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Abstract

The Hosoya polynomial triangle is a triangular arrangement of polynomials where
each entry is a product of two polynomials. The geometry of this triangle is a good
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tool to study the algebraic properties of polynomial products. In particular, we find
closed formulas for the alternating sum of products of polynomials such as Fibonacci
polynomials, Chebyshev polynomials, Morgan-Voyce polynomials, Lucas polynomials,
Pell polynomials, Fermat polynomials, Jacobsthal polynomials, and other familiar se-
quences of polynomials.

1 Introduction

The generalized Fibonacci polynomial is a recursive sequence that generalizes the Fibonacci
numbers. The Hosoya triangle [6, 11, 12] consists of a triangular array of numbers where each
of its entries is a product of two Fibonacci numbers (see Table 5). If in this triangle instead
of Fibonacci numbers we put generalized Fibonacci polynomials, then we obtain the Hosoya
polynomial triangle (see Table 3). The new triangle provides a good geometry to study
algebraic and combinatorial properties of products of recursive sequences of polynomials.
Here we use the Hosoya polynomial triangle to analyze the behavior of alternating sums of
products of generalized Fibonacci polynomials. In particular, we analyze alternating sums
of products of Fibonacci, Lucas, and other well-known sequences of polynomials.

Some known examples of generalized Fibonacci polynomials are the Fibonacci polyno-
mials, Chebyshev polynomials, Morgan-Voyce polynomials, Lucas polynomials, Pell poly-
nomials, Jacobsthal polynomials, and Fermat polynomials. Since the entries of the Hosoya
polynomial triangle are products of two generalized Fibonacci polynomials, the triangle varies
depending on the type of polynomials that its entries have (see Tables 2, 3, and 4 ). All
these polynomials also have representations using Binet formulas.

In this paper we find two closed formulas for the alternating sum of the entries in the
nth row of the Hosoya polynomial triangle. There are two Binet formulas for generalized
Fibonacci polynomials, depending on the Binet representation of each polynomial we obtain
a formula for its alternating sum. For instance, if we consider that the entries of the nth row
of the Hosoya polynomial triangle to be products of Fibonacci numbers (see Table 5), then

FnF1 − Fn−1F2 + Fn−1F2 − · · ·+ F1Fn = Fn+1.

Evaluating the alternating sums found here, at integers, we obtain several well-known
sequences (see Table 7). Those sequences can be found, for example, in Sloane [16].

2 Preliminaries and examples

In this section we give some examples, introduce notation, and some definitions that are
going to be used throughout the paper. Some of them are well-known; however we prefer to
restate them here as it will avoid ambiguities.
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2.1 Generalized Fibonacci polynomials and generalized Hosoya

polynomials

In the literature there are several definitions of generalized Fibonacci polynomials. However,
the definition that we introduce here is simpler and covers other definitions. The generalized
Fibonacci polynomial sequence is defined by the recurrence relation

G0(x) = p0(x), G1(x) = p1(x), and Gn(x) = d(x)Gn−1(x) + g(x)Gn−2(x) for n ≥ 2 (1)

where p0(x), p1(x), d(x), and g(x) are polynomials in Z[x].
For example, if we take p0(x) = 1, p1(x) = x, d(x) = x, and g(x) = 1 we obtain the

regular Fibonacci polynomial sequence. That is, the Fibonacci polynomial sequence Fn(x),
is defined by the recurrence relation

F0(x) = 1, F1(x) = x, and Fn = xFn−1(x) + Fn−2(x) for n ≥ 2.

Letting x = 1 and choosing the correct values for p0(x), p1(x), d(x), and g(x), the
generalized Fibonacci polynomial sequence gives rise to three classical numerical sequences,
the Fibonacci sequence, the Lucas sequence, and the generalized Fibonacci sequence.

In Table 1 there are more familiar examples of generalized Fibonacci polynomials (see
[9, 10, 12]). Hoggatt and Bicknell-Johnson [7] show that Schechter polynomials are another
example of generalized Fibonacci polynomials.

We now give a formal definition of some of those polynomials. The Chebyshev polynomials
Tn(x) of the first kind are a set of orthogonal polynomials defined as the solutions to the
Chebyshev differential equations. This polynomial can be defined as the contour integral
where the contour encloses the origin and is traversed in a counterclockwise direction,

Tn(x) =
1

4πi

∮

(1− t2)t−n−1

1− 2tz + t2
dt.

