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Abstract

We introduce stamp chains. A stamp chain is a finite set of integers that is both an
addition chain and an additive 2-basis, i.e., a solution to the postage stamp problem.
We provide a simple method for converting known postage stamp solutions of length
k into stamp chains of length k£ + 1. Using stamp chains, we construct an algorithm
that computes u(z?) for i = 1,...,n in less than n — 1 multiplications, if u is a function
that can be computed at zero cost, and if there exists another zero-cost function v such
that v(a,b) = u(ab). This can substantially reduce the computational cost of repeated
multiplication, as illustrated by application examples related to matrix multiplication
and data clustering using subset convolution. In addition, we report the extremal
postage stamp solutions of length k& = 24.

1 Introduction

An addition chain is an increasing sequence of integers starting from 1, where each subsequent
element is a sum of two earlier elements (not necessarily distinct). Addition chains are well
known for their use in repeated multiplication to compute x". For example, the chain

1,2,3,6,12,15 shows how z'® is computed with five multiplications: zx = 22, ¥’z = 23,

2323 = 2%, 252% = 212, and 2?23 = 215,
If all consecutive powers x, 2

n — 1 multiplications are required.

,...,x™are required, not just the final value, then obviously
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Now suppose that the powers z' themselves are not of interest, but instead the values
y; = u(x'), i =1,...,n, are sought for a given function u. Let us also assume that computing
u is free of cost (or negligible compared to the cost of multiplication). Let us further assume
that given two values a and b, there is a method for computing v(a,b) := u(ab) for free
without actually performing the multiplication ab.

If these assumptions hold, then it is not necessary to compute all of the powers z, 22, ..., 2™.
Instead, a carefully selected subset of these powers is computed; then each y; is obtained
either by applying u to one of the computed powers, or v to a pair of them. For instance, sup-
pose that 2° and 27 have been computed but 22 has not. Now there are two ways to obtain
Yy1o: either multiply z'? = 227 and evaluate yio = u(x'?); or evaluate yio = v(2°, 27) avoid-
ing the multiplication. The existence of such a function v is the key assumption underlying
our method of reducing the number of multiplications needed.

A straightforward application is found in matrix powers, if from each power we only need
a single element (X*), , =: u(X"). Let X be a large m xm matrix, and assume that its powers
X' X7 have been computed. Then the element (X**7), =37 (X"),,(X7),, = v(X", X7)
can be directly evaluated in O(m) arithmetic operations — essentially for free, compared to
the alternative of computing the full matrix product. Another application related to data
clustering using subset convolution is given in Section 6.

This setting gives raise to the problem of how to choose a minimal number of powers of x,
to be computed via repeated multiplication, such that from them all yy, ...y, are obtained
through v and v. Superficially, this appears like an addition chain problem; however, for
solving it we shall encounter another problem in additive number theory, namely the postage
stamp problem.

We shall start with some definitions and preliminary observations in the next section. In
Section 3 we provide an algorithm for computing ¥, . . ., y, with the help of stamp chains, and
in Section 4 we present our main result, which shows how stamp chains can be constructed
from stamp bases. In Section 5 we show how known properties of stamp bases imply similar
properties for stamp chains, and also we report three extremal stamp bases corresponding to
k = 24. An illustration of the computational benefits and some final remarks are provided
in the last two sections of the paper.

2 Definitions

Introductory texts to addition chains are provided by Guy [3, pp. 168-171] and Knuth [4,
pp. 398-422]. For information about the postage stamp problem, see Guy [3, pp. 123-127]
and Selmer [7].

Notation 1. In the following, k is a positive integer. Ay, B, and C) denote sets of k
positive integers. Their elements will be indexed in increasing order starting with index 1,
thus Ay = {a1 < ... < ag}. When j < k, the j-prefiz of Ay is A; = {a1,...,a;}. As usual
in combinatorics, [c, d] denotes the consecutive integers {c,c+ 1,...,d}.



