
23 11

Article 14.5.3
Journal of Integer Sequences, Vol. 17 (2014),2

3

6

1

47

Iterative Procedure for Hypersums

of Powers of Integers
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Abstract

Relying on a recurrence relation for the hypersums of powers of integers put forward
recently, we develop an iterative procedure which allows us to express a hypersum of
arbitrary order in terms of ordinary (zeroth order) power sums. Then, we derive the
coefficients of the hypersum polynomial as a function of the Bernoulli numbers and the
Stirling numbers of the first kind.

1 Introduction

For every integer m, m ≥ 1, the hypersums of powers of integers are defined recursively as
follows: P

(m)
k (n) =

∑n
j=1 P

(m−1)
k (j), where P

(0)
k (n) is the sum of the first n positive integers

each raised to the integer power k ≥ 0, P
(0)
k (n) = 1k+2k+ · · ·+nk [1, 2]. The latter is given

by a polynomial in n of degree k+1 with zero constant term. Hence, inductively P
(m)
k (n) is

given by a polynomial in n of degree k +m+ 1 with zero constant term:

P
(m)
k (n) =

k+m+1
∑

r=1

crk,mn
r. (1)

An explicit formula for the coefficients crk,m involving the Stirling numbers of the first
and second kinds has been given by the author [3]. In this paper (Section 2), by an iterative

procedure, we obtain a new representation of the m-th order hypersum P
(m)
k (n) in terms of
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ordinary (zeroth order) power sums. Specifically, we will show that P
(m)
k (n) can be expressed

as a linear combination of P
(0)
k (n), P

(0)
k+1(n), . . . , P

(0)
k+m(n), as follows:

P
(m)
k (n) =

m
∑

i=0

(−1)iqm,i(n)

m!
P

(0)
k+i(n), (2)

where qm,i(n) is a polynomial in n of degree m− i. (Note that formula (2) holds for m = 0 if
we set q0,0(n) = 1.) In Section 3, we determine the explicit form of the coefficients of qm,i(n).
Then, using (2), we obtain the coefficients crk,m in terms of the Bernoulli numbers Bk and

the (unsigned) Stirling numbers of the first kind
[

n
k

]

(see A008275 in [4]). In particular, we
proved that

c1k,m =
1

m!

m
∑

i=0

(−1)i
[

m+ 1
i+ 1

]

Bk+i, (3)

in accordance with the result obtained by Inaba [2, Proposition 1]. (Please note that,
throughout this paper, we use the convention that B1 =

1
2
.)

For later reference, we recall that the recurrence relation defining the numbers
[

n
k

]

is
given by [5, p. 214]:

[

m+ 1
i+ 1

]

= m

[

m
i+ 1

]

+

[

m
i

]

, (4)

with
[

0
0

]

= 1, and
[

n
0

]

=
[

0
n

]

= 0 for n ≥ 1.

Formula (2) is noteworthy since it neatly shows how the hypersum P
(m)
k (n) is constructed

out of the building blocks P
(0)
k+i(n), i = 0, 1, . . . ,m. Moreover, we point out that the polyno-

mials qm,i(n) are interesting in their own right. Indeed, for fixed m, the coefficients corre-
sponding to the set of polynomials {qm,i(n)}

m
i=0 may be arranged in a Pascal-like triangular

array with a specific rule of formation.

2 Iterative procedure for the hypersum

The basic tool we use to obtain P
(m)
k (n) in terms of ordinary power sums is the following

recurrence relation, a proof of which has been given by the author [3, Theorem 8]:

Theorem 1. The hypersums P
(j)
k (n), P

(j−1)
k (n), and P

(j−1)
k+1 (n) satisfy the recurrence relation

P
(j)
k (n) =

n+ j

j
P

(j−1)
k (n)−

1

j
P

(j−1)
k+1 (n), k ≥ 0, j ≥ 1. (5)

To obtain P
(m)
k (n), we repeatedly apply the recurrence (5) to successive values of j =

2
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1, 2, . . . , up to j = m. Proceeding in this way, it is easy to see that, for example,

P
(3)
k (n) =

1

6
(n+ 1)(n+ 2)(n+ 3)P

(0)
k (n)

