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Abstract

An additive 2-basis with range n is restricted if its largest element is n/2. Among the
restricted 2-bases of given length k, the ones that have the greatest range are extremal

restricted. We describe an algorithm that finds the extremal restricted 2-bases of a
given length, and we list them for lengths up to k = 41.

1 Introduction

Let n be a positive integer. An additive 2-basis for n, or more briefly a basis for n, is a set of
integers Ak = {0 = a0 < a1 < · · · < ak} such that every integer in [0, n] is the sum of two of
its elements, not necessarily distinct. The length of the basis is k. The largest possible n for
a basis Ak is its range and denoted n2(Ak). The maximum range among all bases of length k
is n2(k), and a basis that attains this maximum is extremal [3, pp. 123–127].

A basis Ak is admissible if n2(Ak) ≥ ak, restricted if n2(Ak) ≥ 2ak, and symmetric if
ai + ak−i = ak for all 0 ≤ i ≤ k. Since for any basis n2(Ak) ≤ 2ak, a restricted basis has in
fact n2(Ak) = 2ak exactly.

The maximum range among restricted bases is called the extremal restricted range and
denoted n∗

2(k), and an extremal restricted basis is one that attains this maximum. For many
values of k, at least some of the extremal bases are restricted, so that n∗

2(k) = n2(k). This
is not always true: a counterexample is k = 10, where n∗

2(10) = 44, but n2(10) = 46 (see
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range notes basis
44 R,A 0 1 2 3 7 11 15 17 20 21 22 †
44 R,S 0 1 2 3 7 11 15 19 20 21 22
44 R,S 0 1 2 5 7 11 15 17 20 21 22
44 R,A 0 1 2 5 7 11 15 19 20 21 22 †
44 R,S 0 1 2 5 8 11 14 17 20 21 22
44 R,A 0 1 3 4 6 11 13 18 19 21 22 ‡
44 R,S 0 1 3 4 9 11 13 18 19 21 22
44 R,A 0 1 3 4 9 11 16 18 19 21 22 ‡
46 NR,A,E 0 1 2 3 7 11 15 19 21 22 24
46 NR,A,E 0 1 2 5 7 11 15 19 21 22 24

Table 1: With length k = 10, there are eight extremal restricted bases (which are not
extremal bases); and two extremal nonrestricted bases; all listed by Wagstaff [10]. The two
bases marked with † are mirror images of each other; similarly the two bases marked with ‡.
Notes: R = restricted, NR = nonrestricted; S = symmetric, A = asymmetric; E = extremal.
Only the two bases with range 46 are extremal bases.

Table 1). Thus, when k = 10, the extremal restricted bases are not extremal bases, and the
extremal bases are neither restricted nor symmetric.

Similarly, the maximum range among symmetric bases can be called the extremal sym-

metric range, and a basis that attains this maximum can be called extremal symmetric basis.
Extremal symmetric bases are known up to k = 30 due to Mossige [5].

All extremal bases of lengths k ≤ 24 are currently known [4]. Interestingly, all of them
are either both symmetric and restricted, or neither. Three questions arise naturally:

1. If an extremal basis is symmetric, is it necessarily restricted?

2. If an extremal basis is restricted, is it necessarily symmetric?

3. Does every k ≥ 15 have an extremal basis that is symmetric?

The first question is answered affirmatively by a theorem of Rohrbach [7]. The second
question was posed by Riddell and Chan [6, p. 631], but to our knowledge has not been
answered in general; with k ≤ 24 the answer is yes.

The third question has appeared in a stronger form: it was suggested that all extremal
bases with k ≥ 15 might be symmetric [1]. This was later disproven by Challis and Robinson,
since k = 21 has four extremal bases: two symmetric, two asymmetric [2]. The question
remains whether every k ≥ 15 has at least one extremal basis that is symmetric.