Definition 2. An integer c is generated by Ay, if ¢ = a; or ¢ = a, + a; for some indices
1 < h,i <k. (Note that h = i is allowed.)

Definition 3. A is an addition chain if a; = 1, and for j = 2,...,k, the element a; is
generated by A;_;.

Remark 4. In addition chain literature it is customary to start indexing from ay = 1, and not
to count this zeroth element in the length of the chain (thus ay, .. ., a; is customarily defined
to have length k). We have here departed from this notation in order to ensure compatibility
with the established notation for postage stamps. For the same reason we have used a set
notation, instead of the more usual tuple notation.

Definition 5. Ay is a stamp basis for n, if every integer in [1,n] is generated by Aj. The
range of Ay, denoted by n(Ay), is the largest n such that Ay generates [1,n]. The elements
of a stamp basis are called stamps.

Remark 6. In a stamp basis a; must be 1, since otherwise 1 is not generated.

Definition 7. The range of k, denoted by n(k), is the largest range attained by stamp bases
of length k. An extremal stamp basis is one that attains this maximum.

A stamp basis may be interpreted as a set of k postage stamp denominations, such that
any integral postage fare up to n can be paid by attaching at most 2 stamps on an envelope.
The problem of finding optimal bases is known as the postage stamp problem. A stamp
basis is also known in the literature as an additive 2-basis. More generally, if h stamps are
allowed on the envelope, the set of stamp denominations is called an h-basis and the largest
n attained is called the h-range. In this work we consider exclusively the case h = 2.

Definition 8. A stamp chain for n is a set of integers that is both an addition chain, and a
stamp basis for n.

Definition 9. The maximum range among k-length stamp chains is denoted by (k). An
extremal stamp chain (of length k) is one that attains this maximum.

Example 10. A5 = {1,2,4,8,16} is an addition chain, and in fact a minimal-length addition
chain ending at 16. It is not a particularly good postage stamp basis: its range is only 6,
since it does not generate 7.

Example 11. By = {1,3,5,7,8} is an extremal stamp basis of length 5, and has range
n(Bs) = 16. However, it is not an addition chain, since for example 5 is not generated by
the prefix {1, 3}.

Example 12. C5 = {1,2,4,6,7} is a stamp chain of length 5, and has range n(Cs) = 14.
As a stamp chain, it is extremal: no stamp chain of length 5 has range greater than 14. The
proof of this extremality follows from theorems that will be established in Section 4.

Remark 13. Since any stamp chain is also a stamp basis, it follows that 7(k) < n(k). The
inequality may be strict, as seen in the previous two examples.



3 Multiplication algorithm

We now return to the task outlined in the introduction. Given an initial value z, a positive
integer n, an associative binary operation (multiplication), and the zero-cost functions u and
v such that v(a,b) = u(ab), the task is to compute yy, ..., y,, where y; = u(z").

The straightforward method computes all powers 22, . . ., 2™ and uses n— 1 multiplications.
To improve upon this, let & < n, and let us perform k — 1 multiplications with results %,
where j = 2,...,k. Without loss of generality, we may assume that the exponents a;
are distinct and in increasing order, otherwise some multiplications could be eliminated or
rearranged. The set Ay = {a; < ... < ax}, with a; = 1, will be called a multiplication plan.

We now have two requirements for the choice of the multiplication plan Ag:

1. A, must be an addition chain. This ensures that for each j = 2,..., k, the exponent
a; equals aj + a; for some 1 < h,7 < j, and thus 2% can be computed with one
multiplication as (x®)(x%).

2. Ay must be a stamp basis. This ensures that for each integer ¢ € [1,n], either ¢ = q;
or ¢ = ay, + a; for some h, i, and thus y. can be computed at zero cost, either as u(z*)
or as v(x® x%).

