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Abstract

Define the average path length in a connected graph as the sum of the length of the
shortest path between all pairs of nodes, divided by the total number of pairs of nodes.
Letting SN denote the sum of the shortest path lengths between all pairs of nodes in
a complete m-ary tree of depth N , we derive a first-order linear but non-homogeneous
recurrence relation for SN , from which a closed-form expression for SN is obtained.
Using this explicit expression for SN , we show that the average path length within
this graph/network is asymptotic to D − 4

m−1 , where D is the diameter of the m-ary
tree, that is, the longest shortest path. This asymptotic estimate for the average path
length confirms a conjectured asymptotic estimate in the case of complete binary tree.

1 Introduction

A network is a graph G = (E, V ) having no loops, which is also connected in that one
can find a sequence of edges in E, or path, connecting any two pairs of vertices in V .
The study of networks has in recent times blossomed into a new field which has found
applications in such diverse areas as communication engineering and sociology. One focus of
attention in this new discipline area, coined “Network Science” [3], is the problem of designing
networks in an economic way, whereby a sequence of edges a path within the network can
be constructed to connect any two pairs of nodes, while keeping the total number of edges
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used to a minimum. Such highly edge-efficient networks are useful in the area of designing
communication networks, as they help reduce transmission delays. One way to compare the
edge-efficiency of different networks G = (E, V ), is to introduce a new metric [3, p. 74],
known as the edge efficiency of G, and defined by

E(G) = 1−
P̄ (G)

|E|
,

where P̄ (G) is the average path length of G, which is calculated as the sum of the length of
the shortest paths connecting all pairs of nodes in V , divided by the total number of pairs
of nodes in V . (Note if there is more than one shortest path connecting a pair of nodes,
then the length of these paths will still occur once as a summand used in the calculation of
P̄ (G).)

One can view E(G) as a measure of how effectively edges are used within a network to
minimize the average path length. As P̄ (G) ≤ |E| we see that E(G) ranges from 0 when
P̄ (G) = |E|, to approximately 1 when P̄ (G) ∼= 0. The case E(G) = 0 corresponds to a
worst case when the average path length is as large as possible, while if E(G) ∼= 1 then the
average path length is small relative to the number of edges, and so every edge can be seen as
contributing to the edge efficiency of the network. A network in which E(G) approaches 1 as
|E| approaches infinity has been described as being “scalable” [3, p. 74]. To experimentally
demostrate this scalable property of such regular networks as the complete binary trees, T.
Lewis [3, p. 76] developed a breadth-first algorithm for the computation of P̄ (G), for various
increasing depths N of these binary trees. As a consequence of his experimental results, it
was conjectured that for a complete binary tree P̄ (G) ∼ D − 4, as N → ∞, where D is
the diameter of the tree, that is, the longest shortest path corresponding to the value of N .
It should be noted that the diameter is a frequently used characteristic of trees within the
literature [4].

In this paper we shall prove this asymptotic estimate by establishing a more general result,
namely that P̄ (G) ∼ D− 4

m−1
as N → ∞, in the case when G = (E, V ) is a complete m-ary

tree, that is, a rooted tree in which all nodes have exactly m children, with the exception
of the leaf nodes that have no children, and which are all located at the highest depth (see
Figure 1). To achieve this end, we first shall derive a closed-form expression for the sum,
denoted SN , of the shortest path lengths between all pairs of nodes in a complete m-ary tree
of depth N . As a consequence of this expression in (1), it will then be an easy task to show
that P̄ (G) = SN

(|V |
2
)
∼ D − 4

m−1
as N → ∞. It should be noted that the quantity measured

by SN , is also referred to as a Wiener index in the area of computational chemistry, where
graphs such as rooted trees represent the molecular graphs of certain chemical compounds.
Although there is a well-known recursive procedure for the calculation of the Wiener index
of such graphs [1], it has been observed [2] that this general procedure can be cumbersome
to apply for particular families of rooted trees having a regular graph structure, such as the
complete m-ary trees. It is for this reason we have in this paper directly exploited the graph
structure of the m-ary tree, to produce a first-order linear but non-homogeneous recurrence
relation for the calculation of SN .
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2 Main result

To help establish the main result we begin by making two simple observations concerning
the complete m-ary tree. With reference to Figure 1, if the schematic diagram represents a
complete m-ary tree of depth N +1 in which the root node is at depth 1, then note that the
m subtrees whose root nodes are located at depth 2 must also be complete m-ary trees of
depth N . Consequently one should be able to express SN+1 in terms of SN , so establishing
a recurrence relation for the sequence {SN} for N ≥ 2. Secondly observe that as each node,
with the exception of the root node, has a unique parent node located at the previous depth,
there can only be one shortest path connecting any pair of nodes in a complete m-ary tree.
It should be noted that uniqueness of the shortest path is a property enjoyed by all trees.