The Chebyshev polynomials of the first kind satisfy the recurrence relation given in the
generalized Fibonacci polynomial sequence. Indeed,

T0(x) = 1, T1(x) = x, and Tn(x) = 2xTn−1(x)− Tn−2(x) for n ≥ 2.

For instance,

T2(x) = 2x2 − 1; T3(x) = 4x3 − 3x; T4(x) = 8x4 − 8x2 + 1; T5(x) = 16x5 − 20x3 + 5x.

Morgan-Voyce [14] introduced two type of polynomial sequences. Here we use one of
them and we also use a generalized version of the Morgan-Voyce polynomials given by André-
Jeannin [2, 3, 4]. We note that Morgan-Voyce polynomials are well known in the study of
electrical networks ([12, pp. 480–495] and [13, 14, 15]). The Morgan-Voyce polynomials are
defined recursively as

Bn(x) = (x+ 2)Bn−1(x)− Bn−2(x)
Cn(x) = (x+ 2)Cn−1(x)− Cn−2(x)
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for n ≥ 2, where B0(x) = 1, C0(x) = 2, B1(x) = C1(x) = x+ 2. For example,

B2(x) = x2 + 4x+ 3; B3(x) = x3 + 6x2 + 10x+ 4; B4(x) = x4 + 8x3 + 21x2 + 20x+ 5,

C2(x) = x2 + 4x+ 2; C3(x) = x3 + 6x2 + 9x+ 2; C4(x) = x4 + 8x3 + 20x2 + 16x+ 2.

Polynomial Initial value Initial value Recursive Formula
G0(x) = p0(x) G1(x) = p1(x) Gn(x) = d(x)Gn−1(x) + g(x)Gn−2(x)

Fibonacci 1 x Fn(x) = xFn−1(x) + Fn−2(x)
Lucas 2 x Dn(x) = xDn−1(x) +Dn−2(x)
Pell 1 2x Pn(x) = 2xPn−1(x) + Pn−2(x)
Pell-Lucas 2 2x Qn(x) = 2xQn−1(x) +Qn−2(x)
Fermat 1 3x Φn(x) = 3xΦn−1(x)− 2Φn−2(x)
Fermat-Lucas 2 3x ϑn(x) = 3xϑn−1(x)− 2ϑn−2(x)
Chebyshev first kind 1 x Tn(x) = 2xTn−1(x)− Tn−2(x)
Chebyshev second kind 1 2x Un(x) = 2xUn−1(x)− Un−2(x)
Jacobsthal 1 1 Jn(x) = Jn−1(x) + 2xJn−2(x)
Jacobsthal-Lucas 2 1 jn(x) = jn−1(x) + 2xjn−2(x)
Morgan-Voyce 1 x+ 2 Bn(x) = (x+ 2)Bn−1(x)−Bn−2(x)
Morgan-Voyce 2 x+ 2 Cn(x) = (x+ 2)Cn−1(x)− Cn−2(x)

Table 1: Recurrence relation of some generalized Fibonacci polynomials.

2.2 Hosoya polynomials and the Hosoya polynomial triangle

We now give a precise definition of both the Hosoya polynomial sequence and the Hosoya
polynomial triangle. The Hosoya polynomial sequence {H(r, k)}r,k≥0 is defined using the
double recursion

H(r, k) = δ(x)H(r − 1, k) + γ(x)H(r − 2, k)

and
H(r, k) = δ(x)H(r − 1, k − 1) + γ(x)H(r − 2, k − 2)

with initial conditions

H(0, 0) = p0(x)
2; H(1, 0) = p0(x)p1(x); H(1, 1) = p0(x)p1(x); H(2, 1) = p1(x)

2,

where r > 1 and 0 ≤ k ≤ r − 1, and δ(x), γ(x), p0(x), and p1(x) are polynomials in Z[x].
This sequence gives rise to the Hosoya polynomial triangle, where the entry in position k
(taken from left to right) of the rth row is equal to H(r, k) (see Table 2).

Proposition 1 is a generalization of [12, (15.4), p. 188] and [5, Proposition 1]. The proof
of Proposition 1 has some similarities to the proof of [5, Proposition 1] which was done
for integers. In Proposition 1 we prove that Table 2 is equal to Table 3. Here it is worth
mentioning that in Table 3, for brevity, we use the notation Gk instead of Gk(x). We are
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H(0, 0)
H(1, 0) H(1, 1)

H(2, 0) H(2, 1) H(2, 2)
H(3, 0) H(3, 1) H(3, 2) H(3, 3)

H(4, 0) H(4, 1) H(4, 2) H(4, 3) H(4, 4)
H(5, 0) H(5, 1) H(5, 2) H(5, 3) H(5, 4) H(5, 5)

Table 2: Hosoya polynomial triangle.