Combining the requirements, we observe that a multiplication plan has to be a stamp
chain for n. Conversely, given a k-length stamp chain for n, the following algorithm computes
Y1,---,Yp using k — 1 multiplications. The first phase performs k£ — 1 multiplications and the
second phase performs none, since it does only zero-cost evaluations of u and v.

Algorithm A

Phase 1. For each j = 2,...,k, find h,7 < j such that aj, + a; = a;. This is possible because
Ay, is an addition chain. Compute x% = (z%)(x®).

Phase 2. For each integer ¢ € [1,n], either ¢ is a stamp, or there are two stamps ay, a;
such that ¢ = aj, + a;. In the first case, compute y. = u(z¢). In the second case compute
Yo = v(™, %),

Example 14. If yy, ..., y14 are sought, the multiplication plan has to be a stamp chain with
a range at least 14. In the previous section we mentioned that Cs = {1,2,4,6, 7} is a stamp
chain for 14. Using this stamp chain, Algorithm A will compute ¥;,...,y14 in 5 —1 =14
multiplications as follows:

1. Compute zx = 22, 222 = 2*, 222* = 25, and 2%z = 2”.

2. Compute Y1 = U(l’),yg = U(l’2>,y3 = ’U(I,QZQ), sy Y1a = 0(1’7,337).

4 Constructing stamp chains

If A, is a stamp chain for n, then Algorithm A computes the values yy, ..., ¥, using k — 1
multiplications. In order to minimize the number of multiplications, we would like to find
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a stamp chain as short as possible, with a range at least n. Ideally, we wish to identify an
extremal stamp chain, since an extremal stamp chain attains the maximum range for any
given length k.

It may not be immediately clear how a stamp chain of a given length could be found,
other than by constructing stamp bases and checking whether they also happen to be addi-
tion chains; or vice versa. However, in this section we shall introduce a direct method for
converting any admissible stamp basis into a stamp chain.

Definition 15. A stamp basis Ay is admissible if it generates all integers in [1, ag].

Remark 16. If Ay is admissible, and 1 < ¢ < a;, then c is generated by A;_;.

The following lemma is an already established result for stamp bases [1].
Lemma 17. An extremal stamp basis is admissible.

A similar property holds for stamp chains.
Lemma 18. An extremal stamp chain is admissible.

Proof. Let Ay be a non-admissible stamp chain, and let ¢ = n(Ay)+1, that is, ¢ is the smallest
positive integer not generated by Aj. It follows that ¢ — 1 is generated by Ay, and also that
c—1¢ Ay (otherwise ¢ = 14 (¢—1) would be generated). Let then By = Ay U{c—1}. Now
By is a stamp basis that generates all integers in [1, ¢], in particular it generates ¢ = 1+(c—1).
Thus n(By) > n(Ax). Furthermore, since ¢ — 1 is generated by Ay but not an element of it,
it follows that ¢ — 1 = a5, + a; = b, + b; for some indices h,i. Thus B, is also an addition
chain.

Since By, is a stamp chain with n(By) > n(Ayg), it follows that Ay is not extremal. [

Thus, in order to maximize the range of a stamp basis (stamp chain), it is sufficient to
consider only the admissible stamp bases (stamp chains).

Notation 19. If Ay = {ay,...,ax} is a set of integers and s is an integer, then Ay + s :=
{a1+s,...,ak+s}.

Lemma 20. If Ay is a stamp basis for n, then Byy1 = {1} U (A + 1) is a stamp basis for
n+ 2.

Proof. Let ¢ € [1,n+ 2] be arbitrary. If ¢ < 2, then By, generates it either as by = 1, or as
bi+by=1+1=2 Ifc>3,let ¢ =c—2. Since ¢ € [1,n], there is either one stamp a5, = ¢
or two stamps ay + a; = ¢’. In the first case, by + bpy1 = 1+ (ap +1) = +2 = ¢. In the
second case, by11 + b1 = (1 +ap) + (14 a;) = ¢ + 2 = ¢. This proves that By, generates
[1,n+2]. O

Note that the previous lemma gives only a lower bound for the range of the new basis
(consider Ay = {1,4}, which has n(Ay) = 2 but n(B;3) =n({1,2,5}) =7 > 2+2). However,
for admissible bases we have a stronger result in the following theorem.
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Theorem 21. If Ay is an admissible stamp basis with range n, then Bri1 = {1} U (Ax + 1)
1s an admissible stamp chain with range n + 2.

