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Abstract

Let k£ and [ be non-negative integers. For two completely additive functions f and
g, we consider various identities for the Dirichlet convolution of the kth powers of f
and the [th powers of g. Furthermore, we derive some asymptotic formulas for sums
of convolutions on the natural logarithms.

1 Statements of results

Let f and g be two arithmetical functions that are completely additive. That is, these
functions satisfy f(mn) = f(m)+ f(n) and g(mn) = g(m) + g(n) for all positive integers m
and n. We shall consider the arithmetical function

Dya(n; f,9) : Zf ( ) (1)

d|n

which represents the Dirichlet convolution of the kth power of f and the [th power of g for
non-negative integers k and [. The above function provides a certain generalization of the
classical number-of-divisors function d(n). In fact,

Doo(n; f,g) = d(n).
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The first purpose of this study is to investigate some recurrence formulas for Dy, (n; f, g)
with respect to k and [. Since

S f(d) = sd(n)f(n), )
dn
where f is a completely additive function, we have
D1s(n: £,9) = ) f(n)g(n) — 3 F(d)g(d). )

din

Similarly, as in (3), we use (1) for Dy +1(n; f,g) to obtain

Dy 1(n; f,g) = Z fk(d)gl g) g <g>

d|n

=g 3 @ (5) = @@ (5).
dln

dn
Hence, we deduce the following two recurrence formulas.

Theorem 1. Let k and | be non-negative integers, and let f and g be completely additive
functions. Then we have

Diia(ni £.9) + Y S (d)g' (%) 9(d) = g(n) Dt £.9), 4
dn

Dsva(ni f.9) + > @) F (5) g (5) = ) Dualns £.9) (5)
dln

Now, we put f = g in (4) (or (5)), and set Dy ,(n; f) := Dg,(n; f, f). Then, we deduce
the following corollary.

Corollary 2. Using the same notation given above, we have
Dir1(n; f) + Disra(n; ) = f(n) Dia(n; f). (6)
Particularly, if k =1, we have
1
Diy11(n; f) = Digyr(n; f) = §f<n)Dk,k(n§ f)- (7)

Because the symmetric property Dy ;(n; f) = Dyx(n; f), we only consider the function
Dy jyj(n, f) for j =1,2,....



Example 3. The formulas (6) and (7) imply that

Dy esa(n; f) =
Dy prs(n; f) =
Dy pra(n; f) =
Diepers(ns f) =

Dipys(n; f) =

Dy eyr(n; f) =

Dy pys(n; f) =

%fz(n)ijk(n; f) = Ditip+a(n; f),

3/ 0)Deslns )= SI0) Dk )

%f4(n)Dk,k(n§ f)— 2f2(n)Dk+1,k+1(n; f)+ Digopra(n; f),
%f5(n)Dk,k(n§ f)— gf3(")Dk+1,k+1(”; f)+ gf(n>Dk+2,k+2(n§ 1)

%fG(n)Dk,k(nS f)— 3f4(”)Dk+1,k+1(n§ f)+ ng(”)DkH,kH(n% f)
— Dy ey3(ns f),

%]ﬂ(n)Dk,k(n; f)— ;fs(n)Dk—l-l,k-i—l(n; f)+ 7f3(”)Dk+2,k+2("3 f)
- gf(n)Dk+3,k+3(n; f);

%fS(n)Dk,k(nQ f) =A%) Dy o1 (n; f) + 10f*(n) Diya o2 (n; f)
— 8f%(n) Dyyjor3(n; f) + Dirapra(n; f).

Next, we shall demonstrate that the explicit evaluation of the function Dy gim(n; f)
(m =2,3,...) can be expressed as a combination of the functions Dy x(n; f), Dir1x+1(n; f),
Disopra(ns f), -, Dy m) by m) (n; f). Hence, we shall give a recurrence formula between

Dy r(n; f), ..., Dk—i—L%J,k—i—L%J (n; f) and Dy gym(n; f).

