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Abstract

The Catalan-like numbers cn,0, defined by

cn+1,k = rk−1cn,k−1 + skcn,k + tk+1cn,k+1 for n, k ≥ 0,

c0,0 = 1, c0,k = 0 for k 6= 0,

unify a substantial amount of well-known counting coefficients. Using an algebraic
approach, Zhu showed that the sequence (cn,0)n≥0 is log-convex if rktk+1 ≤ sksk+1 for
all k ≥ 0. Here we give a combinatorial proof of this result from the point of view of
weighted Motzkin paths.

1 Introduction

A sequence a0, a1, a2, . . . of nonnegative numbers is called log-convex if a2n ≤ an+1an−1 for
all n ≥ 1. Many well-known combinatorial sequences are log-convex (see Liu and Wang [9]
for instance). One of the simplest classes of log-convex sequences, yet still large enough to
include many important instance, is the class of the Catalan-like numbers. The Catalan-like
numbers cn,0, introduced by Aigner [1, 2], are defined by the recursive system

cn+1,k = rk−1cn,k−1 + skcn,k + tk+1cn,k+1 for n, k ≥ 0, (1)

c0,0 = 1, c0,k = 0 for k 6= 0,
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where (rn)n≥0, (sn)n≥0 and (tn)n≥1 are three sequences of nonnegative numbers. The Catalan-
like numbers unify many well-known counting coefficients. For example, let rk ≡ 1, σ =
(s0, s1, . . .) and τ = (t1, t2, . . .) in (1). Then cn,0 are

(1) the Catalan numbers Cn if σ = (1, 2, 2, . . .) and τ = (1, 1, 1, . . .);

(2) the Motzkin numbers Mn if σ = τ = (1, 1, 1, . . .);

(3) the middle binomial coefficients
(

2n
n

)

if σ = (2, 2, 2, . . .) and τ = (2, 1, 1, . . .);

(4) the Schröder numbers Sn if σ = (2, 3, 3, . . .) and τ = (2, 2, 2, . . .);

(5) the Bell numbers Bn if σ = τ = (1, 2, 3, 4, . . .);

(6) the (restricted) hexagonal numbers Hn if σ = (3, 3, 3, . . .) and τ = (1, 1, 1, . . .);

(7) the Fine numbers Fn if σ = (0, 2, 2, . . .) and τ = (1, 1, 1, . . .);

(8) the Riordan numbers Rn if σ = (0, 1, 1, . . .) and τ = (1, 1, 1, . . .).

Recently, Zhu [14] established the following criterion for the log-convexity of the Catalan-
like numbers.

Theorem 1. ([14, Theorem 3.1]) Assume that rktk+1 ≤ sksk+1 for all k ≥ 0. Then the
sequence (cn,0)n≥0 defined recursively by (1) is log-convex.

Theorem 1 leads to the log-convexity of many well-known combinatorial sequences, in-
cluding the Catalan numbers, the Motzkin numbers, the Bell numbers, the middle binomial
coefficients, the (restricted) hexagonal numbers, the Schröder numbers, and so on (see [14]
for details). On the other hand, Callan [3] gave an injective proof for the log-convexity of the
Motzkin numbers. Liu and Wang [9] did the same for the Catalan numbers, and asked for
a combinatorial proof for the log-convexity of the Bell numbers. The object of the present
paper is to give a combinatorial proof for Theorem 1 from the point of view of weighted
Motzkin paths.

A Motzkin path of length n is a lattice path from (0, 0) to (n, 0) consisting of up steps
U = (1, 1), down steps D = (1,−1) and horizontal steps H = (1, 0) that never falls below
the x-axis. The height of a step in a Motzkin path is the y coordinate of the starting point.
We assign a weight rk (sk, tk, resp.) to all up steps (all horizontal steps, all down steps,
resp.) of height k. Define the weight of a Motzkin path to be the product of weights of its
steps. Similarly, we may define a general Motzkin path from (0, 0) to (n, k) for n ≥ k (see
[7] for instance). Then cn,k defined by (1) is the sum of weights of all paths from (0, 0) to
(n, k). In particular, the Catalan-like number

cn,0 =
∑

P∈Mn

w(P ), (2)
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where Mn denotes the set of the Motzkin paths of length n [2].
In the next section we give a combinatorial proof of Theorem 1 by means of (2). In Section

3 we point out that the same idea may be applied to show the q-version of Theorem 1. We
also propose a couple of problems.

2 Combinatorial proof of Theorem 1

To show the log-convexity of the sequence (cn,0)n≥0, it suffices to show that

∑

P∈Mn

w(P )
∑

P∈Mn

w(P ) ≤
∑

P∈Mn+1

w(P )
∑

P∈Mn−1

w(P ),

or equivalently,
∑

(P1,P2)∈(Mn,Mn)

w(P1, P2) ≤
∑

(P ′

1
,P ′

2
)∈(Mn+1,Mn−1)

w(P ′
1, P

′
2), (3)

where w(Q1, Q2) = w(Q1)w(Q2) denotes the weight of a pair of paths (Q1, Q2).
Let S be a set of pairs of paths. Denote

w(S) =
∑

(Q1,Q2)∈S

w(Q1, Q2).

