ǫ = [a0; a1, . . . , ak−1, x, y]× [a1; a2, . . . , x, y, a0] × · · · × [y; a0, . . . , ak−1, x]. (3)

The integers x, y may be selected in at least m different ways. Furthermore, if ν 6= (1)
almost every unit whose trace belongs to a fixed integer translate of the primes has at least
one such factorization.

The argument given extends to certain 2-patterns whose free variables are not adjacent.
Moreover, Theorem 1 immediately generalizes to finite families of sequences. Fix a finite
family of sequences F with lengths of a single parity. For example we may take F to consist
of all sequences of odd (resp., even) length whose length and terms satisfy fixed upper
bounds. Then almost every real quadratic unit ǫ > 1 of norm −1 (resp., +1) has a cyclic
factorization of the form given in (3) for each ν ∈ F . In the contrary direction, we see in
§2 that given a fixed sequence ν of length k there exist infinitely many real quadratic units
ǫ > 1 of norm (−1)k that have no corresponding cyclic factorization. If Dickson’s conjecture
is correct, then given a finite family F as above, these units may be taken to have no cyclic
factorization corresponding to any sequence ν ∈ F .

The sense in which units are to be considered generic can be made precise as follows. Let
ǫ(i,+), i ≥ 3, (resp., ǫ(i,−), i ≥ 1) denote the real quadratic unit of magnitude greater than one
with trace i and norm +1 (resp., −1). The magnitude of such a unit is well approximated
by its trace (since

∣

∣ǫ(i,±) − i
∣

∣ < 1). Let T+ (resp., T−) be the set of traces i of units of the
form ǫ(i,+) (resp., ǫ(i,−)) that satisfy a given statement. The statement will be said to hold
of almost every unit ǫk of norm +1 (resp., −1) or, also, of a generic unit of this type, if
and only if the corresponding subset of T+ (resp., of T−) is of asymptotic density one in the
integers. The same approach can be employed to define genericity relative to any infinite
subset of units ǫ(i,+) (resp., ǫ(i,−)); in particular, the trace i may be taken to be prime. It is
not hard to show that almost every real quadratic unit ǫ(i,+) (resp., ǫ(i,−)) is a fundamental
unit [10].

The proof of Theorem 1 rests on the following result on the representation of integers by
polynomials. Let f(x, y) = axy + by + cx + d be an integral polynomial such that a > 1,
b, c ∈ Z+, and gcd(a, bc) = 1. Let P denote the set of primes.

Theorem 2. Let Rf = {f(x, y) : x, y ∈ Z+}. Fix m ∈ Z+. Then: (i) Rf ∩ Z+ is of
asymptotic density one within the set of positive integers, each element of the set being
represented by at least m distinct pairs of positive integers (x, y); (ii) Rf ∩ P is of relative
asymptotic density one in P .

Assertion (i) follows quickly from the fact that, given a fixed modulus a, almost every
integer has at least one divisor in each residue class r mod a, gcd(r, a) = 1 [2]. S.K. Stein
[11] obtains a more general factorization result from which he derives (i) with m = 1 and
d = 0. The proof of (ii) relies on Dirichlet’s and de la Vallée Poussin’s theorems, together
with a modern variant of Euler’s product identity for arithmetic progressions. The relative
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density of the set of primes that is represented by a general two-variable integral quadratic
polynomial over the integers was investigated in well-known work of Iwaniec [5]. Their
results imply that the above polynomials f(x, y) assume a set of prime values of positive
relative density when evaluated over the integers. We should note that in contrast with
the restricted class of polynomials considered here, which assume a set of integer values of
asymptotic density one, the usual number-theoretic focus is on polynomials that assume a
sparse set of integer values. It is possible to extend the argument given for (ii) to a more
general class of integral polynomials of the form f(x, y) = (rx+ ty)(ux+my) + bx+ cy+ d,
subject to various restrictions on the parameters, but this level of generality is not needed
for our purposes.