In this work we describe an efficient algorithm for finding all extremal restricted bases of a
given length k. The algorithm is based on the idea that a restricted basis can be constructed
by concatenating two shorter admissible bases, one of them as a mirror image. With this
method we have computed all extremal restricted bases of lengths k ≤ 41.
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Note that we have included a0 = 0 in a basis, similarly to Wagstaff [10]. If 0 is excluded,
the equivalent condition is that every integer in [0, n] is the sum of at most two elements
of the basis [8, p. 3.1]. Excluding the zero is perhaps more usual in current literature, but
including it is more convenient for our purposes. The zero element is not counted in the
length of a basis.

2 Related work

Our search algorithm builds on a combination of existing ideas. Rohrbach discusses symmet-
ric bases, and the proof of his Satz 1 is based on the observation that if a basis is mirrored
from ak, then its pairwise sums are mirrored from 2ak [7]. We shall exploit a generalization
of this for asymmetric restricted bases.

Riddell and Chan discuss the connection between symmetric and restricted bases [6].
Mossige notes that symmetric bases Ak can be efficiently searched by scanning through
admissible bases of length A⌈k/2⌉ [5]. For symmetric bases this is sufficient; the second
half of a symmetric basis is a mirror image of the first half, and then Rohrbach’s theorem
ensures that the constructed set Ak is a basis for 2ak. For asymmetric restricted bases, a
similar search can be conducted separately for the two halves of the basis (prefix and suffix).
However, since Rohrbach’s theorem does not apply to asymmetric bases, the construction
does not automatically yield a basis for 2ak. This must be checked separately.

The final ingredient is the “gaps test” by Challis [1]. Based on a simple combinatorial
argument, it prunes the search tree of admissible bases, if they are required to have a range
of at least a given target value T . In section 4 we shall prove lower bounds for the ranges of
the prefix and the mirrored suffix. With these lower bounds the gaps test prunes the search
tree very efficiently.

3 Definitions and initial results

If A and B are sets of integers, we define

A+B := {a+ b : a ∈ A, b ∈ B},

and if b is an integer, we define the mirror image of A with respect to b as

b− A := {b− a : a ∈ A}.

The set of integers generated by A is

2A := A+ A = {a+ a′ : a, a′ ∈ A}.

It is straightforward to verify that

2(b− A) = 2b− 2A.
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By [c, d] we denote the consecutive integers {c, c+ 1, . . . , d}. Now the condition that A is a
basis for n is succintly stated as follows:

2A ⊇ [0, n].

If Ak = {a0 < · · · < ak} is a basis and i < k, then Ai = {a0, . . . , ai} is a partial basis. We
state without proof three easy observations (see [1] and [8]):

Lemma 1. If a basis is restricted, then it is admissible.

Lemma 2. If a basis is extremal, then it is admissible.

Lemma 3. If a basis Ak is admissible, then for all i < k the partial basis Ai is admissible,

and ai+1 ≤ n2(Ai) + 1.

The first question posed in the introduction is now answered by the following theorem,
essentially the same as Rohrbach’s Satz 1 [7, p. 4].

Theorem 4. If Ak is an extremal basis and it is symmetric, then it is restricted.

Proof. Let ak = max{Ak}. By Lemma 2, Ak is admissible; thus 2Ak ⊇ [0, ak]. By symmetry
Ak = ak − Ak, thus

2Ak = 2(ak − Ak) = 2ak − 2Ak ⊇ [ak, 2ak].

Combining the above observations we have 2Ak ⊇ [0, 2ak], thus Ak is restricted.

Note that if Ak is a restricted basis with range n, then its largest element is exactly
ak = n/2. Exploiting the idea of mirroring from the largest element we obtain the following
theorem.

Theorem 5. If Ak is a restricted basis with range n, then ak − Ak is also a restricted basis

for n.

Proof. Since Ak is a basis for n, it follows that 2Ak ⊇ [0, n]. Now

2(ak − Ak) = 2ak − 2Ak = n− 2Ak ⊇ [0, n],

thus ak−Ak is a basis for n. Its largest element is ak−0 = ak = n/2, thus it is restricted.

