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Abstract

A classical theorem in number theory due to Euler states that a positive integer
z can be written as the sum of two squares if and only if all prime factors q of z,
with q ≡ 3 (mod 4), occur with even exponent in the prime factorization of z. One
can consider a minor variation of this theorem by not allowing the use of zero as a
summand in the representation of z as the sum of two squares. Viewing each of these
questions in Zn, the ring of integers modulo n, we give a characterization of all integers
n ≥ 2 such that every z ∈ Zn can be written as the sum of two squares in Zn.

1 Introduction

We begin with a classical theorem in number theory due to Euler [5].

Theorem 1. A positive integer z can be written as the sum of two squares if and only if all
prime factors q of z with q ≡ 3 (mod 4) occur with even exponent in the prime factorization
of z.

Euler’s complete proof of Theorem 1 first appeared in a letter to Goldbach [5], dated April
12, 1749. His proof uses a technique known as the method of descent [2], which was first used
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by Fermat to show the nonexistence of nontrivial solutions to certain Diophantine equations.
Note that, according to Theorem 1, the positive integer 9, for example, can be written as
the sum of two squares. Since there is only one way to write 9 as the sum of two squares,
namely 9 = 32 + 02, we conclude that 02 is allowed as a summand in the representation as
the sum of two squares for the integers described in Theorem 1. So, a somewhat natural
question to ask is the following.

Question 2. What positive integers z can be written as the sum of two nonzero squares?

A complete answer to Question 2 does not seem to appear in the literature. However,
a partial answer is given by the following classical result [2, Thm. 367 and Thm. 368, pp.
299–300].

Theorem 3. Let n > 1 be an integer. Then there exist u, v ∈ Z, with gcd(u, v) = 1, such
that n = u2 + v2 if and only if −1 is a quadratic residue modulo n.

While it is not our main concern in this article, we nevertheless provide, for the sake
of completeness, an answer to Question 2 in the same flavor as Theorem 1. The next two
results [2, 3] are well-known, and so we omit the proofs. The first of these results is originally
due to Diophantus.

Lemma 4. The set of positive integers that can be written as the sum of two squares is
closed under multiplication.

Lemma 4 allows us to establish the following partial answer to Question 2.

Proposition 5. Let p ≡ 1 (mod 4) be a prime, and let a be a positive integer. Then there
exist nonzero squares x2 and y2 such that pa = x2 + y2.

To provide a complete answer to Question 2, we let Z denote the set of all integers
described in Theorem 1, and we ask the following, somewhat convoluted, question.

Question 6. Which integers z ∈ Z actually do require the use of zero when written as the
sum of two squares?

Certainly, the integers z that answer Question 6 are squares themselves, and therefore
we have that z = c2, for some positive integer c, and no integers a > 0 and b > 0 exist with
z = c2 = a2 + b2. In other words,

√
z is not the third entry in a Pythagorean triple (a, b, c).

Pythagorean triples (a, b, c) can be described precisely in the following way.

Theorem 7. The triple (a, b, c) is a Pythagorean triple if and only if there exist integers
k > 0 and u > v > 0 of opposite parity with gcd(u, v) = 1, such that

a = (u2 − v2)k, b = (2uv)k and c = (u2 + v2)k.

Thus, we have the following.
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Theorem 8. Let Ẑ be the set of positive integers that can be written as the sum of two
nonzero squares. Then z ∈ Ẑ if and only if z ∈ Z, and if z is a perfect square, then√
z = (u2+v2)k for some integers k > 0 and u > v > 0 of opposite parity with gcd(u, v) = 1.

However, a closer look reveals a somewhat more satisfying description for the integers
z ∈ Ẑ in Theorem 8, similar in nature to the statement of Theorem 1.

Theorem 9. Let Ẑ be the set of positive integers that can be written as the sum of two
nonzero squares. Then z ∈ Ẑ if and only if all prime factors q of z with q ≡ 3 (mod 4) have
even exponent in the prime factorization of z, and if z is a perfect square, then z must be
divisible by some prime p ≡ 1 (mod 4).