−
1

6

[

(n+ 1)(n+ 2) + (n+ 1)(n+ 3) + (n+ 2)(n+ 3)
]

P
(0)
k+1(n)

+
1

6

[

(n+ 1) + (n+ 2) + (n+ 3)
]

P
(0)
k+2(n)−

1

6
P

(0)
k+3(n),

which is of the form (2) with q3,0(n) = (n + 1)(n + 2)(n + 3), q3,1(n) = (n + 1)(n + 2) +
(n+ 1)(n+ 3) + (n+ 2)(n+ 3), q3,2(n) = (n+ 1) + (n+ 2) + (n+ 3), and q3,3(n) = 1.

From this procedure, the general form of the polynomial qm,i(n) is argued to be

qm,i(n) =
∑

1≤s1<s2<···<sm−i≤m

m−i
∏

t=1

(n+ st), i = 0, 1, . . . ,m, (6)

where st, t = 1, 2, . . . ,m − i, is an integer. Note the special cases qm,m−1(n) =
∑m

i=1(n + i)
and qm,0(n) =

∏m
i=1(n+ i). Furthermore,

qm,i(0) =
∑

1≤s1<s2<···<sm−i≤m

m−i
∏

t=1

st = σm−i(1, 2, . . . ,m), (7)

where σm−i(1, 2, . . . ,m) is the (m− i)-th elementary symmetric polynomial evaluated on the
first m integers {1, 2, . . . ,m} [6, Chapter 6].

Lemma 2. For m ≥ 1, the polynomials qm,i(n) satisfy the recurrence relation

(n+m)qm−1,i(n) = qm,i(n)− qm−1,i−1(n), i = 0, 1, . . . ,m− 1, (8)

where it is understood that qm−1,i−1(n) = 0 for i = 0.

Proof. Relation (8) follows directly from the definition of qm,i(n). Hence, from (6), we obtain

(n+m)qm−1,i(n) =
∑

1≤s1<···<sm−i−1≤m−1

m−i−1
∏

t=1

(n+ st)(n+m). (9)

On the other hand, we have

qm−1,i−1(n) =
∑

1≤s1<···<sm−i≤m−1

m−i
∏

t=1

(n+ st). (10)

Clearly, the sum of the right-hand side of (9) and (10) is identical to (6).
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Now we show by induction on m that P
(m)
k (n) have the form (2) with qm,i(n) given by

(6). This statement is readily verified for the base cases m = 0, 1, 2, and 3. Assuming the

inductive hypothesis holds for P
(m−1)
k (n) (with m ≥ 1), Equation (5) yields

P
(m)
k (n) =

1

m!

[

(n+m)
m−1
∑

i=0

(−1)iqm−1,i(n)P
(0)
k+i(n)−

m−1
∑

i=0

(−1)iqm−1,i(n)P
(0)
k+i+1(n)

]

.

Using (8), it follows that

P
(m)
k (n) =

1

m!

[

m−1
∑

i=0

(−1)iqm,i(n)P
(0)
k+i(n)

−
m−1
∑

i=1

(−1)iqm−1,i−1(n)P
(0)
k+i(n) +

m
∑

i=1

(−1)iqm−1,i−1(n)P
(0)
k+i(n)

]

=
1

m!

[

m−1
∑

i=0

(−1)iqm,i(n)P
(0)
k+i(n) + (−1)mqm−1,m−1(n)P

(0)
k+m(n)

]

=
1

m!

m
∑

i=0

(−1)iqm,i(n)P
(0)
k+i(n),

where we used that qm−1,m−1(n) = qm,m(n) = 1 to justify the last equation. This completes
the inductive step and the proof of the above statement. We formally state this result in the
following theorem.

Theorem 3. The hypersum P
(m)
k (n) admits a representation of the form (2) with qm,i(n)

given by (6).

3 The coefficients of the hypersum polynomial

In this section, we provide an explicit expression for the coefficients crk,m in terms of the
Bernoulli numbers and the Stirling numbers of the first kind. To this end, we first put
qm,i(n) in polynomial form as qm,i(n) =

∑m−i
s=0 qsm,in

s. On the other hand, according to the

well-known Bernoulli formula, P
(0)
k+i(n) can be written as [7, Equation 9]

P
(0)
k+i(n) =

1

k + i+ 1

k+i+1
∑

t=1

(

k + i+ 1

t

)

Bk+i+1−tn
t.