Theorem 5 implies that asymmetric restricted bases always form pairs that are mirror
images of each other. Two such pairs are seen in Table 1.
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4 Prefix and suffix of a restricted basis

Let Ak be a restricted basis with range n and length k ≥ 3. Then by Theorem 5 the mirror
image Bk = ak − Ak is also a restricted basis with range n. Choose now an arbitrary pivot

index i such that 0 < i < k − 1. Split Ak into a prefix Ai = {a0 < · · · < ai} and a suffix

R = {ai+1 < · · · < ak}. The prefix is a partial basis of Ak. The suffix can be mirrored from
ak to obtain another basis

Bj = ak −R = {b0 < · · · < bj},

where j = k − 1− i, and bh = ak − ak−h for all 0 ≤ h ≤ j. Now Bj is a partial basis of Bk.
By Lemma 1 both Ak and Bk are admissible, and then by Lemma 3

n2(Ai) ≥ ai+1 − 1,

n2(Bj) ≥ bj+1 − 1.

We have now lower bounds for the ranges n2(Ai) and n2(Bj), but the bounds depend on ai+1

and bj+1. However, these values can further be bounded from below:

ai+1 = ak − bj ≥ ak − (n2(Bj−1) + 1) ≥ ak − n2(j − 1)− 1,

bj+1 = ak − ai ≥ ak − (n2(Ai−1) + 1) ≥ ak − n2(i− 1)− 1,

where n2(i− 1) and n2(j − 1) are the maximum ranges of bases of lengths i− 1 and j − 1,
respectively. These maximum ranges are currently known up to length 24.

Combining these bounds we can state a necessary condition for Ak being a restricted
basis with range n.

Theorem 6. If Ak is a restricted basis with range n, and i is an index such that 0 < i < k−1,
and i+ j = k − 1, then:

1. The prefix Ai is an admissible basis such that n2(Ai) ≥ ak − n2(j − 1)− 2.

2. The mirrored suffix Bj = ak −{ai+1, . . . , ak} is an admissible basis such that n2(Bj) ≥
ak − n2(i− 1)− 2.

Example 7. Let k = 10 and n = 44, and choose i = 5 (thus j = 4). If A10 is a restricted
basis for 44, then a10 = 22.

Since n2(3) = 8, b4 cannot be greater than 8+1 = 9; in other words, a6 = 22− b4 cannot
be smaller than 22− 9 = 13; thus n2(A5) ≥ 12.

Similarly, since n2(4) = 12, a5 cannot be greater than 12 + 1 = 13; in other words,
b5 = 22− a5 cannot be smaller than 22− 13 = 9; thus n2(B4) ≥ 8.
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The lower bounds are the ones given by Theorem 6. Consider now a restricted basis A10

and its mirror image B10, shown in right-to-left order:

A5 R
︷ ︸︸ ︷︷ ︸︸ ︷

A10 = 0 1 3 4 6 11 13 18 19 21 22
22 21 19 18 16 11 9 6 3 1 0 = B10

︸ ︷︷ ︸

B4

The prefix A5 has range 12, and the mirrored suffix B4 has range 10. Both ranges are within
the bounds required by Theorem 6.

The second part of Theorem 6 also provides an upper bound for the range of a restricted
basis:

n2(Ak) = 2ak ≤ 2n2(Bj) + 2n2(i− 1) + 4

≤ 2n2(j) + 2n2(i− 1) + 4.

Choosing i = ⌊k/2⌋ this yields the following bounds, for even and odd values of k.

Corollary 8. If r > 1 is an integer, then

n∗
2(2r) ≤ 4n2(r − 1) + 4,

n∗
2(2r + 1) ≤ 2n2(r − 1) + 2n2(r) + 4.

5 Search algorithm

Suppose that k and n are given, and the task is to enumerate every restricted basis of length
k and range n (if any such bases exist). Choose a pivot index i, for example i = ⌊k/2⌋.