Then (3) is equivalent to

w(Mn,Mn) ≤ w(Mn+1,Mn−1). (4)

Recall that the Motzkin number Mn is precisely the Catalan-like number cn,0 when the
all weights rk, sk, tk equal to 1. In other words, Mn counts the Motzkin paths of length n.
Callan [3] proved the log-convexity of the Motzkin numbers by establishing an injection from
(Mn,Mn) to (Mn+1,Mn−1). We rewrite his proof as follows for our purposes.

For each pair of Motzkin paths (Q1, Q2) in (Mn,Mn) or (Mn+1,Mn−1), place the first
beginning from (0, 0) and the second beginning from (1, 0). Callan introduced the following
operation on (Q1, Q2) at each possible “close encounter” to obtain a new pair of Motzkin
paths.

1. Assume that Q1 and Q2 intersect at a lattice point. Then reassign the two initial
segments to the other path.

2. Assume that Q1 and Q2 intersect at the center point of crossing diagonal steps. Then
swing the crossing steps 45◦ so they become horizontal.

3. Assume that Q1 and Q2 possess a pair of flatsteps forming the top and bottom of a
unit square. Then change the lower horizontal step to an upstep and the upper one to
a downstep.
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For example, for a pair of Motzkin paths (P1, P2) in (Mn,Mn), we place P1 from (0, 0)
to (n, 0) and P2 from (1, 0) to (n+ 1, 0). Clearly, P1 and P2 must intersect, so they have at
least one close encounter. Callan’s operation at each close encounter of (P1, P2) will lead to
a pair of Motzkin paths in (Mn+1,Mn−1).
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(1) (2) (3)

Figure 1. Callan’s operation on a pair of Motzkin paths.

The above row in Figure 1 is a pair of Motzkin paths of length 7 with one lattice point of
intersection, two pairs of crossing steps and one pair of flatsteps. The below low is obtained
by carrying out Callan’s operation at the first three close encounters of the pair of Motzkin
paths.

Now for (P1, P2) ∈ (Mn,Mn), let (P
′
1, P

′
2) be the pair of paths obtained by carrying out

Callan’s operation at the first close encounter of P1 and P2. Note that the location of the
first close encounter will remain invariant. Hence the mapping

τ : (P1, P2) 7→ (P ′
1, P

′
2)

is an injection from (Mn,Mn) to (Mn+1,Mn−1). This gives a combinatorial interpretation
of the log-convexity of the Motzkin numbers.

Note that the inequality w(P1, P2) ≤ w(τ(P1, P2)) does not hold in general. For example,
if the first close encounter of (P1, P2) is a pair of flatsteps with heights k and k+1 respectively,
then τ(P1, P2) is the pair of paths obtained by changing this pair of flatsteps of (P1, P2) to a
pair of crossing steps. Thus w(P1, P2) = sksk+1w ≥ rktk+1w = w(τ(P1, P2)), where w is the
product of weights of steps in (P1, P2) except that pair of flatsteps. Hence Callan’s injection
τ can not be used to prove the inequality (4). However, we may still prove (4) by means of
Callan’s operation.

We divide (Mn,Mn) into two parts: L consists of pairs of paths that there is at least
one lattice point of intersection and C consists of the remain pairs. Let (Mn+1,Mn−1)

∗

consist of pairs of paths in (Mn+1,Mn−1) that there is at least one close encounter and
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divide (Mn+1,Mn−1)
∗ into two parts L ∗ and C ∗ similarly. We show the inequality (4) by

showing that
w(L ) = w(L ∗) (5)

and
w(C ) ≤ w(C ∗). (6)

Consider a pair of paths (P1, P2) ∈ L . Let p be their first lattice point of intersection.
Assume that p splits P1 into parts P11 and P12, and splits P2 into parts P21 and P22. Then
the concatenation P ∗

1 of P11 and P22 is a path of length n+ 1, and the concatenation P ∗
2 of

P12 and P21 is a path of length n− 1. Clearly, (P ∗
1 , P

∗
2 ) ∈ L ∗ and p is also their first lattice

point of intersection. Furthermore,

w(P ∗
1 , P

∗
2 ) = w(P11)w(P22)w(P12)w(P21) = w(P1, P2).