Proof. Suppose first that z ∈ Ẑ. Then z ∈ Z and all prime factors q of z with q ≡ 3 (mod 4)
have even exponent in the prime factorization of z by Theorem 1. So, suppose that z = c2

for some positive integer c, and assume, by way of contradiction, that z is divisible by no
prime p ≡ 1 (mod 4). By Theorem 8, we can write c = (u2 + v2) k for some integers k > 0
and u > v > 0 of opposite parity with gcd(u, v) = 1. Since no prime p ≡ 1 (mod 4) divides
z, we have that no prime p ≡ 1 (mod 4) divides u2 + v2. Note that u2 + v2 is odd, and so
every prime q dividing u2+v2 is such that q ≡ 3 (mod 4). Thus, by Theorem 1, every prime
divisor of u2 + v2 has even exponent in the prime factorization of u2 + v2. In other words,
u2 + v2 is a perfect square. Hence, u2 + v2 ∈ Ẑ, and by Theorem 8, we have that

√
u2 + v2 =

(
u2
1 + v21

)
k1,

for some integers k1 > 0 and u1 > v1 > 0 of opposite parity with gcd(u1, v1) = 1. We
can repeat this process, but eventually we reach an integer that is the sum of two distinct
squares that has a prime factor q ≡ 3 (mod 4) that occurs to an odd power in its prime
factorization. This contradicts Theorem 1, and completes the proof in this direction.

If z is not a perfect square and every prime factor q of z with q ≡ 3 (mod 4) has even
exponent in the prime factorization of z, then z can be written as the sum of two squares
by Theorem 1; and moreover, these squares must be nonzero since z is not a square itself.
Thus, z ∈ Ẑ in this case. Now suppose that z is a perfect square and z is divisible by some
prime p ≡ 1 (mod 4). Let z = p2e

∏t

i=1 r
2ei
i be the canonical factorization of z into distinct

prime powers. By Proposition 5, there exist integers u > v > 0, such that p2e = u2 + v2.
Then

z =

(
u

t∏

i=1

reii

)2

+

(
v

t∏

i=1

reii

)2

∈ Ẑ,

and the proof is complete.

Remark 10. The method of proof used to establish the first half of Theorem 9 is reminiscent
of Fermat’s method of descent [2].
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In this article, we move the setting from Z to Zn, the ring of integers modulo n, and
we investigate a modification of Question 2 in this new realm. Investigations of variations
of Question 2, when viewed in Zn, do appear in the literature. For example, Fine [1] asked
if rings other than Z satisfy one, or both, of the following slightly-generalized conditions of
Theorem 3:

1. If r ∈ R and −1 is a quadratic residue modulo r, then r = ± (u2 + v2);

2. If r = u2 + v2 with gcd(u, v) = 1, then −1 is a quadratic residue modulo r.

In particular, Fine showed that Zn satisfies condition 2., and that Zpa satisfies both condition
1. and 2., when p ≡ 3 (mod 4) is prime and a ≥ 2.

Another variation of Question 2 viewed in Zn was considered by Wegmann [6]. For any
k ∈ Zn, he determined the least positive integer s such that the congruence

k ≡ x2
1 + x2

2 + · · ·+ x2
s (mod n),

is solvable with xi ∈ Zn.
In this article, we are concerned with another variation of Question 2 in Zn. In our

investigations, we discovered for certain values of n that every element in Zn can be written
as the sum of two nonzero squares. It is our main goal to characterize, in a precise manner,
these particular values of n. For the sake of completeness, we also characterize those values
of n such that every z ∈ Zn can be written as the sum of two squares where the use of zero
is allowed as a summand in such a representation of z.

2 Preliminaries and notation

To establish our results, we need some additional facts that follow easily from well-known
theorems in number theory. We state these facts without proof. The first proposition follows
immediately from the Chinese remainder theorem, while the second proposition is a direct
consequence of Hensel’s lemma.