A straightforward method would be to enumerate all admissible prefix bases Ai, all
admissible mirrored suffix bases Bj, and for each pair (Ai, Bj) check whether Ai∪ (n/2−Bj)
happens to be a basis for n, that is, whether it generates all integers in [0, n]. For large k this
is not feasible, as the number of admissible bases of length i increases rapidly (see A167809
in [9]).

However, Theorem 6 gives definite lower bounds for the ranges of the prefix Ai and the
mirrored suffix Bj. Thus only a tiny fraction of all admissible prefixes and mirrored suffixes
need to be considered, as seen in the following example.

Example 9. Let k = 25 and n = 228. We want to know whether there are any restricted
bases with these values, and to list them if there are. Choose i = 12 (thus j = 12).
The last element of a restricted basis must be ak = n/2 = 114. There are 15 752 080
admissible bases of length 12, but we only need to consider the prefixes Ai such that n2(Ai) ≥
114− n2(11)− 2 = 58; there are only 187 such prefixes.
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Admissible bases with a given length and a given minimum range can be enumerated
with the algorithm (“K-program”) described by Challis [1]. Combining these ingredients we
obtain Algorithm 1, which enumerates all restricted bases of given length k and range n.

Algorithm 1 List restricted bases of length k and range n

Require: k ≥ 3
1: i← ⌊k/2⌋ {Choose pivot index}

2: j ← k − i− 1
3: na ← n2(i− 1) {Lookup from A001212}

4: nb ← n2(j − 1) {Lookup from A001212}

5: A ← {Ai : n2(Ai) ≥ n/2− nb − 2} {List prefixes with Challis algorithm [1]}

6: B ← {Bj : n2(Bj) ≥ n/2− na − 2} {List mirrored suffixes with Challis algorithm}

7: for all Ai ∈ A do

8: for all Bj ∈ B do

9: R← n/2−Bj {Mirror from n/2}

10: Ak ← Ai ∪R {Concatenate}

11: if 2Ak ⊇ [0, n] then {Generate pairwise sums and check range}

12: print Ak

13: end if

14: end for

15: end for

If n∗
2(k) is not known, Algorithm 1 can be run with different values of n, starting from

the upper bound for n∗
2(k) provided by Corollary 8. If no solutions are found, n is then

decreased in steps of 2, until for some n there are solutions. Only even values of n need to
be considered, since the range of a restricted basis is always even.

Example 10. Let k = 25. By Corollary 8, n∗
2(25) ≤ 240. For n = 240 the search algorithm

finds no solutions. Then n is reduced in steps of 2, until for n = 228 the algorithm returns
one solution:

A25 = {0, 1, 3, 4, 6, 10, 13, 15, 21, 29, 37, 45, 53,

61, 69, 77, 85, 93, 99, 101, 104, 108, 110, 111, 113, 114}

By construction, this is an extremal restricted basis, so now we know that n∗
2(25) = 228.

6 Results

Using the search algorithm described in the previous section, we performed an exhaustive
search for extremal restricted bases of lengths k = 25, . . . , 41. The bases are listed in Table 3.
For ease of reference, previously known extremal restricted bases of lengths k = 1, . . . , 24
are listed in Table 2.
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k n∗
2(k) basis