So the mapping
τ ∗ : (P1, P2) 7→ (P ∗

1 , P
∗
2 )

is a weight-preserving bijection from L to L ∗. Thus the equality (5) follows.
It remains to show that the inequality (6) holds. Let (P1, P2) ∈ C . Then each close

encounter of (P1, P2) is a pair of crossing steps or a pair of flatsteps. Define the height
of such a close encounter as the smaller of heights of two corresponding steps. Callan’s
operation changes a pair of crossing steps to a pair of flatsetps of the same height, and vice
versa. If (P ′

1, P
′
2) is obtained by carrying out Callan’s operation on (P1, P2) at a pair crossing

steps of height k, then w(P1, P2) = sksk+1w and w(P ′
1, P

′
2) = rktk+1w, where w is the product

of weights of steps in (P1, P2) except that pair of crossing steps, and vice versa.
Denote by O(P1, P2) and E(P1, P2) the sets of pairs of paths obtained by carrying

out Callan’s operation on (P1, P2) at odd and even close encounters respectively. Then
O(P1, P2) ⊆ (Mn+1,Mn−1) and E(P1, P2) ⊆ (Mn,Mn). Let {i1, i2, . . . , im} be the set
of heights of close encounters of (P1, P2). Note that each pair of paths in O(P1, P2) and
E(P1, P2) has even and odd pairs of crossing steps respectively. Hence

w(O(P1, P2))− w(E(P1, P2)) =
∑

(Q1,Q2)∈O(P1,P2)

w(Q1, Q2)−
∑

(Q′

1
,Q′

2
)∈E(P1,P2)

w(Q′
1, Q

′
2)

= (Si1 −Ri1)(Si2 −Ri2) · · · (Sim −Rim)W,

where Rk = rktk+1, Sk = sksk+1 and W is the product of weights of steps in (P1, P2) except
those close encounters.

For example, let (P1, P2) be the first pair of paths in Figure 2. Then

E(P1, P2) = {(P1, P2), (Q1, Q2)}, O(P1, P2) = {(P ′
1, P

′
2), (Q

′
1, Q

′
2)}.

So

w(O(P1, P2))− w(E(P1, P2)) = [w(P ′
1, P

′
2) + w(Q′

1, Q
′
2)]− [w(P1, P2) + w(Q1, Q2)]

= (R0R1 + S0S1 − S0R1 −R0S1)r
2
0r1t

2
0t1

= (S0 −R0)(S1 −R1)r
2
0r1t

2
0t1.
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Figure 2.

It follows that w(E(P1, P2)) ≤ w(O(P1, P2)) since Rk ≤ Sk for all k ≥ 0 by the assumption
in Theorem 1. Clearly, Callan’s operation induces an equivalence relation on C andO(P1, P2)
is an equivalence class. So we have

w(C ) =
∑

w(E(P1, P2)) ≤
∑

w(O(P1, P2)) ≤ w(C ∗),

where the summation runs over such equivalence classes of (P1, P2). This completes the
proof of the inequality (6), as required.

3 Concluding remarks and further work

Our proof adapts to all Catalan-like numbers satisfying the assumption in Theorem 1, and in
particular, to the Catalan numbers and the Bell numbers. A more interesting problem is to
construct an injection σ : (Mn,Mn) → (Mn+1,Mn−1) such that w(P1, P2) ≤ w(σ(P1, P2)).
The Catalan-like numbers have various combinatorial interpretations [1, 2, 12, 13], so it
is natural to find out other combinatorial proof of Theorem 1. We refer the reader to
[6, 8, 10, 11] for some related techniques and topics.

It is well known that the sequence (an)n≥0 is log-convex if and only if aman ≤ an+1am−1

for n ≥ m ≥ 1. So the inequality (4) is equivalent to the inequality

w(Mm,Mn) ≤ w(Mn+1,Mm−1). (7)

Place each pair of Motzkin paths in (Mm,Mn) or (Mn+1,Mm−1) such that the first begins
from (0, 0) and the second ends at (n+ 1, 0). Then the inequality (7) can be showed by the
same technique used in the proof of the inequality (4).

Zhu [14] also gave the q-version of Theorem 1. For two polynomials f(q) and g(q), denote
f(q) ≤q g(q) if the difference g(q) − f(q) has only nonnegative coefficients. Let (fn(q))n≥0

be a polynomial sequence. It is called q-log-convex if f 2
n(q) ≤q fn+1(q)fn−1(q) for all n ≥ 1.

It is called strongly q-log-convex if fm(q)fn(q) ≤q fn+1(q)fm−1(q) for any n ≥ m ≥ 1. It is
well known that the strong q-log-convexity implies the q-log-convexity but the converse is
not true (see [5] for instance). The method of proof used in the log-convexity can be carried
over verbatim to the q-log-convexity.

Theorem 2. ([14, Theorem 2.1]) Let (rn(q))n≥0, (sn(q))n≥0 and (tn(q))n≥1 be three sequences
of polynomials with nonnegative coefficients. Assume that the triangular array (cn,k(q))0≤k≤n
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satisfies the recurrence

cn+1,k(q) = rk−1(q)cn,k−1(q) + sk(q)cn,k(q) + tk+1(q)cn,k+1(q) for n, k ≥ 0,

c0,0(q) = 1, c0,k(q) = 0 for k 6= 0.

If rk(q)tk+1(q) ≤q sk(q)sk+1(q) for all k ≥ 0, then the sequence (cn,0(q))n≥0 is strongly q-log-
convex.

Liu and Wang [9] conjectured the q-log-convexity of sequences of Narayana polynomials of
two types and Chen et al. [4, 5] proved them by means of the theory of symmetric functions.
It immediately follows from Theorem 2 that such two sequences are actually strongly q-log-
convex respectively. See Zhu [14] for details.
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