G0 G0

G0 G1 G1 G0

G0 G2 G1 G1 G2G0

G0G3 G1 G2 G2 G1 G3G0

G0 G4 G1 G3 G2 G2 G3G1 G4G0

Table 3: H(r, k) = Gk(x)Gr−k(x).

however interested in particular cases of Proposition 1 which we state as Corollaries 2, 3,
and 4.

In this paper we are interested in the relationship between the points of the Hosoya
polynomial triangle and the products of generalized Fibonacci polynomials. To establish
this relation we need that δ(x) = d(x) and γ(x) = g(x) where d(x) and g(x) are polynomials
as defined in (1) and δ(x) and γ(x) are polynomials as defined in the Hosoya polynomial
sequence. So, for the rest of the paper we assume that δ(x) = d(x) and γ(x) = g(x).

Proposition 1. H(r, k) = Gk(x)Gr−k(x).

Proof. We prove this proposition using the method of mathematical induction. Let E(k) be
the statement that H(r, k) = Gk(x)Gr−k(x) for k ∈ Z≥0 and some fixed r ≥ k.

In order to prove the basis step we replace the entries of the generalized Hosoya triangle
with generalized Fibonacci polynomials in the proof of [5, Proposition 1] to obtain H(r, 0) =
p0(x)Gr(x) and H(r, 1) = p1(x)Gr−1(x) for some fixed value of r. Note that here p0(x) is the
polynomial G0(x) and p1(x) is the polynomial G1(x) defined in the generalized Fibonacci
polynomials and therefore the basis step is proved.

Now for the inductive step, we assume that the statements E(k − 1) and E(k) are true
for k ≥ 2 and prove that E(k + 1) is true. Let r be a non-negative integer such that r ≥ k,
since E(k − 1) and E(k) are true, we can write,

H(r − 2, k − 1) = Gk−1(x)Gr−k−1(x) and H(r − 1, k) = Gk(x)Gr−k−1(x).

This and the recurrence relation H(r, k + 1) = δ(x)H(r − 1, k) + γ(x)H(r − 2, k − 1) imply
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that

H(r, k + 1) = δ(x)Gk(x)Gr−k−1(x) + γ(x)Gk−1(x)Gr−k−1(x)

= Gr−k−1(x)(δ(x)Gk(x) + γ(x)Gk−1(x))

= Gr−k−1(x)Gk+1(x).

Thus, E(k + 1) is true. This proves the proposition.

We prove Corollary 2, the proofs of Corollaries 3 and 4 are similar and we omit them.
The notation used in Corollaries 2, 3, and 4 are defined in Table 1. We recall that δ(x) and
γ(x) represent the polynomials used to define H(r, k), and p0(x) and p1(x) represent the
polynomials used to define Gn(x).

Corollary 2. If p0(x) = 1 and p1(x) = δ(x), then for r, k ≥ 0,

H(r, k) =































Fk(x)Fr−k(x), if γ(x) = 1 and p1(x) = x;

Uk(x)Ur−k(x), if γ(x) = −1 and p1(x) = 2x;

Bk(x)Br−k(x), if γ(x) = −1 and p1(x) = x+ 2;

Pk(x)Pr−k(x), if γ(x) = 1 and p1(x) = 2x;

Jk(x)Jr−k(x), if γ(x) = 2x and p1(x) = 1.

Proof. We prove the corollary only for the first case; the proof of other cases are similar and
we omit their proofs.

Suppose that p0(x) = 1, p1(x) = δ(x) = x, and γ(x) = 1. We show that H(r, k) =
Fk(x)Fr−k(x). If Gn(x) = Fn(x), then this along with the initial conditions given above in
the proof of Proposition 1 imply that H(r, k) = Fk(x)Fr−k(x).

Corollary 3. If p0(x) = 2 and p1(x) = δ(x), then for r, k ≥ 0,

H(r, k) =



















Qk(x)Qr−k(x), if γ(x) = 1 and p1(x) = 2x;

Ck(x)Cr−k(x), if γ(x) = −1 and p1(x) = x+ 2;

Dk(x)Dr−k(x), if γ(x) = 1 and p1(x) = x;

jk(x)jr−k(x), if γ(x) = 2x and p1(x) = 1.