In §2-3 a proof of Theorem 2 is given. The derivation of Theorem 1 is given in §4.

2 The representation of positive integers

Let f(x, y) = a xy + by + cx+ d be an integral polynomial whose coefficients satisfy

a > 1, b, c > 0, gcd(a, bc) = 1. (4)

We consider the positive integral values taken by f(x, y) over the positive integers. This set
may be identified with f(Z+×Z+) up to a possible finite number of non-positive values that
may arise when d < 0.

Given N ∈ Z+ we say f(x, y) represents N if there exist integers x, y ∈ Z+ such that
f(x, y) = N ; it should be emphasized that the representation we are considering is over the
positive integers, an assumption necessitated by our later arguments (see §4). We will say
f(x, y) represents a set B ⊂ Z+ if it represents each element of B in the above sense.

Fix an infinite set of positive integers B and let A ⊂ B. Then the asymptotic density (or
natural density) of A relative to B is defined to be the limit

dB(A) = lim
k→∞

|A ∩ {1, 2, . . . , k}|
|B ∩ {1, 2, . . . , k}|

provided it exists. If dB(A) = 1 we will say that almost every element of B lies in A or,
alternatively, that A is of full density in B. On occasion the reference to B is omitted, in
which case it is to be assumed B = Z+ .

In this section we show that any polynomial f(x, y) satisfying the conditions stated in
(4) represents almost every positive integer, or dZ+(f(Z+ × Z+) ∩ Z+) = 1.

We recall some basic facts. Let B be an infinite set of integers and let C be the collection
of all subsets of B having well-defined asymptotic density relative to B. It is well-known that
C is closed under finite disjoint unions and under complementation but is not closed under
intersection and hence does not form an algebra. A useful property of dB is that it is additive
over disjoint sets in C. Below we list several additional useful properties [8, pp. 79–80].

Lemma 3. Let B be an infinite subset of positive integers and A ⊂ B.
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(i) If A is finite then dB(A) = 0.

(ii) Assume A has well-defined density, given by dB(A) = d. If Ac is the complement of A
in B then dB(A

c) = 1− d.

(iii) Let Ai, 1 ≤ i ≤ k, be a collection of subsets of B for which dB(Ai) = 1. Then the
asymptotic density of

⋂k

i=1 Ai exists and is given by dB(
⋂k

i=1 Ai) = 1.

(iv) Assume A1 ⊂ A2 are nested subsets of B with well-defined asymptotic densities. Then
dB(A1) ≤ dB(A2).

(v) Let A be any subset of positive integers. Fix k1 ∈ Z+ and k2 ∈ Z. Then dZ+(A) = d if
and only if dZ+(k1 A+ k2 ∩ Z+) = d/k1.

(vi) If A1, A2 ⊂ B satisfy dB(A1) = 1 and dB(A2) = d then the density of A1 ∩A2 relative
to B is well-defined and given by dB(A1 ∩ A2) = d.

We consider now the positive integers N represented by f(x, y). A standard approach to
finding solutions of an equation of the form a xy + by + cx+ d = N is to rewrite it as

aN − (ad− bc) = (ax+ b)(ay + c). (5)

From this equation we see that N is represented by f(x, y) exactly when aN − (ad− bc) is
the product of two integers greater than a which belong to suitable residue classes modulo
a. Of course, such a factorization need not exist; in particular aN − (ad− bc) may be prime.
By Dirichlet’s theorem

Theorem 4 (Dirichlet). Every arithmetic progression of the form a x+ b, with a, b non-zero
integers satisfying a > 0 and gcd(a, b) = 1, contains infinitely many primes. In fact, the
sum of the reciprocals of the primes generated by such a progression diverges.