Proof. By Lemma 20, By, is a stamp basis for n + 2. Because Ay is admissible, n > ay,
thus n +2 > ap + 1 = by11, and By is admissible.

To prove that By is also an addition chain, note first that by construction b; = 1.
Clearly by = 2 = by + by is generated by the prefix By. Let then 3 < j < k + 1. Since A is
admissible, A;_» generates a;_; — 1, and by Lemma 20 the prefix B;_; = {1} U (4;_2 + 1)
generates aj_; + 1 = b;.

Finally, let us prove that n(Byy1) does not exceed n + 2, in particular, that By, does
not generate n + 3. Since Ay is admissible, a;, < n, thus by 1 < n+ 1. Thus n+ 3 ¢ Byyi.
Suppose then n+3 = b, +b;. This would imply that b,,b; > 1, and then a1 +a;,_1 =n+1,
contradicting the assumption that n(Ax) = n. O

While the construction in Theorem 21 has the consequence of extending the range of
the stamp basis by 2, this is not the main reason for the construction. For our purposes
the crucial consequence of Theorem 21 is that the new basis By, is guaranteed to be an
addition chain, even if Ay is not. This ensures that By, can be used as a multiplication
plan in Algorithm A.

Example 22. A5 = {1,3,5,7,8} is an admissible stamp basis for n = 16, but it is not
an addition chain. However, by Theorem 21, Bg = {1} U (45 + 1) = {1,2,4,6,8,9} is an
admissible stamp chain for n = 18.

Theorem 21 shows how to construct a stamp chain of length &k from any admissible stamp
basis of length £—1. Conversely, we shall prove that this construction produces all admissible
stamp chains of length k£ > 1. For length k& = 1, the only stamp chain is By = {1}.

Theorem 23. If k > 1 and By is an admissible stamp chain with range n, then A,_; =
{bog —1,...,b, — 1} is an admissible stamp basis with range n — 2.

Proof. We will first prove that Ay_; generates all integers in [1,n — 2|. Since by assumption
By, is an addition chain, its smallest two elements must be 1 and 2. Thus a; = by, — 1 =1,
and Ay_q generates 1 and 2.

Let ¢ € [3,n — 2] be arbitrary, and let ¢ = ¢+ 2. Since By is a stamp basis, ¢ is
generated either by one stamp b; = ¢’ or by two stamps b, + b; = ¢’. But in the first case,
= b; = by + b; for some h,i < j, because By is an addition chain. Thus in either case
we have ¢ = by, + b; for some h,i. Without loss of generality we may assume h > i. Now
consider separately the possibilities « = 1 and 7 > 1.

Ifi=1,thenb; =1, andc=c¢ —2=0b, +b; —2=b, —1 = aj_; is generated by a single
stamp aj_1. Note that we have necessarily h > 1, so a;,_; indeed exists. This is because we
have assumed that ¢ > 3, and consequently b, + b; = ¢ > 5 implying that b, > 4.

Ifi>1,thenb; >1,ande=¢ —-2=0b,+b;—2= (b — 1)+ (b;—1) =ap_1+a;_1,s0 ¢
is generated by the two stamps a,_; and a;_;. Note that, by assumption, h > ¢ > 1, so the
stamps aj,_1 and a;_; indeed exist.



We have now proven that any ¢ € [1,n — 2] is generated by either one or two stamps from
Ag_1. In other words, A;_; is a stamp basis with range at least n — 2.