Theorem 4. Let k and m be positive integers, and let Dy jym(n; f) be the function defined
by the above formula. Then we have

1]

Digam(ni f) = > e f"7% () Diyjrs (3 f), (8)
=0
where
(1
5; Zf] = 07.
m e
dm ) = ifj=1;
ki i1
m o . ) m
Vg Ilm=G+i), i2<i<lig]
\ Ti=1

Proof. By (7) in Corollary 2, the equality (8) holds for m = 1 and all £ € N. Now, we
assume that (8) is true for m = 1,2,...,0 and k£ € N. Using this assumption and (6) in



Corollary 2, we observe that

14
="l 7 (0) Dy (s f)
j=0

115

3

Dk,k+l+1(n; f)

I
1) (n) Dig14jk+1+5 (15 f).

1—1-2j
k+1]f J

For even [ = 2¢q, we have

= £ P () Di(n f)

Dk,k+2q+l<n; f)

(2¢—1)

—i—Z(ck]

and

(29) (2¢—1)
Ck] T Cp1-1

) quH 2]( )Dk+j,k+j(n§ f)

— Cpt1,5-1

(2g+1)

2q+
7Cl€]

H (29— ( +1)) (29 - j)

For odd [ = 2g — 1, we observe that

Dy jiy2q(n; f) =

By our assumption, since

(2¢—1) (2¢—2)

ij

— G141 T

) Dyl f)
q—1
+Z(c§fj R iy 1) f217% (n) Dy (ns f)

1)L ? JDIH-L%J,]H-L%J (n; f)-

we obtain the assertion (8) for all £ and m € N.
Now, we consider another expression for Dy ;(n; f, g) using the arithmetical function

=2 1"dy

dln



If f =g, weset Hyip(n; f) = Hm(n; f, f). The right-hand side of (9) implies the Dirichlet
convolution of 1 and f*¢™. Since ¢ is a completely additive function, we have

Dyi(n; f,9) =Y f*(d —g(d))'

dln
- Y1 Z " () 8@

From (9) and the above, we obtain the following theorem.

Theorem 5. Let k and | be non-negative integers, and let f and g be completely additive
functions. Then we have

l

Duatr f.9) = (1" (1 )"0 Hin(1£.0),

m=0
where the function Hy ., (n; f,g) is defined by (9).
We immediately obtain the following corollary.

Corollary 6. Let k and | be non-negative integers, and let f and g be completely additive
functions. Then we have

l

Duatrs ) = (0" (1) 7 0 i ). (10)

m=0
Note that
n\ ,,[/n
Him(n; f,g) = d%:f'“ <E> g (3)
k m
_ Z H—]()( )sz m Zfl (11)
=0 j= o

Applying (11) to Theorem 5, we have the following theorem.

Theorem 7. Let k and | be non-negative integers, and let f and g be completely additive
functions. Then we have

EEHr (O w e

dn



In the case where f = g, note that

Hiym(n; f) = Z (f(n) — f(d))"

dn
k+m
kE+m I ,
-3 p("E) e 3 )
dln
From (10) and the above, we obtain the following corollary.

Corollary 8. Let k and | be non-negative integers, and let f be a completely additive func-
tion. Then we have

Dys(n f) = Zf mﬂ( )(’”;m)f )3 () (12)

dn

2 Recurrence formula connecting Dy (n; f) with } f2(d)

The second purpose of this study is to derive another expression for Dy (n; f) that involves
the divisor function d(n). Before stating Theorem 10, we prepare the following lemma.