Proposition 11. [3] Suppose that m1,m2, . . . ,mt are integers with mi ≥ 2 for all i, and
gcd(mi,mj) = 1 for all i 6= j. Let c1, c2, . . . , ct be any integers, and let x ≡ c (mod M)
be the solution of the system of congruences x ≡ ci (mod mi) using the Chinese remainder
theorem. Then there exists y such that y2 ≡ c (mod M) if and only if there exist y1, y2, . . . , yt
such that y2i ≡ ci (mod mi).

Proposition 12. [4] Let p be a prime, and let z be an integer. If there exists x such that
x2 ≡ z (mod p), then there exists xk such that x2

k ≡ z (mod pk) for every integer k ≥ 2.

Throughout this article, we let
(

a
p

)
denote the Legendre symbol, where p is a prime and

a ∈ Z. For an integer n ≥ 2, we define

Sn :=

{
s ∈ Z

∣∣∣∣ 1 ≤ s < n and s ≡ x2 (mod n) for some x ∈ Z

}
,
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and
S0
n := Sn ∪ {0}.

Then for a given z ∈ Zn, a pair (x, y) ∈ Z× Z such that

x2 + y2 ≡ z (mod n) (1)

is called a nontrivial solution to (1), provided x2 ≡ a (mod n) and y2 ≡ b (mod n) for some
a, b ∈ Sn. A solution (x, y) to (1), where either x2 ≡ 0 (mod n) or y2 ≡ 0 (mod n), is called
a trivial solution. For the sake of convenience, if (x, y) is a solution to (1), we abuse notation
slightly by writing x2, y2 ∈ Sn or S0

n.

3 Not allowing zero as a summand

In this section we prove the main result in this article, but first we prove a lemma.

Lemma 13. Let z and a ≥ 1 be integers. Let p ≡ 1 mod 4 and q ≡ 3 (mod 4) be primes.
Then each of the congruences

x2 + y2 ≡ z (mod 2) (2)

x2 + y2 ≡ z (mod pa) (3)

x2 + y2 ≡ z (mod q). (4)

has a solution. Moreover, with the single exception of z ≡ 0 (mod q), we can choose a
solution where either x2 6≡ 0 (mod m) or y2 6≡ 0 (mod m) with m ∈ {2, pa, q}.

Proof. Clearly, (2) always has a solution with x2 ≡ 1 (mod 2). We show now that (3) always
has a solution with y2 6≡ 0 (mod pa). Suppose first that z ≡ 0 (mod pa). By Proposition 5,
there exist positive integers x2 and y2 such that x2 + y2 = pa. Then, since neither x2 nor y2

is divisible by pa, we have a desired solution to (3). Now suppose that z 6≡ 0 (mod pa). Let
gcd(z, pa) = pb with b < a, and write z = z′pb. Consider the arithmetic progression

Ak := 4pa−bk + pa−b(1− z′) + z′.

Note that for any integer k, we have that Ak ≡ z′ (mod pa) and Ak ≡ 1 (mod 4). Then,
since gcd

(
4pa−b, pa−b(1− z′) + z′

)
= 1, it follows from Dirichlet’s theorem on primes in an

arithmetic progression that Ak contains infinitely many primes r ≡ 1 (mod 4). For such a
prime r, Theorem 9 tells us that there exist nonzero integers x2 and y2 such that x2+y2 = pbr.
Observe that x2 and y2 cannot both be divisible by pa. Hence, since pbr ≡ z (mod pa), we
have a solution to (3), where, after relabeling if necessary, y2 6≡ 0 (mod pa).

We show next that (4) always has a solution. If z ≡ 0 (mod q), then we can take
x2 ≡ y2 ≡ 0 (mod q). If z 6≡ 0 (mod q), then we consider the arithmetic progression

Bk := 4qk + q(3 + z) + z.
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Note here that Bk ≡ z (mod q) and Bk ≡ 1 (mod 4) for any integer k. As before, since
gcd (4q, q(3 + z) + z) = 1, it follows from Dirichlet’s theorem that Bk contains infinitely
many primes r ≡ 1 (mod 4). Thus, by Proposition 5, there exist nonzero integers x2 and
y2 such that x2 + y2 = r for such a prime r. Clearly, not both x2 and y2 are divisible by q.
Hence, with the exception of z ≡ 0 (mod q), we have a solution to (4) where we can choose
y2 6≡ 0 (mod q).