Corollary 4. If r, k ≥ 0, then

H(r, k) =











Φk(x)Φr−k(x), if p0(x) = γ(x) + 3 = 1 and 3δ(x) = p1(x) = 3x;

Tk(x)Tr−k(x), if p0(x) = −γ(x) = 1 and δ(x) = 2p1(x) = 2x;

ϑk(x)ϑr−k(x), if p0(x) = −γ(x) = 2 and 3δ(x) = p1(x) = 3x.

As a consequence of the corollaries above, we obtain a Hosoya polynomial triangle for
each of the specific polynomials mentioned in Table 1. For example, using the first result
of Corollary 2 and Proposition 1 we obtain the Hosoya polynomial triangle where the en-
try H(r, k) is equal to Fk(x)Fr−k(x) (see Table 4). Similarly, we can obtain the Hosoya
polynomial triangles with entries H(r, k) as described in Corollaries 2, 3, and 4.
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1
x x

x
2 + 1 x

2
x
2 + 1

x
3 + 2x x

3 + x x
3 + x x

3 + 2x
x
4 + 3x2 + 1 x(x3 + 2x) (x2 + 1)2 x(x3 + 2x) x

4 + 3x2 + 1

Table 4: The Hosoya polynomial triangle where H(r, k) = Fk(x)Fr−k(x).

3 Alternating sum of points in a row of the Hosoya

polynomial triangle

We begin this section by presenting some numerical examples of alternating sums. We follow
this up with a discussion on Binet formulas which play an important role in the proof of the
main results of this paper. We finally state and prove the main results at the end of this
section.

3.1 Examples

If we set x = 1 in Table 4, then we obtain the regular Hosoya triangle, see Table 5. Note that
the alternating sum of all points in an odd row of this triangle is zero, due to the symmetry
of the triangle. However, the alternating sum of all points in an even row does not satisfy
this property. For instance, if we take the alternating sum of all points in the second, fourth,
and sixth row of Table 5, the results are F3, F5, and F7, respectively, (see the following
example).

2− 1 + 2 = 3 = F3; 5− 3 + 4− 3 + 5 = 8 = F5; 13− 8 + 10− 9 + 10− 8 + 13 = 21 = F7.

From this example and Table 5 we can see that

2t
∑

i=0

(−1)iH(2t, i) =
2t
∑

i=0

(−1)iFi · F2t−i = F2t+1.

We now give two examples that generalize this fact to polynomials. If we take H(r, k) =
Fk(x)Fr−k(x) then the alternating sum of the terms in an even row of the Hosoya polynomial
triangle is the quotient of two Fibonacci polynomials. The following is the alternating sum
of all points on the fourth row of Table 4.

4
∑

i=0

(−1)iH(4, i) =
4
∑

i=0

(−1)iFi(x) · F4−i(x)

= (x4 + 3x2 + 1)− (x4 + 2x2) + (x2 + 1)2 − (x4 + 2x2) + (x4 + 3x2 + 1)
= x4 + 4x2 + 3

=
F5(x)

F1(x)
.
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1
1 1

2 1 2
3 2 2 3

5 3 4 3 5
8 5 6 6 5 8

13 8 10 9 10 8 13

Table 5: The Hosoya triangle.

If we take H(r, k) = Bk(x)Br−k(x), then we obtain

4
∑

i=0

(−1)iH(4, i) =
∑4

i=0(−1)iBi(x) ·B4−i(x)

= x4 + 8x3 + 20x2 + 16x+ 5

=
B5(x)

B1(x)
.

Those examples will be stated in Corollary 8. Note that this property does not hold for
every choice of H(r, k). For example, if we take H(r, k) = Tk(x)Tr−k(x), then it is easy to
see that

∑2
i=0(−1)iTi(x) · T2t−i(x) 6= T3(x)/T1(x). We analyze this case in Corollary 10.

3.2 Binet formulas

A generalized Fibonacci polynomial which satisfies the Binet formula (2) is said to be of first
type and it is of second type if it satisfies the Binet formula (3). Horadam [8] and André-
Jeannin [1] have studied these polynomials in detail. The following are the Binet formulas
mentioned above,

Ln(x) =
an(x) + bn(x)

α
, (2)

Rn(x) =
an+1(x)− bn+1(x)

a(x)− b(x)
, (3)

where a(x) + b(x) = d(x) and a(x)b(x) = −g(x). If d2(x) + 4g(x) ≥ 0, then we have
a(x) − b(x) =

√

d2(x) + 4g(x) where d(x) and g(x) are the polynomials defined on the
generalized Fibonacci polynomials.