(Remember that we are taking B1 = 1
2
in the above formula.) Then, substituting the

aforementioned expressions for qm,i(n) and P
(0)
k+i(n) into (2) and comparing the resulting

polynomial with (1), gives

crk,m =
1

m!

m
∑

i=0

(−1)iQr
k,m,i, r = 1, 2, . . . , k +m+ 1, (11)
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where

Qr
k,m,i =

1

k + i+ 1

r−1
∑

h=0

qhm,i

(

k + i+ 1

r − h

)

Bk+i+h+1−r. (12)

In particular, from (11) and (12), we quickly obtain

c1k,m =
1

m!

m
∑

i=0

(−1)iq0m,iBk+i, k,m ≥ 0. (13)

Now let us address the question of the nature of the coefficients qsm,i, s = 0, 1, . . . ,m− i,
of qm,i(n). Let us first look at the constant term q0m,i. This is the value of qm,i(n) at n = 0.
Hence, from (7), we have q0m,i = σm−i(1, 2, . . . ,m). On the other hand, the Stirling numbers

of the first kind
[

n
k

]

enumerate all the permutations of size n with k cycles. It turns out that

σk(1, 2, . . . , n) =
[

n+1
n+1−k

]

[5, pp. 213–214], and then

σm−i(1, 2, . . . ,m) =

[

m+ 1
i+ 1

]

. (14)

Thus, we have q0m,i =
[

m+1
i+1

]

. Putting this in (13), we obtain formula (3).
In order to systematically derive the coefficients qsm,i, it is useful to note that

m−i
∏

t=1

(n+ st) =
m−i
∑

s=0

σm−i−s(s1, s2, . . . , sm−i)n
s,

where σm−i−s(s1, s2, . . . , sm−i) is the (m− i− s)-th elementary symmetric polynomial on the
variables s1, s2, . . . , sm−i. Substituting this expression into (6), we deduce that

qsm,i =
∑

1≤s1<s2<···<sm−i≤m

σm−i−s(s1, s2, . . . , sm−i). (15)

Clearly, the right-hand side of (15) is a symmetric function on {s1, s2, . . . , sm−i}. This
function is a sum of products of m− i− s distinct integers chosen from {1, 2, . . . ,m}, with
a total of

(

m
i

)

times
(

m−i
s

)

terms. On the other hand, the elementary symmetric polynomial
σm−i−s(1, 2, . . . ,m) is a sum of

(

m
i+s

)

terms, each of which is a product of m− i− s distinct

integers chosen from {1, 2, . . . ,m}. Therefore, since
(

m
i

)(

m−i
s

)

=
(

i+s
s

)(

m
i+s

)

, we conclude that

the right-hand side of (15) is necessarily
(

i+s
s

)

times σm−i−s(1, 2, . . . ,m). Hence, using (14),
we find that

qsm,i =

(

i+ s

s

)[

m+ 1
i+ s+ 1

]

, s = 0, 1, . . . ,m− i. (16)

Note, in particular, that qm−i
m,i =

(

m
i

)

. From (16), we also deduce the symmetry property
qsm,i = qim,s. As a concrete example, Table 1 displays the coefficients of the polynomials
q8,i(n), i = 0, 1, . . . , 8, where we use [ns] to denote the coefficient of ns. Note that the
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[n0] [n1] [n2] [n3] [n4] [n5] [n6] [n7] [n8]
q8,8(n) 1 – – – – – – – –

q8,7(n) 36 8 – – – – – – –

q8,6(n) 546 252 28 – – – – – –

q8,5(n) 4536 3276 756 56 – – – – –

q8,4(n) 22449 22680 8190 1260 70 – – – –

q8,3(n) 67284 89796 45360 10920 1260 56 – – –

q8,2(n) 118124 201852 134694 45360 8190 756 28 – –

q8,1(n) 109584 236248 201852 89796 22680 3276 252 8 –

q8,0(n) 40320 109584 118124 67284 22449 4536 546 36 1

Table 1: The coefficients of the polynomials q8,i(n), i = 0, 1, . . . , 8.

symmetry property implies that the table of coefficients is symmetric about a 45◦ diagonal.
For example, we have q48,2 = q28,4 = 8190.

