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Abstract

In this note, we provide a bijection between a new collection of words on nonnegative
integers of length n and Dyck paths of length 2n — 2, thus proving that this collection
belongs to the Catalan family. The surprising key step in this bijection is the zeta map
which is an important map in the study of ¢, t-Catalan numbers. Finally we discuss an
alternative approach to this new collection of words using two statistics on planted trees
that turn out to be closely related to the Tutte polynomial on the Catalan matroid.

1 Introduction

Albert, Ruskuc, and Vatter [1] recently introduced the following collection of words on non-
negative integers, and asked on MathOverflow [6] for “a nice bijection between these words
and any family of classical Catalan objects such as Dyck paths or noncrossing partitions”.
For a positive integer n, let £,, denote the set of all words a = (ay,...,a,) of n nonnegative
integers such that

(A1) aj41 > a; —1for 1 <i<n,

(A2) if a; = k > 0 with ¢ minimal, then there exist iy < i < ip such that a;, = a;, =k — 1.
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The first property says that such sequences do not have drops greater than one, while the
second says that the leftmost occurrence of k in a has a £ — 1 somewhere to its left and
somewhere to its right. We refer to these two properties as Property (A). The only word of
length 2 with these properties is

00.

There are 2 words of length 3 given by
000, 010.
For length 4, there are 5 such words,
0000, 0010, 0100, 0101, 0110,
and for length 5 there are 14,

00000, 00010, 00100, 00101, 00110, 01000, 01001,
01010, 01011, 01021, 01100, 01101, 01110, 01210.

Vatter asked in [6] for a bijective proof that this collection of words of length n is counted
by the (n — 1)-st Catalan number Cat,_; = %(2::12). In this note I provide such a bijective
proof, recording my answer given at [6].

Dyck paths are lattice paths from (0,0) to (n,n) that never go below the diagonal x = y.
We encode a Dyck path D as a sequence of n north and n east steps such that every prefix
of D does not contain more east steps than north steps, and denote all Dyck paths of length
2n by D,,. For example, for n = 3, there are 5 Dyck paths of length 6, namely

NNNEEE,NNENEE,NNEENE,NENNEE, NENENE.
Theorem 1. There is an explicit bijection L, — D, _1.

The procedure in the following section yields the explicit bijection proposed in the the-
orem. We start with defining a few statistics on Dyck paths that will be used in this note.
To this end, let D be a Dyck path of length 2n.

e The area sequence areaseq(D) = (ay, ..., a,) is given by a; = i — x; — 1 where z; is the

number of east steps before the ™" north step in D. The 5 Dyck paths above thus get
the 5 area sequences

(0,1,2),(0,1,1),(0,1,0),(0,0,1),(0,0,0).
e The area statistic area(D) is given by the sum of the entries in the area sequence,

e the number of initial rises rises(D) is given by the number of north steps in D before
the first east step.

e the number of returns returns(D) is the number of returns of D to the main diagonal.
In symbols, returns(D) = #{1 < i < n : areaseq(D); = 0}. Finally, a return is called
an inner touch point if it is not the final return to the main diagonal in the point (n,n).
Thus, the number of inner touch points is given by #{i . areaseq(D); = O} — 1.



2 The procedure

For the reader’s convenience, we provided a Sage worksheet implementing each step in the
construction at http://sage.lacim.uqam.ca/home/pub/33/.

Let a = (ay,...,a,) be a sequence of nonnegative integers. It satisfies Property (B) if
(B1) ajr1 <a;+1,
(B2) if a; = k > 0 with ¢ minimal, then there exist i; < i < i3 such that a;, = a;, = k — 1.
Interchanging neighbors that do not satisfy Property (B1) does not interfere with Prop-
erty (A2) = (B2) and thus provides a bijection between sequences with Property (A) and

those with Property (B). For example, there are eight sequences of length 6 satisfying
Property (A) that do not satisfy Property (B1),

001021, 011021,010021,010210,010211,010212,012102, 010221.
Interchanges 0’s and 2’s where necessary then yields

001201,011201, 012001, 012010, 012011, 012012, 012120, 012201.

Next, we say that a = (aq, ..., a,) satisfies Property (C') if
(Cl) a; =0
(C2) ajp1 <a;+1,
(C3) if a; = k > 0 with ¢ minimal, then there exist i < iy such that w;, = k — 1.

Properties (B) and (C') are equivalent since (B2) implies that a; = 0. Together with
(B1) = (C2) this then implies that every a; = k in the sequence a has a k — 1 somewhere to
its left, and we can drop this part of (B2) to obtain (C3).