Theorem 14. Let n ≥ 2 be an integer. Then, for every z ∈ Zn, (1) has a nontrivial solution
if and only if

1. n 6≡ 0 (mod q2) for any prime q ≡ 3 (mod 4) with n ≡ 0 (mod q)

2. n 6≡ 0 (mod 4)

3. n ≡ 0 (mod p) for some prime p ≡ 1 (mod 4)

4. Also, when n ≡ 1 (mod 2), we have the following additional conditions. Write n =
5km, where m 6≡ 0 (mod 5). Then either

(a) k ≥ 3, with no further restrictions on m, or

(b) k < 3 and m ≡ 0 (mod p) for some prime p ≡ 1 (mod 4).

Proof. Suppose first that, for every z ∈ Zn, (1) has a nontrivial solution. Let q be a prime
divisor of n. Then there exist a2, b2, c2, d2, e2, f 2 ∈ Sn, such that

a2 + b2 ≡ q (mod n), (5)

c2 + d2 ≡ −1 (mod n) and (6)

e2 + f 2 ≡ 0 (mod n). (7)

Suppose that q ≡ 3 (mod 4) is a prime such that n ≡ 0 (mod q2). Then we have from
(5) that

a2 + b2 = kq2 + q = q(kq + 1), (8)

for some nonzero k ∈ Z. However, (8) contradicts Theorem 1, since clearly q divides q(kq+1)
to an odd power. This proves that 1. holds.

If n ≡ 0 (mod 4), then we have from (6) that c2 + d2 ≡ 3 (mod 4), which is impossible
since the set of all squares modulo 4 is {0, 1}. Hence, 2. holds.

We see from (7) that e2 ≡ −f 2 (mod q) for every prime q ≡ 3 (mod 4) with n ≡ 0

(mod q). Since
(

−1
q

)
= −1 for primes q ≡ 3 (mod 4), we deduce that e ≡ f ≡ 0 (mod q).

Hence, if n ≡ 1 (mod 2) and n is divisible by no prime p ≡ 1 (mod 4), it follows from (1)
that e ≡ f ≡ 0 (mod n), which contradicts the fact that e2, f 2 ∈ Sn. From (2), if n ≡ 0
(mod 2), then we can write n = 2m, where m ≡ 1 (mod 2). By hypothesis, there exist
s2, t2 ∈ Sn such that s2 + t2 ≡ m (mod n). If m is divisible by no prime p ≡ 1 (mod 4),

then as before, since
(

−1
q

)
= −1 for primes q ≡ 3 (mod 4), we conclude that s ≡ t ≡ 0
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(mod m). But s2 + t2 ≡ 1 (mod 2) which implies, without loss of generality, that s ≡ 0
(mod 2). Therefore, s ≡ 0 (mod n), which contradicts the fact that s2 ∈ Sn. Thus, 3. holds.

Assume now that n ≡ 1 (mod 2), and write n = 5km, where m 6≡ 0 (mod 5). Consider
first the possibility that k = 1 and no prime p ≡ 1 (mod 4) divides m. To rule this case out,
we assume first that

(
m
5

)
= 1. By hypothesis, there exist s2, t2 ∈ Sn such that s2 + t2 ≡ m

(mod n). If m = 1, then n = 5 and this is impossible since the set of nonzero squares modulo
5 is {1, 4}. If m > 1 then every prime divisor q of m is such that q ≡ 3 (mod 4). So, we must
have, as before, that s ≡ t ≡ 0 (mod m). Therefore, since s2, t2 ∈ Sn, we deduce that s

2 6≡ 0
(mod 5) and t2 6≡ 0 (mod 5). Since

(
m
5

)
= 1, it follows modulo 5 that s2, t2,m ∈ {1, 4}. But

then again, s2 + t2 ≡ m (mod 5) is impossible. If
(
m
5

)
= −1, then the proof is identical,

except that the representation s2 + t2 ≡ 2m (mod n) is impossible since modulo 5 we have
m ∈ {2, 3}, which implies that s2 + t2 ≡ 2m (mod 5) is impossible.