Finally, combining the Equations (11), (12), and (16), we obtain

crk,m =
1

m!

m
∑

i=0

(−1)i

k + i+ 1

r−1
∑

h=0

(

i+ h

h

)(

k + i+ 1

r − h

)[

m+ 1
i+ h+ 1

]

Bk+i+h+1−r,

which constitutes the generalization of Inaba’s formula (3) to arbitrary r = 1, 2, . . . , k+m+1,
with k,m ≥ 0, and B1 =

1
2
.

On the other hand, from (8), we immediately derive the following recurrence relation for
the coefficients qsm,i:

qsm,i = mqsm−1,i + qsm−1,i−1 + qs−1
m−1,i. (17)

For s = 0, relation (17) becomes q0m,i = mq0m−1,i+q0m−1,i−1. Therefore, comparing this relation

with (4) and noting that q00,0 = 1 =
[

1
1

]

, we retrieve the result q0m,i =
[

m+1
i+1

]

. For s = 1 we
have q1m,i = mq1m−1,i + q1m−1,i−1 + q0m−1,i, which is satisfied when we set q1m,i = (i+ 1)q0m,i+1 =

(i+ 1)
[

m+1
i+2

]

. In general, the solution of the recurrence (17) is given by

qsm,i =
1

s
(i+ 1)qs−1

m,i+1

=
1

s

1

s− 1
(i+ 1)(i+ 2)qs−2

m,i+2

...

=
1

s!
(i+ 1)(i+ 2) · · · (i+ s)q0m,i+s,

so that qsm,i =
(

i+s
s

)

q0m,i+s =
(

i+s
s

)[

m+1
i+s+1

]

, in accordance with (16).
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Thus, Table 1 is generated by the rule qsm,i =
1
s
(i+ 1)qs−1

m,i+1, s ≥ 1, which enables one to

determine the element qsm,i in row m− i and column s from the preceding element qs−1
m,i+1 in

row m − i − 1 and column s − 1, the elements of the starting 0-th column being given by
q0m,i =

[

m+1
i+1

]

.
We conclude with three brief remarks.

Remark 4. For k = 0 the hypersum P
(m)
k (n) is equal to P

(m)
0 (n) =

(

n+m
m+1

)

. Then, letting

k = 0 in (2), we will have
∑m

i=0
(−1)iqm,i(n)

m!
P

(0)
i (n) =

(

n+m
m+1

)

. Solving for P
(0)
m (n), we get

(−1)mP (0)
m (n) = m!

(

n+m

m+ 1

)

+
m−1
∑

i=0

(−1)i+1qm,i(n)P
(0)
i (n), m ≥ 1,

which allows us to compute recursively P
(0)
m (n) from the power sums P

(0)
0 (n), P

(0)
1 (n), . . . ,

P
(0)
m−1(n), and the polynomials qm,i(n), i = 0, 1, . . . ,m− 1.

Remark 5. The leading coefficient of the hypersum polynomial (1) has been given by the
author [3]: ck+m+1

k,m = k!
(k+m+1)!

. On the other hand, the leading coefficients of qm,i(n) and

P
(0)
k+i(n) are given by qm−i

m,i =
(

m
i

)

and ck+i+1
k+i,0 = 1

k+i+1
, respectively. Therefore, equating the

terms of maximum degree on the two sides of (2) yields the combinatorial identity

m
∑

i=0

(−1)i

k + i+ 1

(

m

i

)

=
k!m!

(k +m+ 1)!
, k,m ≥ 0.

Remark 6. From formula (3), we deduce an identity relating the harmonic number Hm =
1+ 1

2
+ · · ·+ 1

m
to the Bernoulli numbers and the Stirling numbers of the first kind. Indeed,

from c10,m = 1/(m+ 1) [2, 3], recalling that
[

m+1
2

]

= m!Hm, and from (3) we obtain

Hm =
2m

m+ 1
+

2

m!

⌊m/2⌋
∑

j=1

[

m+ 1
2j + 1

]

B2j.
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