1 2 S 0 1

2 4 S 0 1 2

3 8 S 0 1 3 4

4 12 S 0 1 3 5 6

5 16 S 0 1 3 5 7 8

6 20 S 0 1 2 5 8 9 10
6 20 S 0 1 3 5 7 9 10

7 26 S 0 1 2 5 8 11 12 13
7 26 S 0 1 3 4 9 10 12 13

8 32 S 0 1 2 5 8 11 14 15 16

9 40 S 0 1 3 4 9 11 16 17 19 20

10 44 see Table 1

11 54 S 0 1 3 4 9 11 16 18 23 24 26 27
11 54 S 0 1 3 5 6 13 14 21 22 24 26 27

12 64 S 0 1 3 4 9 11 16 21 23 28 29 31 32

13 72 S 0 1 3 4 9 11 16 20 25 27 32 33 35 36

14 80 S 0 1 3 4 5 8 · · · +6 · · · 32 35 36 37 39 40

15 92 S 0 1 3 4 5 8 · · · +6 · · · 38 41 42 43 45 46

16 104 S 0 1 3 4 5 8 · · · +6 · · · 44 47 48 49 51 52

17 116 S 0 1 3 4 5 8 · · · +6 · · · 50 53 54 55 57 58

18 128 S 0 1 3 4 5 8 · · · +6 · · · 56 59 60 61 63 64

19 140 S 0 1 3 4 5 8 · · · +6 · · · 62 65 66 67 69 70

20 152 S 0 1 3 4 5 8 · · · +6 · · · 68 71 72 73 75 76

21 164 S 0 1 3 4 5 8 · · · +6 · · · 74 77 78 79 81 82
21 164 S 0 1 3 4 6 10 13 15 21 · · · +8 · · · 61 67 69 72 76 78 79 81 82

22 180 S 0 1 3 4 6 10 13 15 21 · · · +8 · · · 69 75 77 80 84 86 87 89 90

23 196 S 0 1 3 4 6 10 13 15 21 · · · +8 · · · 77 83 85 88 92 94 95 97 98

24 212 S 0 1 3 4 6 10 13 15 21 · · · +8 · · · 85 91 93 96 100 102 103 105 106

Table 2: Extremal restricted bases of lengths k = 1, . . . , 24. S = symmetric, A = asymmetric. +c indicates several
elements with a repeated difference of c.
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k n∗
2(k) basis

25 228 S 0 1 3 4 6 10 13 15 21 · · · +8 · · · 93 99 101 104 108 110 111 113 114

26 244 S 0 1 3 4 6 10 13 15 21 · · · +8 · · · 101 107 109 112 116 118 119 121 122
26 244 S 0 1 3 4 5 8 11 15 16 · · · +9 · · · 106 107 111 114 117 118 119 121 122

27 262 S 0 1 3 4 5 8 11 15 16 · · · +9 · · · 115 116 120 123 126 127 128 130 131

28 280 S 0 1 3 4 5 8 11 15 16 · · · +9 · · · 124 125 129 132 135 136 137 139 140

29 298 S 0 1 3 4 5 8 11 15 16 · · · +9 · · · 133 134 138 141 144 145 146 148 149

30 316 S 0 1 3 4 5 8 11 15 16 25 34 · · · +9 · · · 124 133 142 143 147 150 153 154 155 157 158
30 316 S 0 1 2 5 6 8 13 14 17 19 29 · · · +10 · · · 129 139 141 144 145 150 152 153 156 157 158
30 316 A 0 1 2 5 6 8 13 14 17 19 29 · · · +10 · · · 129 133 139 141 146 150 152 154 155 157 158
30 316 A 0 1 3 4 6 8 12 17 19 25 29 · · · +10 · · · 129 139 141 144 145 150 152 153 156 157 158
30 316 S 0 1 3 4 6 8 12 17 19 25 29 · · · +10 · · · 129 133 139 141 146 150 152 154 155 157 158
30 316 S 0 1 3 4 7 8 9 16 17 21 24 · · · +11 · · · 134 137 141 142 149 150 151 154 155 157 158