. . .

Figure 1: An m-ary tree of depth N + 1

We shall also need the following elementary technical lemma.

Lemma 1. For any x ∈ R\{1} and integer N ≥ 1

N
∑

n=1

nxn−1 =
1

(x− 1)2
(NxN+1 −NxN − xN + 1) .

Proof. Differentiate both sides of the identity 1 + x+ x2 + · · · xN = (xN+1 − 1)/(x− 1) with
respect to x.

By exploiting the above simple facts, one can now obtain a closed-form expression for
SN as follows.

Proposition 2. If G = (E, V ) is a complete m-ary tree of depth N ≥ 2, then the sum of

the shortest path lengths between all pairs of nodes in V is given by

SN = m2N

(

N

(m− 1)2
−

m+ 1

(m− 1)3

)

+mN

(

N

(m− 1)2
+

m+ 1

(m− 1)3

)

. (1)

Proof. The argument used to establish (1) will be broken into two parts. In Part 1 we use
the geometry of the complete m-ary tree to derive a first-order linear but non-homogeneous
recurrence relation for SN . Although the process of solving such recurrence relations is
standard a sketch of the details leading towards (1) is outlined in Part 2, for completeness.
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Part 1: Again with reference to Figure 1, observe that the set S of shortest paths connecting
pairs of nodes in a complete m-ary tree of depth N+1, can be partitioned as S = S1∪S2∪S3,
where S1 is the set of shortest paths connecting pairs of nodes located in any one but only one
of the m subtrees of depth N , S2 is the set of shortest paths connecting any node contained
in the m subtrees of depth N to the root of the tree of depth N + 1, and finally S3 is the
set of shortest paths connecting pairs of nodes located in any two separate subtrees of depth
N . Clearly by definition, the sum of the lengths of the elements in S1 must be mSN . If we
denote the sum of the lengths of the elements in S2 and S3 by XN and YN respectively, we
can conclude that

SN+1 = mSN +XN + YN , (2)

for N ≥ 2. We now determine explicit expressions for XN and YN , in terms of m and N .
Considering any one of the m subtrees of depth N in Figure 1, recall from definition that
the total number of nodes found at a depth of n, were 1 ≤ n ≤ N , is mn−1. Now in general
from the geometry of a complete m-ary tree, observe that the length of the shortest path
connecting any node at depth say i, to the root of the tree must be i−1. As there is only one
edge connecting the root of the m subtrees, to the root of the tree of Figure 1, we conclude
that the length of the shortest path connecting a node at a depth n in any subtree, to the
root of the tree is (n − 1) + 1 = n. Consequently the sum of the shortest path lengths
connecting all nodes in any one subtree of depth N , to the root of the tree is

∑

N

n=1 nm
n−1.

Thus by Lemma 1, one concludes after setting x = m that

XN = m

N
∑

n=1

nmn−1 =
m

(m− 1)2
(NmN+1 −NmN −mN + 1) .

To determine YN , we first must show that the sum of the lengths of the shortest paths
connecting any one node of a given subtree, at a depth 1 ≤ n ≤ N , to all nodes located in a
separate subtree of Figure 1, is given by

S(n) = (n+ 1)m0 + (n+ 2)m1 + (n+ 3)m2 + · · ·+ (n+N)mN−1 . (3)

To this end, recall that the length of the shortest path from a node at depth 1 ≤ n ≤ N in
any subtree, to the root of the tree is n. Consequently a shortest path beginning at a node
at depth 1 ≤ n ≤ N in one subtree, to a node at depth 1 ≤ i ≤ N in another subtree, must
first traverse a path of length n from the initial subtree to the root, then a path of length
1 to the root of the other subtree, and finally a path of length i − 1 from this root to the
node at depth 1 ≤ i ≤ N in the second subtree. Thus the length of such a shortest a path
is n + 1 + i − 1 = n + i, and as there are mi−1 nodes in the second subtree at depth i, we
can conclude the sum of these individual shortest path lengths starting at a node at depth
n in one subtree, and terminating at the nodes at depth i in another subtree is (n+ i)mi−1.
Finally by adding the terms (n + i)mi−1 over all depths 1 ≤ i ≤ N in the second subtree,
one arrives at the expression in (3).