Given that the fixed parameters of (5) satisfy gcd(a, ad− bc) = 1, by Dirichlet’s theorem
the integer aN − (ad − bc) is prime for infinitely many positive integral values of N ; hence
these values cannot be represented by f(x, y). On the other hand we will see now that f(x, y)
represents almost every positive integer. This is a consequence of the fact that the divisors
of an integer are in general well-distributed over residue classes. As stated by Erdős [2],

Proposition 5. Let a ∈ Z+, a > 1. Let F (a) denote the set of positive integers that have
at least one divisor congruent to k modulo a for every integer k relatively prime to a. Then
F (a) is of full asymptotic density in Z+.

By Lemma 3 (vi) this observation extends to any subset S ⊂ Z+ of positive asymptotic
density; that is, dS(S ∩ F (a)) = 1. With this fact in hand it is easy to see that for almost
every positive integer N there exist non-negative integers x, y satisfying (5).

Let T be the affine transformation given by T (N) = aN − (ad − bc). The set T (Z+)
may include a finite number of non-positive integers which can be ignored since for any
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solution x, y > 0 of (5) the right-hand side of the equation must be positive. Accordingly let
B = T (Z+)∩Z+. Consider the subset B1 = B∩F (a). Since by Lemma 3 (v) dZ+(B) = 1/a,
we have dZ+(B1) = 1/a as well.

An element m = T (N ′) of B1 must satisfy the congruence m ≡ bc (mod a). Given that
gcd(b, a) = 1, it follows m has a factorization of the form m = m1m2 with m1 ≡ b (mod a)
and hence with m2 ≡ c (mod a). Therefore (5) has a solution in non-negative integers x, y
for N = N ′ and indeed for any N ∈ T−1(B1).

Consider now the asymptotic density of T−1(B1). To simplify notation put l = ad− bc.
Let Dk = T−1(B1) ∩ {1, 2, . . . , k}. Then T (Dk) = B1 ∩ {1, 2, . . . , ak − l} must be a set of
the same cardinality, say nk. Hence we may express the asymptotic density of B1 as

dZ+(B1) = lim
k→∞

nk

ak + l
=

1

a
lim
k→∞

nk

k
.

Recalling that dZ+(B1) = 1/a this shows limk→∞
nk

k
= 1. Therefore T−1(B1) is of full density.

We now know that for almost every positive integer N there exist non-negative integers
x, y satisfying (5). It remains to be shown that there exist multiple positive solutions.

Let Z(a; s) denote the set of all positive integers m that are congruent to s modulo a.

Proposition 6. Let k be an arbitrary positive integer and let a, b, c ∈ Z+ such that a > 1
and gcd(a, bc) = 1. Then almost every integer m ∈ Z(a; bc) admits at least k distinct
factorizations of the form m = (xa+ b)(ya+ c), where x, y ∈ Z+.

Proof. Let s, k ∈ Z+ and q be a prime such that s > 2k +
⌊

c
a

⌋

and q > b + s a. Since
gcd(a, b) = 1 the integers b + i a, 0 < i ≤ s, are relatively prime to qa. Note that they
represent s distinct reduced residue classes modulo qa. By the remark following Proposition
5, Z(a; bc) contains a subset Z1(a; bc) of full relative density whose elements have divisors in
each of these residue classes. Fixm′ ∈ Z1(a; bc). Then, given any residue class b+i0 a mod qa,
0 < i0 ≤ s, we may write m′ as a product of positive integers m′ = m1m2 where

m1 ≡ b+ i0 a (mod qa).

Since m1m2 ≡ bm2 ≡ b c (mod a) it follows that m2 ≡ c (mod a). Put c = c−
⌊

c
a

⌋

. We may
write

m′ = m1 m2 = (b+ i0 a+ i1 qa) (c+ j0 a)

for non-negative integers i1 and j0. Notice that m1 = b + xa with x = i0 + i1q > 0. When
i0 varies the factor m1 determines at least s distinct residue classes modulo qa. We have
j0 ≤

⌊

c
a

⌋

for at most
⌊

c
a

⌋

+ 1 values. In the remaining cases m2 is of the form c + ya with
y > 0. Thus we have products m′ = (b + xa)(c + ya) with x, y positive and with at least
2 k choices for the first factor. These factorizations are distinct unless b = c, in which case
there are still at least k distinct factorizations.