31 338 S 0 1 3 4 7 8 9 16 17 21 24 · · · +11 · · · 145 148 152 153 160 161 162 165 166 168 169

32 360 S 0 1 3 4 7 8 9 16 17 21 24 · · · +11 · · · 156 159 163 164 171 172 173 176 177 179 180

33 382 S 0 1 3 4 7 8 9 16 17 21 24 · · · +11 · · · 167 170 174 175 182 183 184 187 188 190 191

34 404 S 0 1 3 4 7 8 9 16 17 21 24 · · · +11 · · · 178 181 185 186 193 194 195 198 199 201 202

35 426 S 0 1 3 4 7 8 9 16 17 21 24 · · · +11 · · · 189 192 196 197 204 205 206 209 210 212 213

36 448 S 0 1 3 4 7 8 9 16 17 21 24 · · · +11 · · · 200 203 207 208 215 216 217 220 221 223 224

37 470 S 0 1 3 4 7 8 9 16 17 21 24 · · · +11 · · · 211 214 218 219 226 227 228 231 232 234 235

38 492 S 0 1 3 4 7 8 9 16 17 21 24 · · · +11 · · · 222 225 229 230 237 238 239 242 243 245 246

39 514 S 0 1 3 4 7 8 9 16 17 21 24 · · · +11 · · · 233 236 240 241 248 249 250 253 254 256 257

40 536 S 0 1 3 4 7 8 9 16 17 21 24 35 46 · · · +11 · · · 222 233 244 247 251 252 259 260 261 264 265 267 268
40 536 S 0 1 2 5 7 10 11 19 21 22 25 29 30 · · · +13 · · · 238 239 243 246 247 249 257 258 261 263 266 267 268

41 562 S 0 1 2 5 7 10 11 19 21 22 25 29 30 · · · +13 · · · 251 252 256 259 260 262 270 271 274 276 279 280 281

Table 3: Extremal restricted bases of lengths k = 25, . . . , 41. S = symmetric, A = asymmetric. +c indicates several
elements with a repeated difference of c.
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For lengths 25, . . . , 29 the extremal restricted bases are the extremal symmetric bases
listed by Mossige [5]. For lengths 31, . . . , 41 they equal the bases given by Challis and
Robinson’s construction [2, p. 6]. Note that while the aforementioned construction gives a
lower bound for the extremal restricted range, exhaustive search gives the exact range.

With k = 30, there are six extremal restricted bases with range 316. Four of them are
symmetric and were listed by Mossige, but two are asymmetric. This is perhaps unexpected,
and shows that at least one of the questions 2 and 3 stated in the introduction must be
answered negatively. It is currently not known whether n2(30) is 316 or greater.

• If n2(30) = 316, then we have here two extremal bases that are restricted, but asym-
metric; this would answer question 2 negatively.

• If n2(30) > 316, then there must be some (currently unknown) nonrestricted bases
with range greater than 316, but they cannot be symmetric (for if they were, they
would be restricted by Theorem 4). This would answer question 3 negatively.

As an example of the time requirement, with k = 41 and n = 562, the algorithm generates
5 514 prefixes of length 20 and range at least n/2−n2(19)−2 = 139. These were enumerated
in 120 CPU hours on parallel 2.6 GHz Intel Xeon processors, with a C++ implementation of
the Challis algorithm. Since 41 is odd, we have j = i, and the mirrored suffixes are the same
as the prefixes. The concatenation phase of the algorithm (lines 7 to 15) took 1.8 seconds
with a Matlab implementation.

7 Discussion

Restricted bases are an interesting class of additive bases for two reasons. On one hand,
searching for the extremal solutions among restricted bases is enormously faster than search-
ing among all additive bases, as illustrated in the previous sections. This efficiency stems
from Theorem 5, which places a very strong constraint on any extremal restricted basis: that
its mirror image must also be a restricted basis (possibly different). Thus restricted additive
bases can be seen as a generalization of symmetric additive bases.

On the other hand, among lengths k = 1, . . . , 24, in almost every case at least one of the
extremal bases is restricted (with the sole exception of k = 10). The reason for this is not
known, and it is not known whether this regularity continues for k > 24. The case of k = 30,
discussed in the previous section, suggests that there may be surprises waiting to be found.

For simplicity, we have always taken i = ⌊k/2⌋ in our search algorithm. Further research
is needed to find the optimal pivot index i that minimizes the search work.

While Theorem 5 as such does not apply to nonrestricted bases, it would be interesting
to know if it could be generalized in such a way that applies to them. Such a generalization
might provide an improved search method for extremal additive bases in the nonrestricted
case.
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