Now as there are mn−1 nodes at a depth n in any one subtree of Figure 1, observe that
∑

N

n=1 m
n−1S(n) must represent the total sum of the shortest path lengths connecting pairs
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of nodes located in any two separate subtrees of depth N . Hence by choosing the m subtrees
two at a time, we deduce from definition that YN =

(

m

2

)
∑

N

n=1 m
n−1S(n). To determine YN

explicitly first write S(n) as follows

S(n) =
N
∑

i=1

(n+ i)mi−1 = n
N
∑

i=1

mi−1 +
N
∑

i=1

imi−1 = n
mN − 1

m− 1
+

N
∑

i=1

imi−1 . (4)

Then after substituting the right hand side of (4) into the above expression for YN , one finds
after an application of Lemma 1 that

YN =

(

m

2

) N
∑

n=1

mn−1

(

n

(

mN − 1

m− 1

)

+
N
∑

i=1

imi−1

)

=

(

m

2

)

(

(

mN − 1

m− 1

) N
∑

n=1

nmn−1 +
N
∑

n=1

mn−1

N
∑

i=1

imi−1

)

=

(

m

2

)

(

(

mN − 1

m− 1

) N
∑

n=1

nmn−1 +

(

mN − 1

m− 1

) N
∑

i=1

imi−1

)

= 2

(

m

2

)(

mN − 1

m− 1

) N
∑

n=1

nmn−1

= (mN+1 −m)

(

NmN+1 −NmN −mN + 1

(m− 1)2

)

.

Adding these explicit expressions for XN and YN and substituting the result into (2), pro-
duces the required recurrence relation for SN as follows

SN+1 −mSN =

(

m

m− 1
N −

m

(m− 1)2

)

m2N +
m

(m− 1)2
mN , (5)

for N ≥ 2. The initial condition is clearly given by S2 = m+ 2
(

m

2

)

= m2.

Part 2: As the recurrence relation in (5) is linear, recall that the solution SN must be of the
form SN = AmN + BNmN + (CN + D)m2N , where AmN corresponds to a general homo-
geneous solution of (5), and the constants B,C,D will be chosen so that the terms BNmN

and (CN +D)m2N satisfy (5), with a corresponding right-hand side equal to m

(m−1)2
mN and

( m

m−1
N − m

(m−1)2
)m2N respectively. A standard calculation reveals that B = C = 1

(m−1)2
and

D = − m+1
(m−1)3

and so

SN = AmN +
N

(m− 1)2
mN +

(

N

(m− 1)2
−

m+ 1

(m− 1)3

)

m2N .

Applying the initial condition S2 = m2 one finally deduces that A = m+1
(m−1)3

, which results in

the closed-form expression in (1).
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To state and prove the main result, recall that the diameter D of a network G = (E, V ), is
the length of the longest shortest path connecting two nodes in V . In the case of a complete
m-ary tree of depth N ≥ 2, the diameter must be the length of the path connecting the
left-most leaf node to the right-most leaf node of the tree, and so D = 2(N − 1).

Theorem 3. For a network G = (E, V ) which is a complete m-ary tree, the average path

length P̄ (G) satisfies the following asymptotic estimate

P̄ (G) ∼ D −
4

m− 1
as N → ∞ .

Proof. In a complete m-ary tree of depth N ≥ 2 the total number of nodes is |V | = 1+m+
m2 + · · · +mN−1 = (mN − 1)/(m − 1). Recall the average path length of G = (E, V ) at a
depth N ≥ 2 is given by P̄ (G) = SN

(|V |
2
)
and as

(

|V |
2

)

= O(m2N) we deduce from (1) that

P̄ (G) =
m2N

(

|V |
2

)

(

N

(m− 1)2
−

m+ 1

(m− 1)3

)

+ o(1)

=
2m2N

(mN − 1)2 − (mN − 1)(m− 1)

(

N −
m+ 1

m− 1

)

+ o(1)

∼ 2

(

N − 1−
2

m− 1

)

as N → ∞,

hence P̄ (G) ∼ D − 4
m−1

as N → ∞.

Clearly, by substituting m = 2 into Theorem 3, we arrive at the asymptotic estimate
P̄ (G) ∼ D− 4, when G = (E, V ) is a complete binary tree, as first conjectured by T. Lewis
[3, p. 83].
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