The possibility that k = 2 and no prime p ≡ 1 (mod 4) divides m can be ruled out in a
similar manner by using the fact that the nonzero squares modulo 25 are {1, 4, 6, 9, 11, 14,
16, 19, 21, 24}, and reducing the situation to an examination of the representations:

s2 + t2 ≡





1 (mod 25), if m = 1;

m (mod 25), if m > 1 and
(
m
5

)
= 1;

2m (mod 25), if m > 1 and
(
m
5

)
= −1.

This completes the proof of the theorem in this direction.
Now suppose that conditions 1., 2., 3. and 4. hold, and let z be a nonnegative integer.

Our strategy here is to use Lemma 13 and Proposition 11 to piece together the solutions for
each distinct prime power dividing n to get a nontrivial solution to (1).

We consider two cases: n ≡ 0 (mod 2) and n ≡ 1 (mod 2). If n ≡ 0 (mod 2), then we
can write

n = 2

(
s∏

i=1

paii

)
t∏

i=1

qi,

where s ≥ 1, t ≥ 0, pi ≡ 1 (mod 4) and qi ≡ 3 (mod 4). Note that t = 0 is a possibility,
and in this case, we define the empty product

∏t

i=1 qi to be 1. Since s ≥ 1, we have from
Lemma 13 that there exist solutions to (2) and (3) where respectively x2 6≡ 0 (mod 2) and
y2 6≡ 0 (mod paii ). Then, using Proposition 11 to piece together the solutions for x2 and y2

modulo each modulus in {2, pa11 , . . . , patt }, we get a nontrivial solution to (1).
We now turn our attention to the case n ≡ 1 (mod 2), and write

n = 5k




s∏

i=1
pi 6=5

paii




t∏

i=1

qi.

where pi ≡ 1 (mod 4) and qi ≡ 3 (mod 4) are primes. Suppose first that k ≤ 2. Then it is
easy to check that the only solutions to

x2 + y2 ≡ 1 (mod 5k)
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have either x2 ≡ 0 (mod 5k) or y2 ≡ 0 (mod 5k). However, we can always choose a solution
with x2 6≡ 0 (mod 5k). Since k ≤ 2, we have that s ≥ 1 so that there exists a prime p ≡ 1
(mod 4) that divides n, with p 6= 5. Hence, by Lemma 13, (3) always has a solution where
y2 6≡ 0 (mod pa). This allows us again to use Proposition 11 to get a nontrivial solution to
(1).

Suppose next that k ≥ 3. If s 6= 0, then as before, we can invoke Lemma 13 and
Proposition 11 to achieve a nontrivial solution to (1). So, assume that s = 0. We show that
the congruence

x2 + y2 ≡ z (mod 5k), (9)

always has a solution where x2 6≡ 0 (mod 5k) and y2 6≡ 0 (mod 5k). Since x2 + y2 = 5k

has a solution (by Theorem 9) with neither x2 nor y2 divisible by 5k, it follows that (9) has
a nontrivial solution when z ≡ 0 (mod 5k). Now suppose that z 6≡ 0 (mod 5k). We know
from Lemma 13 that (9) has a solution with y2 6≡ 0 (mod 5k). If z 6∈ S5k , then it must be
that x2 6≡ 0 (mod 5k) as well, which gives us a nontrivial solution. So, let z ∈ S5k . Since
−24 ≡ 1 ∈ S5, it follows from Proposition 12 that, for any integer k ≥ 2, there exists x such
that

x2 ≡ −24 (mod 5k), (10)

with x2 6≡ 0 (mod 5k). We can rewrite (10) as

x2 + 52 ≡ 1 (mod 5k), (11)

which implies that (3) has a nontrivial solution when z ≡ 1 (mod 5k)–provided that k ≥ 3,
which we have assumed here. Also, note that this nontrivial solution to (11) has x2 6≡ 0
(mod 5). Hence, for any z ∈ S5k with z 6≡ 0 (mod 5), we see that multiplying (11) by z

yields a nontrivial solution to (3) for these particular values of z. Now suppose that z ∈ S5k

with z ≡ 0 (mod 5). Then z − 1 ≡ 4 (mod 5) and, by Proposition 12, we have, for any
integer k ≥ 2, that there exists x 6≡ 0 (mod 5k) such that x2 ≡ z − 1 (mod 5k). That is,

x2 + 1 ≡ z (mod 5k),

and hence we have a nontrivial solution to (1) in this last case, which completes the proof
of the theorem.