Lemma 9. Let f be a completely additive function. There exist the constants eqq, €4.q-1,- - - ;€41
(g =1,2,...) that satisfy the equation

q—1
Z fH7d) = = Cqq d(n) f*7~(n) + Z eq,q—jf2q_2j_1(n) Z f#(d). (13)
dln j=1 dln
Moreover, the relations among sequences (eq,q—;)j—, are as follows.

o b (S () - R z

Jj=1

-1
1 /2¢-1 . 2 — 1
Cea=i =3 ( 2j >_ Z (2@-1)6"71"3' ’

i=
i—j>1

where B,, denotes the nth Bernoulli number, which is defined by the Taylor expansion

z . B, ,
- :ZFZ o (2] < 2n).
n=1 ’




Proof. By (2), the case ¢ = 1 in (13) is trivial. Assume that there exist e,,, €,p—1,...,€p1
(p < q) such that

d2|: FPHd) = eppd(n) f77 (n) + iep,pjfz““(m dZ f7(d). (15)
Since
dXﬂ: fHd) = iqzt(—l)j (2‘]; 1) £ () dgn: £i(d),
we have

S = e+ 5 3 () S )

dln j=1
S (16

Applying (15) to (16), we obtain

S Fid) = (1 S e D) dn) 1 ()

dln j=1

1 2q + 1 2+ 1 L .
T2 ( 2j >_ 2 (21'_1)62‘” P ) 3 ().
=2 dn
i—j>1

By induction, this completes the proof, except for the second term on the right-hand side of
(14).
The first term on the right-hand side of (14) implies

q q
2 — 1 2q\ k
€qq=1— Z <2k B 1) ek = 1— Z <2/~c> Eek,k.
k=1 k=1
Here we put a(k) = key . Then we have
o
) =0-3 (51 ol (17)
k=1

Since a(1) = €11 = 1/2 and (22 — 1) By = 1/2, we only need to show that (2% — 1) By,

(k =1,...,q) satisfies the recurrence formula (17). Consider the nth Bernoulli polynomial
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B, (z), which is defined by the following Taylor expansion:

zev? > B,(z) ,
The following relations are known among B, (1), B,(1/2) and B,
1

B,(1)=B,, B, (—) =—(1-2"")B,.

2
By the formula [1, Thm. 12.12, p. 264]

we observe that

2q
- 2q -
Byg(y) = v —qy* " + ) <k ) Byy* '
k=2

In this equation, we consider y = 1 and y = 1/2; then

q
2
Byy=1—-q+ E (QZ)B%
=1

and

1
2% By, (5) = (2 —2%) By,
q
2
=1—-2g+ Z (22) By 2%k

k=1
Subtracting (20) from (19), we obtain

q
(29 — 1) By, = ( ) (2% — 1) Ba.
k=1

This recurrence formula for (2%

of (13).
Applying Lemma 9 to (12) in Corollary 8, we have

Duso 1= (1) > ("3 ) X )

§=0 dn

Lk+m+1J

For() E (g

din

(18)

(19)

(20)

— 1) Boy’s is equivalent to (17). This completes the proof

O

(21)



The second term on the right-hand side of (21) gives us

Ty 5 ()G e S e e

m=0 j=1 i=1
using (13). From (14), (21) and (22), we have the following theorem.

Theorem 10. Let k and | be non-negative integers, and let f be a completely additive
function. There exist the constants e;;, €;;—; (7 =1,2,..., M2 1< j—i < j) and Ay,

such that
Dyoy(n; f) = A f (n)d(n)
L I\ [k |
F 2 (m)< ;m)f ) ) () (23)
m=0 =0 dln
L]
l k ‘
_ 2 4 (_1)m <m) (2]4__77;) eiim zfl+k 21( )ZfQZ(d),
m=0 j=1 i=1 dn
where
. l [ymet / | Bt | (22j_1)32j k+m
k’l_%(_ ) <m) ; f(?y’—l)
ok+m+1 _q
i 22 ") e B 21

Proof. We only need to show (24) to complete the proof of Theorem 10. We set

Lk+m+1j

l
e 2% _1)By, [k +m
An = 2 (1) 1(m)‘]'“’"“ = 30 J = (23—1)
m=0 j=1

From the identity = (H”i‘) = k+i+1 (k“;;H) we have

| Bt | I
2 . +m+1
Jen = ———— 2% — 1) By; :
b m+ 1 ; ( ) QJ( 2] )



Since Byji1 = 01if 7 > 1 and By = —5, we have

g E4+m+1
T = (27 —1) 1.
» /<;+m—i—1 Z ( j >+

Taking y = 5 and y = 1 in (18), we get

1 " /n " /n
2"B, [ = | = 27 ) B; and B, = <_)B~,
(2)-22())» > (5)%

respectively. Hence we have

2B, (%) - B, = Ano (27— 1) (?) B;.