We now are in a position to conclude
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Corollary 7. Fix k ∈ Z+. Let f(x, y) = axy + by + cx + d be an integral polynomial such
that a, b, c > 0, a > 1, and gcd(a, bc) = 1. Then there exists a set of positive integers N of
full asymptotic density such that f(x, y) = N for at least k distinct pairs of positive integers
(x, y).

An alternative proof of Corollary 7 can be given starting from the following reformulation
of a xy + by + cx+ d = N , a 6= 0:

N = (ax+ b)y + cx+ d.

The idea, roughly, is as follows. Since gcd(a, b) = 1 Dirichlet’s theorem yields an infinite
sequence of distinct primes pi = a xi + b. Each value of the index i in turn determines a
corresponding arithmetic progression p(xi, y) = pi y + (c xi + d) in the variable y. By a
result due to C. A. Rogers [3, p. 242] the asymptotic density of the positive integers that are
realized by at least one of these progressions is bounded below by the asymptotic density of
the set of positive integers that are divisible by at least one of the primes pi. This density
is known to be 1 provided the sum

∑∞

j=1
1
pi

diverges [8], a fact which in the case at hand is

a consequence of Dirichlet’s theorem. Consequently T (x, y) represents almost every positive
integer over Z+ ×Z+. A trick similar to that used in the proof of Proposition 6 is needed to
obtain multiple representations.

3 The representation of primes

Corollary 7 gives no information about the representation of sets of integers of asymptotic
density zero. In this section we consider the representation of primes. We show

Proposition 8. Let f(x, y) = a xy+by+cx+d be an integral polynomial whose coefficients
satisfy a > 1, b, c > 0, and gcd(a, bc) = 1. Then f(x, y) represents (over the positive integers)
a set of primes p of full relative density.

Remark 9. Since the integer d is arbitrary, f(x, y) also represents a subset of full relative
density of any fixed integer translate of the primes.

The proof of Proposition 8 is based on Dirichlet’s theorem and the following additional
classical results. De la Vallée Poussin established that the primes generated by an arithmetic
progression are equidistributed among the possible residue classes. Let P be the set of primes
and Pa,b the set of primes generated by the arithmetic progression a x+b, a > 0, gcd(a, b) = 1.
We have

Theorem 10 (de la Vallée Poussin).

lim
k→∞

|Pa,b ∩ {1, 2, . . . , k}|
|P ∩ {1, 2, . . . , k}| =

1

φ(a)

,
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where φ denotes Euler’s totient function.
We also rely on the following variant of Euler’s famous product identity for primes gen-

erated by an arithmetic progression [6]:

Theorem 11. Let a, b be integers such that a > 0 and gcd(a, b) = 1. Then

∏

q∈Pa,b

(

1− 1

q

)

= 0.

To establish Proposition 8, we consider the families of primes generated by arithmetic
progressions obtained by evaluating the polynomials f(x, y) = (a x+b) y+cx+d at selected
values of x.

To fix ideas let us consider an arbitrary pair of arithmetic progressions q1 y+r1, q2 y+r2,
with q1, q2 distinct odd primes and r1, r2 relatively prime to q1, q2, respectively. We wish
to determine the relative asymptotic density of the set of primes A generated by these
progressions, A = Pq1,r1 ∪ Pq2,r2 . This is most conveniently accomplished by computing the
relative asymptotic density of the complementary set of primes P − A. Notice that only
finitely many primes qc ∈ P −A can belong to one of the four residue classes 0 (mod qi), ri
(mod qi), i = 1, 2. The remaining primes qc are distributed across (q1 − 2)(q2 − 2) possible
pairs of residue classes. Let k1 (mod q1), k2 (mod q2) be such a pair, with the residues ki
taken to be reduced modulo qi, i = 1, 2. By the Chinese remainder theorem the condition
that the prime qc belong to this pair of classes is equivalent to a condition of the form

qc ≡ s3 (mod q1q2), (6)

with s3 a fixed integer such that 1 ≤ s3 ≤ q1q2−1. Since k1, k2 6= 0, we have gcd(s3, q1 q2) = 1.
Applying Theorem 10 we see that the set of all primes satisfying (6) has relative density

dP (Pq1q2,s3) = lim
k→∞

|Pq1q2,s3 ∩ {1, 2, . . . , k}|
|P ∩ {1, 2, . . . , k}| =

1

φ(q1 q2)
=

1

(q1 − 1)(q2 − 1)
.