The sequence of polynomials that have Binet representations Rn(x) or Ln(x) depend only
on d(x) and g(x) defined on the generalized Fibonacci polynomials. We say that a generalized
Fibonacci sequence of first (second) type is equivalent to a sequence of the second (first) type,
if their recursive sequences are determined by the same polynomials d(x) and g(x). Notice
that two equivalent polynomials have the same a(x) and b(x) in their Binet representations.
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For example, the Lucas polynomial is of first type, whereas the Fibonacci polynomial is of
second type. Lucas and Fibonacci polynomials are equivalent because d(x) = x and g(x) = 1
(see Table 1). Note that in their Binet representations they both have a(x) = (x+

√
x2 + 4)/2

and b(x) = (x −
√
x2 + 4)/2. We use the results in [1] and [8] to classify all polynomials in

Table 1 as pairs of equivalent polynomials (see Table 6). The leftmost polynomials in Table
6 are of the first type their equivalent polynomials are in the third column on the same line.
In the last two columns of Table 6 we can see the a(x) and b(x) that the pairs of equivalent
polynomials share. It is easy to obtain the characteristic equations of the sequences given in
Table 1, and the roots of the equations are a(x) and b(x).

Polynomial Ln(x) Polynomial of Rn(x) a(x) b(x)
First type Second type

Lucas Dn(x) Fibonacci Fn(x) (x+
√
x2 + 4)/2 (x−

√
x2 + 4)/2

Pell-Lucas Qn(x) Pell Pn(x) x+
√
x2 + 1 x−

√
x2 + 1

Fermat-Lucas ϑn(x) Fermat Φn(x) (3x+
√
9x2 − 8)/2 (3x−

√
9x2 − 8)/2

Chebyshev first kind Tn(x) Chebyshev second kind Un(x) x+
√
x2 − 1 x−

√
x2 − 1

Jacobsthal-Lucas jn(x) Jacobsthal Jn(x) (1 +
√
1 + 8x)/2 (1−

√
1 + 8x)/2

Morgan-Voyce Cn(x) Morgan-Voyce Bn(x) (x+ 2 +
√
x2 + 4x)/2 (x+ 2−

√
x2 + 4x)/2

Table 6: Rn(x) equivalent to Ln(x).

3.3 Main results

Lemma 5. The equivalent sequence of a generalized Fibonacci polynomial sequence always
exists.

Proof. Without loss of generality we suppose that Gn(x) is a generalized Fibonacci polyno-
mial sequence of the first type. From the Binet formula (2) we know that there are a(x) and
b(x) such that a(x) + b(x) = d(x), a(x)b(x) = −g(x), and when d2(x) + 4g(x) ≥ 0, we have
a(x)− b(x) =

√

d2(x) + 4g(x). It is easy to see that a(x) and b(x) give rise to a polynomial
of the second type.

Lemma 6. If Gk(x) is a generalized Fibonacci polynomial that satisfies the Binet formula
given in (3), then

∞
∑

k=0

Gk(x)t
k =

1

(1− a(x)t)(1− b(x)t)
.

Proof. Let f(t, x) be
∑∞

k=0 Gk(x)t
k. Since the sequence Gn(x) satisfies the Binet formula

given in (3), Gn(x) = [an+1(x)− bn+1(x)] / [a(x)− b(x)]. Therefore,

f(t, x) =
∞
∑

k=0

ak+1(x)− bk+1(x)

a(x)− b(x)
tk. (4)
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It is known that
∑∞

k=0 αt
k = α/(1− t). This and the functions a(x) and b(x), imply that

∞
∑

k=0

a(x) (a(x)t)k =
a(x)

1− a(x)t
, and

∞
∑

k=0

b(x) (b(x)t)k =
b(x)

1− b(x)t
.

Therefore, these two generating functions, and (4) imply that

f(t, x) =
1

a(x)− b(x)

∞
∑

k=0

(

ak+1(x)− bk+1(x)
)

tk =
1

a(x)− b(x)

(

a(x)

1− a(x)t
− b(x)

1− b(x)t

)

.

So, simplifying we obtain that f(t, x) = 1/ [(1− a(x)t)(1− b(x)t)] .

Theorem 7. If Gn(x) is a generalized Fibonacci polynomial that satisfies the Binet formula
given in (3), then

r
∑

k=0

(−1)kH(r, k) =

{

Gr+1(x)/G1(x), if r is even;

0, if r is odd.