It is now well known that the map sending a Dyck path D € D, to its area sequence
areaseq(D) is a bijection between D,, and sequences satisfying Properties (C'1) and (C2). We
thus say that a = (a4, ..., a,) satisfies Property (D) if it satisfies Properties (C'1) and (C2),
and call such sequences area sequences.

Since Property (C') is strictly stronger than Property (D), we have reached an embedding
of sequences of length n with Property (A) into Dyck paths of length 2n. Next, we apply
the zeta map ¢ : D, — D, as studied for example in [4, page 50]. This map is defined by
given a sequence a = (ay, ..., a,) satisfying Property (D), it returns a Dyck path as follows:

e Build an intermediate Dyck path (the bounce path) consisting of dy north steps, followed
by d; east steps, followed by dy north steps and ds east steps, and so on, where d; is
the number of ¢ — 1’s within a. For example, given a = (0,1,2,2,2,3,1,2), we build
the path NE NNEE NNNNEEEE NE (this is the dashed path in [4, Figure 3]).
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e Next, the rectangles between two consecutive peaks of the bounce path are filled.
Observe that such the rectangle between the k-th and the (k + 1)-st peak must be
filled by d; east steps and dj,; north steps. In the above example, the rectangle
between the second and the third peak must be filled by 2 east and 4 north steps, the
2 being the number of 1’s in a, and 4 being the number of 2’s. To fill such a rectangle,
scan through the sequence a from left to right, and add east or north steps whenever
you see a k — 1 or k, respectively. So to fill the 2 x 4 rectangle, we look for 1’s and 2’s
in the sequence and see 122212, so this rectangle gets filled with ENNNEN.

e This completes the zeta map, and the path we obtain in the example is then given by
N ENN ENNNEN EEENE E.

This zeta map has obtained quite some attention in the past 10 years in the context of
the (still open) problem to combinatorially understanding the symmetry of the ¢, t-Catalan
numbers. It was constructed for the following two remarkable properties (which do not play
any significant role in the present context):

e It sends the dinv statistic given by the number of pairs k < ¢ with a; —a, € {0,1} to
the area statistic.

e [t sends the area statistic to the bounce statistic given by the sum of the weighted
bounce points ) . id; where the d;’s are the inner touch points of the bounce path as
given in the first step of the definition of the zeta map.

The reason why this map is the key to provide a bijection for the new collection of words
considered in this note is given by the following two further properties, which are both direct
consequences of the definition. Nevertheless, to the best of my knowledge, they have not
been used in the literature before. For D € D,,, we have that

(i) the zeta map sends the number of 0’s in areaseq(D) to the number of north steps before
the first east step in ((D), and

(ii) it sends the number of i’s for which the last occurrence of ¢ in areaseq(D) is left of the
first occurrence of the first ¢ + 1 to the number of inner touch points of {(D).

Observe that (ii) can be reformulated in the way that areaseq(D) = (a4, ..., a,) satisfies
Property (C3) if and only if (D) leaves the diagonal in the very beginning and only returns
in the very end, and nowhere in between. Thus, stripping off the first north and the last east
step from ((D) yields a Dyck path of length 2n — 2, and we finally completed the proposed
bijection.



3 A related bistatistic on planted trees and the Catalan
matroid

A planted tree? is a rooted tree for which all children of a vertex come in a given linear order.
The following gives a well known bijection between planted trees on vertices {0,...,n} and
area sequences of length n. Start with an area sequence a = (ay, ..., a,) and associate with
it a planted tree by saying that the vertex ¢ for ¢+ > 0 lives in generation a;, and the parent
of 7 is the biggest j < ¢ for which a; = a; — 1. Finally, add a unique root in generation —1.
The inverse map is given by clockwise traveling around the planted tree starting from the
root, and recording a north step whenever traveling an edge away from the root, and an east
step when traveling towards the root.

Following the notation in [5], we think of the vertices of such a tree as members of an
asexually reproducing species, and therefore use language like “child”, “parent”, “genera-
tion”, and consider the ordering of the vertices in a given generation as their birth order. A
vertex v is called crucial if v is the youngest member of its generation, all the other members
of that generation are childless while v has children. Observe in particular that for n > 2, the
root is always crucial. The reason for considering crucial vertices is that given a Dyck path
D € D,, with area sequence areaseq(D) = (ay,...,a,) and corresponding tree T', then k > 0
violates Property (C3) for areaseq(D) if and only if the youngest member of generation k— 1
is crucial.