Since this computation does not depend on which of the (q1 − 2)(q2 − 2) pairs of residue
classes under consideration is selected, the total number of primes in P −A is asymptotic to

(q1 − 2) (q2 − 2)
1

(q1 − 1)(q2 − 1)
=

(

1− 1

q1 − 1

)(

1− 1

q2 − 1

)

The argument generalizes to any number k of progressions. Thus we have

Lemma 12. Let qj, 1 ≤ j ≤ k, be k distinct primes and rj corresponding integers such that

gcd(qj, rj) = 1. Let A =
⋃k

j=1 Pqj ,rj . Then the asymptotic density of A within the set of
primes is given by

1−
k
∏

j=1

(

1− 1

qj − 1

)
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This fact can be extended to the case of an infinite union
⋃∞

j=1 Pqj ,rj by applying Lemma
3 (iv) to the nested sequence of sets

Ai =
i
⋃

j=1

Pqj ,rj , i ∈ Z+.

We obtain

Lemma 13. Let qj be an infinite sequence of distinct primes and rj a corresponding sequence
of integers satisfying gcd(qj, rj) = 1. Then

⋃∞

j=1 Pqj ,rj is a set of full density within the set
of primes provided

∞
∏

j=1

(

1− 1

qj − 1

)

= 0.

The proof of Proposition 8 is now straightforward. Assume the polynomial

f(x, y) = axy + by + cx+ d = (ax+ b)y + cx+ d

satisfies the hypotheses of Proposition 8. By Dirichlet’s theorem the values of ax + b are
prime for an increasing sequence of positive integers xi. We write pi = a xi + b, ri = cxi + d.
Consider the arithmetic progression in y given by f(xi, y) = pi y + ri. If gcd (pi, ri) = 1,
Dirichlet’s theorem can be applied a second time.

Lemma 14. There exists an integer i0 such that for i ≥ i0

gcd(pi, ri) = gcd(axi + b, c xi + d) = 1.

Proof. Since a 6= 1 and gcd(a, c) = 1, it follows a 6= c.

Case (i): a > c. For xi sufficiently large necessarily 0 < cxi + d < axi + b. Since
pi = axi + b is prime gcd(pi, cxi + d) = 1.

Case (ii): a < c. Since gcd(a, c) = 1 we have c = k a + c′ for positive integers k and c′

with 0 < c′ < a. Thus we may write

f(xi, y) = (axi + b)y + (k a+ c′)xi + d

= (axi + b)(y + k) + c′xi + d′

where d′ = d− k b. Again, for xi sufficiently large 0 < c′xi + d′ < axi + b. Hence gcd(axi +
b, cxi + d) = gcd(axi + b, (cxi + d)− k(axi + b)) = gcd(axi + b, c′xi + d′) = 1.

Hence we may apply Dirichlet’s theorem to the progressions piy+ ri for sufficiently large
values of the index i, say, i ≥ i0; accordingly, f(x, y) represents the primes Ppi,ri for i ≥ i0.

Consider
⋃∞

i=i0
Ppi,ri . Theorem 11 yields

∞
∏

i=i0

(

1− 1

pi − 1

)

≤
∞
∏

i=i0

(

1− 1

pi

)

= 0.

It follows by Lemma 13 that the set of primes
⋃∞

i=i0
Ppi,ri is of full density in the primes.