Proof. If r is odd, by symmetry of the Hosoya polynomial triangle, it is easy to see that
∑r

k=0(−1)kGk(x)Gr−k(x) = 0. To prove the case where r is even, we use generating functions.
Let f(t, x) be

∑∞

k=0 Gk(x)t
k. Since Gk(x) satisfies the Binet formula given in (3), by Lemma

6 we have that f(t, x) is equal to 1/ [(1− a(x)t)(1− b(x)t)]. Therefore,

f(t, x)− f(−t, x) =
1

(1− a(x)t)(1− b(x)t)
− 1

(1 + a(x)t)(1 + b(x)t)

=
2t(a(x) + b(x))

(1− a(x)t)(1− b(x)t)(1 + a(x)t)(1 + b(x)t)
.

Simplifying we have that

f(t, x)− f(−t, x) = 2(a(x) + b(x))tf(t, x)f(−t, x)

=
2(a2(x)− b2(x))

a(x)− b(x)
tf(t, x)f(−t, x)

= 2G1(x)tf(t, x)f(−t, x)

= 2G1(x)t

(

∞
∑

k=0

Gk(x)t
k

)(

∞
∑

k=0

Gk(x)(−t)k

)

.

Thus,

f(t, x)− f(−t, x) = 2G1(x)
∞
∑

r=0

(

r
∑

k=0

(−1)r−kGk(x)Gr−k(x)

)

tr+1. (5)
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We note that f(t, x)− f(−t, x) is also equal to

∞
∑

j=0

Gj(x)t
j −

∞
∑

j=0

Gj(x)(−t)j =
∞
∑

j=0

(1− (−1)j)Gj(x)t
j = 2

∞
∑

j=0

G2j+1(x)t
2j+1.

From the right side of this last equality and from the right side of (5) we have that

∞
∑

r=0

2G1(x)

(

r
∑

k=0

(−1)r−kGk(x)Gr−k(x)

)

tr+1 =
∞
∑

j=0

2G2j+1(x)t
2j+1.

It is known that two generating functions are equal if their corresponding coefficients of ti

are equal for all i. We are only interested in the cases when r is even. So, we analyze the
case in which r + 1 = 2j + 1 in the last equality above. Thus, if r + 1 = 2j + 1, then

2G1(x)
r
∑

k=0

(−1)r−kGk(x)Gr−k(x) = 2G2j+1(x),

simplifying,
r
∑

k=0

(−1)r−kGk(x)Gr−k(x) =
Gr+1(x)

G1(x)
.

Since H(r, k) = Gk(x)Gr−k(x), this completes the proof of the theorem.

The notation used in Corollaries 8 and 10 are defined in Tables 1 and 6.

Corollary 8. If t is a positive integer, then
∑2t+1

i=0 (−1)iH(2t+ 1, i) = 0, and

2t
∑

i=0

(−1)iH(2t, i) =







































F2t+1(x)/F1(x), if H(2t, i) = Fi(x)F2t−i(x);

B2t+1(x)/B1(x), if H(2t, i) = Bi(x)B2t−i(x);

P2t+1(x)/P1(x), if H(2t, i) = Pi(x)P2t−i(x);

J2t+1(x)/J1(x), if H(2t, i) = Ji(x)J2t−i(x);

Φ2t+1(x)/Φ1(x), if H(2t, i) = Φi(x)Φ2t−i(x);

U2t+1(x)/U1(x), if H(2t, i) = Ui(x)U2t−i(x).

Proof. We prove the corollary only for the case in which H(2t, i) = Fi(x)F2t−i(x), the proof
of the other five cases are similar. Therefore, omit their proofs.

From Table 6 we know that Fn(x) is of second type, therefore it satisfies (3) where
a(x) = (x+

√
x2 + 4)/2 and b(x) = (x−

√
x2 + 4)/2. This and Theorem 7 withGk(x) = Fk(x)

imply that
2t
∑

i=0

(−1)iH(2t, i) =
F2t+1(x)

F1(x)
.

This proves the corollary.
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Theorem 9. If Gn(x) is a generalized Fibonacci polynomial that satisfies the Binet formula
(2), then for r ≥ 2

r
∑

k=0

(−1)kH(r, k) =







(G0(x))
2Rr+1(x)− (G1(x))

2Rr−1(x)

R1(x)
, if r is even;

0; if r is odd.

where Rn(x) is equivalent to Gn(x).

Proof. If r is odd, by symmetry of the Hosoya polynomial triangle, it is easy to see that
∑r

k=0(−1)kGk(x)Gr−k(x) = 0. To prove the case in which r is even, we use generating
functions. We suppose that Gn(x) is a sequence of generalized Fibonacci polynomials which
satisfy Binet formula (2) and let Rn(x) be its equivalent sequence of polynomials which
satisfy Binet formula (3). Let g(t, x) be

∑∞

k=0 Gk(x)t
k and let f(t, x) be

∑∞

k=0 Rk(x)t
k.