B,(mz) =m"! B, (x + i) :

m

<
I
=)

See [1, p. 275]. Taking x = 0 and m = 2 in (27), we obtain
1
"B, (§> —B,=—(2"-1)B,.
Then we have, from (26) and the above,

@B =Y (2]'—1)3](77).

Substituting this relation in (25), we have

2
Jom = —————(2Fm+L _ 1B, 1.
k, /{:+m+1( ) k+m+1 T
Hence we have
!
2k+m+1 —1
Ap =2 Z < >m3k+m+1-

From (23), we obtain the following corollary.
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Corollary 11. For every positive integer k, there are constants cg,cp_1,...,co such that

Dyo(n; f) = cxd(n) f*(n +Zc_Jf2’f 5(n) > f7(d). (28)

dln

From (8) and (28), we obtain the following corollary.

Corollary 12. For every positive integer k and m (> 2), there are constants co,cq, . .., Ck,
<5 Clp| 2] QS N Corollary 11 and c,(le) = -3, cl(g) = m("Z_S), clgn;), e c,(gr[)mJ as in Theorem
’ d L2
4 such that

L%
1 m m
Dy jrm(n; [) = o5 Ck + Z C;(g,p)Cker d(n) f25™ (n)

k
+ % Z Ck,jf2k+m72j<n) Z f2j (d)
j=1 din

m

15 k+p

- ch ” ch+p P2y N ().

dln

Example 13. Corollaries 11 and 12 give us

Dia(; ) = 5dln) () = 3 f2(d)

g
Daa(ns ) = 3d00)(n) = 5 DM
Dg,l(n;f):—%d(n)f )+ 2 ;fz U
Daa(ns ) = 30} n) — 2f%(n ML +;f4<d>
D4,1<n;f>=—§d<n>f5 )+ 2 DML /() 2
Dyaln; f) = 7dm) ()~ f(n) R 3/ )
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3 Applications

The second author [2, p. 330] showed an asymptotic formula for > _ D;(n;log)

n<x

1 1
Z Dy 1(n;log) = 6$10g3 T — §xlog2 x+ (1 —2A))zlogz

n<x
4 (24, — 445 — 1)z + O, (:c%+f) (29)
for x > 2 and all ¢ > 0. Here the constants A; and A, are coefficients of the Laurent

expansion of the Riemann zeta-function ((s) in the neighbourhood s = 1:

C(S):S_Ll+Ao+Al(s—1)—|—A2(5—1)2+A3(3—1)3+....

We use (7), (29) and Abel’s identity [1, Thm. 4.2, p. 77] to obtain

1 1
Z Dy 1(n;log) = T log" z — 3% log® z + (14 A))zlog’

n<x

—2(1+ Ag)zlogz + 2(1 + Ag)z + O, (x%“) .

Furthermore, a generalization of (29) for the partial sums of Dy ;(n;log) for positive
integers k was considered by the second author [2, Thm. 1.2, p. 326], who demonstrated
that there exists a polynomial Py, q of degree 2k + 1 such that

Z Dy (n;1og) = xPayy1(log ) + Oy (1:%“) (30)

n<x

for every € > 0. Applying Theorem 4 and the above formula (30), we have the following
theorem.

Theorem 14. There exists a polynomial Usgypmy1 of degree 2k +m + 1 such that

Z Dy, jym(n;log) = xUskrm1(log ) + Ok e (x%“)

n<x

form =2,3,... and every ¢ > 0.
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