Therefore f(x, y) represents, over the positive integers, a set of primes of full relative density,
completing the proof of Proposition 8.
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4 Periods prescribed up to two adjacent integers

There exists a well-known correspondence, mentioned already in §1, between certain ma-
trix products and continued fractions. In particular, the following two statements may be
regarded as equivalent:

(i) α = [a0; a1, . . . , ak−1] with k a fixed multiple of the minimal period).

(ii) For some unit ǫ ∈ Q[α], ǫ > 1,
(

a0 1
1 0

)(

a1 1
1 0

)

· · ·
(

ak−1 1
1 0

)(

α
1

)

= ǫ

(

α
1

)

. (7)

From the second equation we obtain a corresponcing factorization of ǫ, as follows. Let
αm, m ≥ 0 denote the purely periodic irrational obtained by cyclically permuting the period
of the expansion of α so that am occurs as the initial element, i.e.,

αm = [am; am+1, · · · , ak−1, a0, · · · , am−1].

Notice that αi+k = αi. A computation yields

(

am 1
1 0

)−1 (
αm

1

)

=
1

αm+1

(

αm+1

1

)

. (8)

The k matrices occurring in (7) may be eliminated by repeatedly multiplying each side of
the equation by the inverse of the left-most matrix and applying the equality of Equation
(8) to the right-hand side of the equation. After the k-th multiplication we are left with

(

α
1

)

=
ǫ

α0αk−1 · · ·α1

(

α
1

)

.

Hence
ǫ = α0 α1 . . . αk−1. (9)

We call a matrix of the type arising in Equation (7)—that is, either a single matrix of

the form

(

a 1
1 0

)

, a ∈ Z+, or a finite product of such matrices—a CF-matrix of depth k.

Such matrices have a simple characterization [12, Proposition 3]: namely, they are the non-

negative elements A =

(

s1 s2
s3 s4

)

of GL(2,Z) for which s1 ≥ max (s2, s3). By an elementary

induction if s1 6= 1 the inequality is strict, s1 > max (s2, s3).
One may easily verify that an arbitrary CF-matrix A of depth k in addition satisfies the

following properties: Det(A) = (−1)k; s1, s2, s3 > 0; gcd(s1, s2) = gcd(s1, s3) = 1.
Given a sequence of positive integers ν = (a0, a1, · · · , ak−1), let

Mν(x, y) =

(

a0 1
1 0

)

· · ·
(

ak−1 1
1 0

)(

x 1
1 0

)(

y 1
1 0

)

(10)
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and let ǫν(x, y) > 1 denote the dominant eigenvalue of Mν(x, y). Writing

(

b1 b2
b3 b4

)

=
∏

0≤i≤k−1

(

ai 1
1 0

)

,

we obtain the following expression for the trace of Mν(x, y) (which by the Cayley-Hamilton
theorem also gives the trace of its eigenvalues)

Tν(x, y) = b1xy + b2y + b3x+ b1 + b4.

Thus if N ∈ Z+ is represented by the polynomial Tν(x, y)—that is, N = Tν(x0, y0) for
some choice of positive integers x0, y0—then ǫν(x0, y0) is the dominant eigenvalue of the
matrix Mν(x0, y0) and by (9) it follows that ǫν(x0, y0) admits the cyclic factorization

[a0; a1, . . . , ak−1, x0, y0]× [a1; a2, . . . , x0, y0, a0] × · · · × [y0; a0, . . . , ak−1, x0].

By the characterization of CF-matrices provided above the polynomial Tν(x, y) satisfies
the hypotheses of Theorem 2 provided ν 6= (1). When ν = (1), Tν(x, y) = (x + 1)(y + 1).
In the former case, applying Theorem 2, and in the latter, noting that composite integers
form a set of integers of asymptotic density one, we may conclude that Tν(x, y) represents
almost every positive integer N in at least m different ways. Turning to the representation
of primes, assuming ν 6= (1), by Theorem 2 almost every prime is represented as well. This
yields Theorem 1.
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