Since by assumption n(By) = n exactly, it follows that By does not generate n+ 1. From
this it follows that b, < n, thus ar_; <n — 1. Hence A;_; does not generate n — 1, and the
range is n(Ag_1) = n — 2 exactly.

Finally, since n(Ay_1) =n—2 > by —2 = a,_; — 1, it follows that A;_; is admissible. [

By Theorems 21 and 23, admissible stamp bases of length £ and range n are in one-to-
one correspondence with admissible stamp chains of length k£ 4+ 1 and range n + 2. Since
extremal stamp bases and extremal stamp chains are always admissible, we have the following
corollaries for all £ > 1.

Corollary 24. By is an extremal stamp chain if and only if By, = {1} U (Ax—1 + 1), where
Ay_1 is an extremal stamp basis. Then also their ranges are related as n(By) = n(Ax_1) + 2.

Corollary 25. n(k) =n(k —1) + 2.

5 Some properties of stamp chains

Known properties of (extremal) stamp bases carry over naturally to (extremal) stamp chains.
For example, some asymptotic lower and upper bounds for n(k) are known [3]:

ézﬁ +O(k) < n(k) < 0.4802k% + O(k).

Since (k) = n(k — 1) + 2 by Corollary 25, it follows that also

2
?kﬁ + O(k) < n(k) < 0.4802k* + O(k).

This means that for large n, roughly +/(7/2)n multiplications are sufficient to compute
Y1, - - -, Yp through Algorithm A.

13461013 152129 3745536169 77 85 91 93 96 100 102 103 105 106 *
134610 13152129 3745536169 7785939799 102 103 104 106 108
134610131521 29 3745536169 7785939799 102 103 106 108 112

Table 1: The extremal bases of length 24. The basis marked with * is symmetric.

All extremal stamp bases of lengths £ = 1,...,23 are previously known. Challis and
Robinson list them for & = 3,...,22 [2, pp. 7-8], and for k = 23 in an addendum. We have
computed the extremal stamp bases of length k£ = 24, using an exhaustive search based on
the algorithm described by Challis [1]. The search took 606 CPU days on parallel 2.6 GHz
AMD Opteron processors. The new extremal bases have range 212, and are shown in Table 1.
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Note that the symmetric basis appears already in Mossige’s list of symmetric bases [6], but
until now it was not known to be extremal.

Extremal stamp chains of lengths £ = 2,...,25 can be constructed from known extremal
stamp bases by Corollary 24. Since 7(25) = n(24) + 2 = 214, these chains provide the
minimum-length multiplication plans for computing ¥, ..., y, for n < 214.

k  n(k) stamp basis k  m(k) stamp chain

1 2 1 2 4 12

2 4 13 3 6 124

3 8 134 4 10 1245

4 12 1356 ) 14 12467

5 16 13578 6 18 124689

6 20 1258910 7 22 123691011

7 26 1258111213 8 28 12369121314
8 32 125811141516 (9 34 12369121516 17

Table 2: Some extremal stamp bases for k£ < 8, and the corresponding extremal stamp chains
for k <9.

nk) | k nk)| k nk)
2111 48 | 21 154
4112 56|22 166
6|13 66 | 23 182
1014 74124 198
15 82|25 214
18 1 16 94
22|17 106
28 [ 18 118
34119 130
42 120 142

O © 00 IO Ui Wi =&
—
W

—_

Table 3: Known values of 7.

The connection between stamp bases and stamp chains is illustrated in Table 2, which
contains one extremal stamp basis for each £ = 1,...,8, and the corresponding extremal
stamp chain constructed by Corollary 24. In Table 3 we list all known values of m(k). They
were computed by applying Corollary 25 to the ranges of previously known extremal stamp
bases (see [2] and A001212 in [8]) of our new k& = 24 stamp bases. A listing of known
extremal stamp bases and extremal stamp chains can be found in Tables 4 and 5 at the end
of this article.