Since Rn(x) satisfies the Binet formula given in (3), by Lemma 6 we have that f(t, x) is
equal to 1/ [(1− a(x)t)(1− b(x)t)] .

Since Gn(x) satisfies (2), taking α = 1 we obtain

g(t, x) =
∞
∑

k=0

(a(x)k + b(x)k)tk

=
∞
∑

k=0

(a(x)t)k +
∞
∑

k=0

(b(x)t)k

=
1

1− a(x)t
+

1

1− b(x)t

=
2− (a(x) + b(x))t

(1− a(x)t)(1− b(x)t)
.

Since f(t, x) = 1/ [(1− a(x)t)(1− b(x)t)], we have that g(t, x) = (2− (a(x) + b(x))t) f(t, x).
This implies that

g(t, x)g(−t, x) =
(

4− (a(x) + b(x))2t2
)

f(t, x)f(−t, x).

This, the definition of g(t, x), and the definition of f(t, x), imply that

∞
∑

r=0

Gr(x)t
r

∞
∑

r=0

Gr(x)(−t)r =
(

4− (a(x) + b(x))2t2
)

∞
∑

r=0

Rr(x)t
r

∞
∑

r=0

Rr(x)(−t)r.

Thus,

∞
∑

r=0

(

r
∑

k=0

(−1)kGk(x)Gr−k(x)

)

tr = (4− (a(x) + b(x))2t2)
∞
∑

l=0

(

l
∑

k=0

(−1)kRk(x)Rl−k(x)

)

tl

12



for l even. Since Rk(x) satisfies that Binet formula (3), Theorem 7 implies

∞
∑

r=0

(

r
∑

k=0

(−1)kGk(x)Gr−k(x)

)

tr = (4− (a(x) + b(x))2t2)
∞
∑

j=0

R2j+1(x)

R1(x)
t2j

=
∞
∑

j=0

4R2j+1(x)

R1(x)
t2j −

∞
∑

j=0

(a(x) + b(x))2
R2j+1(x)

R1(x)
t2j+2

= 4 +
∞
∑

j=1

(

4R2j+1(x)− (a(x) + b(x))2R2j−1(x)

R1(x)

)

t2j.

Since G1(x) = a(x) + b(x) we have that

∞
∑

r=0

(

r
∑

k=0

(−1)kGk(x)Gr−k(x)

)

tr = 4t0 +
∞
∑

j=1

(

4R2j+1(x)− (G1(x))
2R2j−1(x)

R1(x)

)

t2j.

It is known that two generating functions are equal if the corresponding coefficients of ti

are equal for all i. We are only interested in even values of r. Therefore, we analyze the case
when r = 2j in the last equality above. If r = 2j with j > 0 and G0(x) = 2, then

r
∑

k=0

(−1)kGk(x)Gr−k(x) =
(G0(x))

2Rr+1(x)− (G1(x))
2Rr−1(x)

R1(x)
.

If α 6= 1, we let G
′

k(x) be (ak(x) + bk(x))/α, we recall from the previous analysis that
Gk(x) = ak(x) + bk(x). Note that the equivalent polynomial Rk(x) of Gk(x) is the same for
G

′

k(x), because they contain the same ak(x) and bk(x). Therefore,

r
∑

k=0

(−1)kG
′

k(x)G
′

r−k(x) =
1

α2

r
∑

k=0

(−1)kGk(x)Gr−k(x)

=
1

α2

(G0(x))
2Rr+1(x)− (G1(x))

2Rr−1(x)

R1(x)

=
(G0(x)/α)

2Rr+1(x)− (G1(x)/α)
2Rr−1(x)

R1(x)

=
(G

′

0(x))
2Rr+1(x)− (G

′

1(x))
2Rr−1(x)

R1(x)
.

This proves the theorem.
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Corollary 10. If t is a positive integer and r = 2t, then
∑r+1

i=0 (−1)iH(r + 1, i) = 0, and

r
∑

i=0

(−1)iH(r, i) =







































(Ur+1(x)− x2Ur−1(x))/U1(x), if H(r, i) = Ti(x)Tr−i(x);

(4Fr+1(x)− x2Fr−1(x))/F1(x), if H(r, i) = Di(x)Dr−i(x);

(4Φr+1(x)− 9x2Φr−1(x))/Φ1(x), if H(r, i) = ϑi(x)ϑr−i(x);

(4Pr+1(x)− 4x2Pr−1(x))/P1(x), if H(r, i) = Qi(x)Qr−i(x);

(4Jr+1(x)− Jr−1(x))/J1(x), if H(r, i) = ji(x)jr−i(x);

(4Br+1(x)− (x+ 2)2Br−1(x))/B1(x), if H(r, i) = Ci(x)Cr−i(x).