The planted tree corresponding to the sequence a = (0, 1,2,2,2,3,1,2) considered above
is given by

Its only crucial vertices are 0 and 1. The 0 is the root and as such always crucial, while the
crucial vertex in generation 0 corresponds to the fact that all 0’s in (0,1,2,2,2,3,1,2) come
before all 1’s, thus violating (C'3). Moreover, the 5 trees on 4 vertices are given by

2In [5], such trees are called rooted planar trees. 1 use planted trees here since the order of children is not
only given cyclically, but linearly. I thank Christian Krattenthaler for bringing this term to my attention.
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Denote by ¢(p,q,n) the number of planted trees on n vertices with p crucial vertices,
and where the root has ¢ children. For example, among the previous 5 planted trees on 4
vertices, there is one tree each with (p, q) equal to

(3,1),(2,1),(1,2),(2,2),(1,3).
The following properties of the above bijection are straightforward.

Proposition 2. Let T be a planted tree on n+1 vertices and let D € D,, be the corresponding
Dyck path. Then

e the number of children of the root of T equals the number of 0’s in areaseq(D), and

e the number of crucial non-root vertices of T equals the number of indices v for which
all i’s appear before all © + 1’s within the area sequence.

In particular, areaseq(D) satisfies Property (C) if and only 0 is the unique crucial vertex
of T.

Speyer conjectured in [5] that for fixed n, the sum > - c(p, g, n)aPy? equals the Tutte
polynomial of the Catalan matroid as defined by Ardila in [2]. Together with Proposition 2,
one could then deduce that the number of integer sequences of length n satisfying Prop-
erty (A) are counted by > .,c(1,q,n) = > ~oc(p,1,n). Since the latter counts planted
trees where the root has a unique child, it would then follow that such sequences are counted
indeed by the (n — 1)** Catalan number.

In the remainder of this section, we show that the zeta map can as well be used to also
prove this conjecture. We have already seen that

c(l,q,n) = #{a € N" : @ satisfies Property (C) and contains exactly ¢ zeroes}.

Thus, combining the bijection between planted trees and area sequences with the zeta map
yields a bijection between planted trees on n + 1 vertices and Dyck paths of length 2n that
sends

e the number of children of the root to the number of initial north steps, and

e the number of crucial vertices to the number of returns.



This implies the following corollary.

Corollary 3. ¢(p,q,n) can be reinterpreted in terms of Dyck paths as
c(p,q,n) = #{D € D, : returns(D) = p, rises(D) = ¢}.

Moreover, the generating function of ¢(p,q,n) is given by

Z C(p7 q, n)xpyq = Z IretUI‘nS(D)yrises(D)‘

p,q>0 DeD,

In [2], Ardila introduced and studied the Catalan matroid. He showed in [2, Theorem 3.4]
that the right-hand side of the generating function identity in the previous corollary is
actually the Tutte polynomial of the Catalan matroid. Thus, the connection to the new
collection of words considered in this note and its reinterpretation in terms of planted trees
yields another combinatorial description of this Tutte polynomial. The following corollary
can then be derived from [2, Theorem 3.6]. Another proof can be found in [3, Theorem 2.1].

Corollary 4. ¢(p,q,n) only depends on the sum p + q.

Proof. We here reproduce an elementary argument by Speyer from [5]. Let D be a Dyck
path of length 2n with returns(D) = p and rises(D) = ¢ such that p > 2. Then the following
operation on D yields a Dyck path D" with returns(D’) = p — 1 and rises(D’) = ¢+ 1. We
can write D as

NDE NDyE ND3E --- ND,E

such that all D;’s are itself Dyck paths of smaller length. Then D’ is defined as
NND\E Dy;E NDsE --- ND,E.

Clearly, we have that returns(D’) = returns(D) — 1 and rises(D’) = rises(D) + 1, as desired.
Moreover, it is easy to see that this map is invertible for p > 2. [l

Remark 5. The proof of the previous corollary together with the zeta map yields an operator
on planted trees with the property that given such a tree T" that has more than one crucial
vertex, it constructs a tree 7" having one less crucial vertex and one more child of the root. It
would be very interesting to find such an operator directly described in planted trees. First,
this would yield another way of finding a bijection between the collection of words considered
here and Dyck paths. Second, one could then hope to get an alternative understanding of
the zeta map in terms of such trees.
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