Several authors have observed that many extremal stamp bases (but not all) are sym-
metric in the sense that a; + a,_; = a; for all i = 1,..., k — 1. The corresponding extremal
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stamp chains are then, by construction, symmetric in the sense that a; + axy1-; = a1 + ax
for all i = 1,..., k. Symmetric stamp bases up to k = 30 are reported by Mossige [6].

If a stamp chain is needed for n so large that no extremal stamp basis is currently known
for n — 2, one can instead take any admissible stamp basis and convert it into an admissible
stamp chain using Theorem 21. Very good admissible stamp bases (although not necessarily
extremal) for up to £ = 82 and n = 2100 are listed by Challis and Robinson [2, p. 6].

6 An application to subset convolution

The multiplication in Algorithm A may in general be any associative binary operation. In
the introduction a simple example related to matrix multiplication was mentioned. Here, we
consider a more detailed application to a data clustering problem.

In previous work [5], we have considered a class of Bayesian probability models where N
items of data belong to ¢ clusters, such that ¢ is an unknown integer in the range 1,... n,
and n < N. The exact posterior distribution for ¢ is computed using an algorithm whose
time requirement is exponential in N. The algorithm first computes a likelihood function f
for each possible cluster, that is, for each subset of {1,..., N}. This computation takes time
O(2Y), and its result is a table of 2" numbers.

The next, and the most time-consuming step of the algorithm is to compute successively
the values of fo = fx f, fs= fox f,..., fu = fn_1* f, where % is an operation called subset
convolution. Subset convolution takes as its input two functions, each represented by a table
of 2 numbers, and computes another such function. The operation is associative, so for
the current purposes it is a multiplication. A single subset convolution takes either O(3%)
or O(2Y N?) time, depending on the algorithm used.

However, to obtain the posterior probability for ¢, the full tables fi,..., f, are actually
not needed. Instead, we only need the last element from each table, corresponding to f.(U),
where U = {1,..., N} is the set of all data items. Thus, it is necessary to compute the
values of y. = u(f.) := f.(U), for ¢ = 1,...,n. Furthermore, if f, and f, have been fully
computed, and ¢ = a+ b, then the single value f.(U) = (fa* f3)(U) can be computed in only
O(2V) time. Hence, computing v(f,, f5) := u(f, * fy) is also fast, compared to performing
the full subset convolution f, * f;.

Since u and v are much faster to compute than *, our aim is to find a minimal set of
values of ¢, for which the full subset convolution f. is computed, since for these values,
Ye = u(fe(U)) then refers to only a table lookup. For other ¢ € [1,...,n], the quantity y.
is computed as v(f;, f;), where f; and f; have been computed in full. The end result is
that yy,...,y, are obtained with only k — 1 subset convolutions, where £ is the length of
a stamp chain for n. In comparison, the straightforward algorithm performs n — 1 subset
convolutions.

To provide a concrete example, for N = 20 and n = 20 straightforward multiplication
performs n — 1 = 19 subset convolutions to compute fs, ..., foo, which takes approximately
7 minutes of CPU time on a 2.4 GHz AMD Opteron processor. However, from Table 2 we



find an extremal stamp chain
B; ={1,2,3,6,9,10, 11},

which has range 22 > n. Using this chain and Algorithm A, only 6 subset convolutions are
required:

fa=fx]f
fa=Jfax [
Jo=Tsx[3
Jo=fe* [
Jio=Jfox f
Jin = fiox f

Consequently, the posterior distribution for ¢ is obtained in about one third (6/19) of the
time required by the straightforward algorithm.