Proof. We prove the corollary only for the case in which H(r, i) = Ti(x)Tr−i(x); the proof of
the other five cases are similar. Therefore, we omit their proofs.

From Table 6 we know that Tn(x) is of first type and satisfies the Binet formula (2). So,
Gn(x) = Tn(x) and Rn(x) = Un(x). Thus, Tn(x) = ((x +

√
x2 − 1)n + (x −

√
x2 − 1)n)/2.

This and Theorem 9 where H(r, k) = Tk(x)Tr−k(x) imply that

r
∑

k=0

(−1)kH(r, k) =







Ur+1(x)− x2Ur−1(x)

U1(x)
, if r nonzero even;

0, if r is odd.

This proves the corollary.

4 Particular cases and examples

In this section we study some numerical cases of the Hosoya polynomial triangles. We show
that when we evaluate the entries of a Hosoya polynomial triangle at some integer numbers,
the alternating sums found in Section 3 give rise to several well-known sequences published
in The On-Line Encyclopedia of Integer Sequences [16] by different authors.

We define an n-initial Hosoya triangle as the finite triangular arrangement formed by
the first n-rows of the Hosoya triangle. Note that the initial triangle is the equilateral sub-
triangle of any Hosoya triangle that contains the vertex H(0, 0). In Proposition 11 we prove
that the sum of all alternating sums of any initial triangle of the classical Hosoya triangle
(see Table 5) is a closed formula depending on a Fibonacci number. We recall that in this
paper the Fibonacci numbers are

F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, F5 = 8, . . . .

Proposition 11. Let n be a positive integer and t = ⌊n/2⌋+1. If H(r, k)(1) = FkFr−k then

∑

0≤k≤r≤n

(−1)kH(r, k)(1) =
t−1
∑

i=0

(t− i)F2i = F2t − 1.

14



Proof. We prove
∑

0≤k≤r≤n(−1)kH(r, k)(1) = F2n+1 − 1, the other equality is known. From

Corollary 8 we know that
∑2t

i=0(−1)kH(r, k)(1) = F2t+1 and
∑2t+1

i=0 (−1)kH(r, k)(1) = 0.
This implies that

∑

0≤k≤r≤n(−1)kH(r, k) =
∑n

t=0 F2(n−i) = F2n − 1.

We now introduce some notation that are used in Table 7. We define

C(·)(x) =
n
∑

r=0

(−1)kH(r, k)

where (·) depends on the polynomials used in the sequences. For example, CFn(x) is the no-
tation that we use to indicate the first result in Corollary 8. If we evaluate CFn(x) at x = 2 for
n ∈ N we obtain the sequence 1, 6, 35, 204, 1189, 6930 which is in http://oeis.org/A001109

(see Sloane [16]). We use CMn(x) to indicate the second result in Corollary 8. Similarly we
use CPn(x) and CJn(x), to indicate the third and fourth results in Corollary 8, respectively.
In Table 7 we present some known sequences. Thus, the Corollaries 8 and 10 provide another
way to generate sequences. Note that for the case Fermat and Chebyshev in Corollary 8 we
only found the sequences A002450 and A007954, respectively.

CFn(x) Sloane CMn(x) Sloane CPn(x) Sloane CJn(x) Sloane
CFn(1) A001906 CMn(1) A04187 CPn(1) A001109 CJn(1) A002450
CFn(2) A001109 CMn(2) A007655 CPn(2) A049660 CJn(2) A102902
CFn(3) A004190 CMn(3) A097778 CPn(3) A078987 CJn(3) A016153
CFn(4) A049660 CMn(4) A029547 CPn(4) A097316
CFn(5) A097781 CMn(5) A049668 CPn(5) A097725
CFn(6) A078987 CPn(6) A097728
CFn(7) A097836 CPn(7) A097731
CFn(8) A097316 CMn(8) A173205 CPn(8) A097734
CFn(9) A097839 CPn(9) A097737
CFn(10) A097725 CPn(10) A097740

Table 7: Some sequences from Corollary 8 that are in [16].
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