The first 25 values of n satisfying the conditions of Theorem 14 are

10, 13, 17, 26, 29, 30, 34, 37, 39, 41, 50, 51, 53, 58, 61, 65, 70, 73, 74, 78, 82, 85, 87, 89, 91.

This sequence is A240109 in the Online Encyclopedia of Integer Sequences.

4 Allowing zero as a summand

For the sake of completeness, we address now the situation when trivial solutions are allowed
in (1). The main theorem of this section gives a precise description of the integers n such
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that, for any z ∈ Zn, (1) has a solution (x, y) with x2, y2 ∈ S0
n. Certainly, the proof of this

result builds off of Theorem 14 since every value of n for which there exists a nontrivial
solution to (1) will be included here as well. From an analysis of the proof of Theorem 14,
it is easy to see that allowing 0 as a summand does not buy us any new values of n here
under the restrictions found in parts 1. and 2. of Theorem 14. However, it turns out that
the restrictions in parts 3. and 4. of Theorem 14 are not required. More precisely, we have:

Theorem 15. Let n ≥ 2 be an integer. Then, for every z ∈ Zn, the congruence (1) has a
solution (x, y) with x2, y2 ∈ S0

n if and only if the following conditions hold:

1. n 6≡ 0 (mod q2) for any prime q ≡ 3 (mod 4) with n ≡ 0 (mod q)

2. n 6≡ 0 (mod 4).

Proof. We show first that condition 3. of Theorem 14 is not required here. Suppose that
every prime divisor p of n is such that p ≡ 3 (mod 4). Certainly, if z ∈ Zn is such that
z ≡ a2 (mod n) for some a ∈ Zn, then (1) has a solution (x, y), with x2, y2 ∈ S0

n; namely
(a, 0). So, we need to show that (1) has a solution (x, y) with x2, y2 ∈ S0

n for every nonsquare
z ∈ Zn. To begin, we claim that (1) has a solution modulo p when z = −1, which is not a

square modulo p. For a ∈ Zp, if
(

a
p

)
= 1 and

(
a+1
p

)
= −1, then

(
−a−1

p

)
= 1. Thus,

a+ (−a− 1) ≡ −1 (mod p).

Such an element a ∈ Zp must exist, otherwise all elements of Zp would be squares, which is

absurd. Now, any nonsquare z ∈ Zp can be written as −(−z), where
(

−z
p

)
= 1. Therefore,

(
−za
p

)
=
(

−z(−a−1)
p

)
= 1, and we have that

(−za) + (−z)(−a− 1) ≡ z (mod p).

Then we can use Proposition 12 to lift this solution modulo p to a solution modulo pa, where
pa is the exact power of p that divides n. Finally, we use Proposition 11 to piece together
the solutions for each of these prime powers to get a solution modulo n.

To see that the restrictions in part 4. of Theorem 14 are not required here, we note that
the restriction that m be divisible by some odd prime p ≡ 1 (mod 4) is not required by the
previous argument. Therefore, to complete the proof of the theorem, it is enough to observe
that every element in Z5 and Z25 can be written as the sum of two elements in S0

5 and S0
25,

respectively.

The first 25 values of n satisfying the conditions of Theorem 15 are

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38.

This sequence is A243609 in the Online Encyclopedia of Integer Sequences.
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5 Future considerations

Theorem 14 and Theorem 15 consider the situation when the entire ring Zn can be obtained
as the sum of two squares. When this cannot be attained, how badly does it fail; and is
there a measure of this failure in terms of n? There are certain clues to the answers to these
questions in the proof of Theorem 14, but we have not pursued the solution in this article.
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