7 Discussion

The existing bodies of literature on both addition chains and on postage stamps are substan-
tial. However, this far they seem to be almost completely disjoint. We have here explored
the connection between these two concepts, and presented a theorem establishing a relation-
ship between addition chains and stamp bases. The theorem provides a way to construct
an optimal procedure to perform certain multiplicative computational operations, illustrated
by an application to data clustering using subset convolution. As a future research topic,
it would be interesting to explore possible other useful connections between addition chains
and the postage stamp problem.
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92
104
116
128
140
152
164
164
164
164
180
180
180
196
196
196
212
212
212

1

13

134

1356

1357 8

1357 910

1258 910

1348 911

13561314

13491116

1349101213

1258111213

1357 81718

125811141516

1357 9102122

134911161719 20

123711151921 2224
125711151921 2224

13561314 212224 26 27
134911161823 24 26 27

1237111519 232526 28
125711151923 2526 28
13491116 21 23 2829 31 32
1349111620 2527 3233 35 36

1345 8142026 323536373940
1349101516 21 22 24 25 51 53 55
125811141720 23 24 25 51 53 55

1345 8142026 323841 42 43 45 46

1345 8142026 323844 47 48 49 51 52

1345 8142026 32 3844 50 53 54 55 57 58
1345 8142026 3238445056 59 60 61 63 64
1345 8142026 32 3844 50 56 62 65 66 67 69 70
1345 814202632384450566268 71727375
13461013152129 374553616769 72767879
1345 8142026 3238445056 626874777879
134610131521 29 3745536169 7375787980
13461013152129 3745536169 73757879 82
134610131521 293745536169 75778084 86
13461013152129 3745536169 7781838687
134610131521 29 3745536169 7781 83 86 87
13461013152129 3745536169 7783 858892
13461013152129 3745536169 7785899194
13461013152129 3745536169 77858991 94

76
81
81
82
84
87
88
90
94
95
95

82
82
84
88
89
90
92
95
96

90
92
96
97 98
98 100

98 100 104

13461013 152129 3745536169 7785919396 100 102 103 105 106
134610131521 29 3745536169 7785939799 102 103 104 106 108
13461013 152129 374553161 69 77 85 93 97 99 102 103 106 108 112

Table 4: Extremal stamp bases for £k = 1,...,24 and their ranges.
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124
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7

8 9
81011
91011
91012
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1245101217
124510111314

1236
1246
1236
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9121314
8 91819
9121516 17
810112223

124510121718 20 21

1234
1236
1246

81216 20 22 23 25
81216 20 22 23 25
7141522232527 28

12451012171924 252728

1234
1236

81216 20 24 26 27 29
81216 20 24 26 27 29

1245101217 222429303233
124510121721 262833 34 36 37

1245

6 9152127333637384041

1245101116 17 22 23 25 26 52 54 56

1236
1245
1245
1245
1245
1245
1245
1245
1245
1245
1245
1245
1245
1245
1245
1245
1245
1245
1245
1245

9121518 21 24 25 26 52 54 56

6 915212733394243 44 46 47
915212733 394548 49 50 52 53
9152127 33 39 45 51 54 55 56 58 59
9152127333945 51 576061 6264 65
915212733 394551576366 676870
6 915212733394551576369727374
711141622 303846546268 70737779
6 915212733394551576369 757879
7111416 22303846 546270747679 80
711141622 303846546270 747679 80
7111416 22 30 38 46 54 62 70 76 78 81 85
711141622 303846 54 6270 78 82 84 87
711141622 303846 54627078 828487
711141622 303846 54 62 70 78 84 86 89
7111416 22 30 38 46 54 62 70 78 86 90 92
7111416 22 30 38 46 54 62 70 78 86 90 92
711141622 303846546270 78 8692 94

DN Oy O O

71
76
80
80
81
83
87
88
88
93
95
95

7
82
82
83
85
88
89
91
95
96
96

83
83
85
89
90
91
93
96
97

91
93
97
98 99
99 101

99 101 105

97 101 103 104 106 107
71114162230 3846 54 62 70 78 86 94 98 100 103 104 105 107 109
711141622 303846548270 78 86 94 98 100 103 104 107 109 113

Table 5: Extremal stamp chains for £ = 2,...,25 and their ranges.
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