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Abstract

We provide a new elementary proof for a Ramanujan-type congruence for the over-
partition function modulo 40, which was previously conjectured by Hirschhorn and
Sellers and later proved by Chen and Xia. We also find some new congruences for the
overpartition function modulo 5 and 9.

1 Introduction and Main Results

An overpartition of an integer n is a partition in which the first occurrence of a part may
be overlined. The number of overpartitions of n is denoted by p(n). For example, p(3) = 8
as there are 8 overpartitions of 3: 3, 3,2+ 1,2+ 1,24+ 1,2+1,1+1+1,1+1+1. We
define p(0) = 1 for convenience. It is well known (see [5], for example) that the generating

function of p(n) is
v (G 1
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where (a;¢9),, = (1 —a)(1 —aq)---(1 —aq™)--- is standard g-series notation, and ¢(q) =
> ¢" is one of Ramanujan’s theta functions.

Overpartitions were first introduced by MacMahon [14] and have drawn much attention
during the past ten years. There are numerous results concerning the arithmetic properties
of p(n). For more details, we refer the reader to [3, 5, 8, 15].
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In 2005, Hirschhorn and Sellers [9] proved numerous Ramanujan-type identities for p(n).
For example,
(7% 4*)oe (s 4)5
(4 9)%

> p4n+3)q" =8 : (2)

n>0

which clearly implies p(4n+3) = 0 (mod 8). Meanwhile, they proposed a curious conjecture:
Conjecture 1. For any integer n > 0, we have
p(40n +35) =0 (mod 40).

In a recent paper, Chen and Xia [3] gave a proof of Conjecture 1 using (p, k)-parametrization
of theta functions. Their proof is relatively long and complicated, and in this paper we give
a shorter proof.

Let r,(n) denote the number of representations of n as sum of k squares. We find the
following arithmetic relation.

Theorem 2. For any integer n > 1, we have
p(5n) = (—=1)"r3(n) (mod 5).
We have two remarkable corollaries.
Corollary 3. For any integers n > 0 and o > 0, we have
p(4%(40n 4+ 35)) =0 (mod 5)

and
p(5-4°Mn) = (=1)"p(5n) (mod 5).

By letting @ = 0 in Corollary 3, we get p(40n + 35) = 0 (mod 5). Together with (2),
Conjecture 1 follows immediately.

Corollary 4. For any prime p = —1 (mod 5), we have
p(5p°n) =0 (mod 5)
for all n coprime to p.

Corollary 4 was first proved by Treneer (see [17, Proposition 1.4]) in 2006 using the theory
of modular forms, which is not elementary.

Furthermore, with Corollary 3 in mind, we are ready to generalize Conjecture 1 to the
following result.

Theorem 5. For any integers n > 0 and o > 0, we have

p(4%(40n 4+ 35)) =0 (mod 40).



Some miscellaneous congruences can be deduced from Theorem 2, and we list some of
them here.

Theorem 6. For any integers o > 1 and n > 0, we have
p(5% (50 +1)) = p(5*** (5n +4)) =0 (mod 5).

Theorem 7. Let p > 3 be a prime, and N a positive integer which s coprime to p. Let «
be any nonnegative integer.

(1) If p=1 (mod 5), then p(5p'**TPN) =0 (mod 5).
(2) If p=2,3,4 (mod 5), then p(5p®*T"N) =0 (mod 5).

Using properties of r3(n), we can establish some other congruences as corollaries of The-
orem 2. Recently, Chen et al. [2] found some Ramanujan-type congruences mainly based on
the theory of modular forms. Their work also contains a proof of Theorem 5. In addition,
they proved some congruences such as p(5n) = (—1)"p(4 - 5n) (mod 5).

Finally, we mention some congruences for overpartitions modulo 3. In 2011, based on the
generating function of p(3n) discovered by Hirschhorn and Sellers [8], Lovejoy and Osburn
[13] proved the following result. For any integer n > 1, we have

p(3n) = (=1)"r5(n) (mod 3).

Using the same method as in the proof of Theorem 2, we are able to improve this congruence
to the following one.

Theorem 8. For any integer n > 1, we have
p(3n) = (—=1)"rs(n) (mod 9).

Similar to Theorem 7, we can deduce the following interesting congruences from Theorem
8.

Theorem 9. Let p > 3 be a prime and N a positive integer which is coprime to p.
(1) If p=1 (mod 3), then p(3p**™>N) =0 (mod 3) and p(3p'**T7"N) =0 (mod 9).
(2) If p=2 (mod 3), then p(3p**3N) =0 (mod 9).

2 Preliminaries

Lemma 10. (Cf. [16, Lemma 1.2].) Let p be a prime and o a positive integer. Then
(@:0)% = (¢";¢")%  (mod p®).

Lemma 11. (Cf. [1, Theorem 3.5.1, 3.5.4].) For any integer n > 1, we have

ry(n) =8 Z d, rs(n) = 16(—1)"2 (—1)%d®.

dn,44d dn



Lemma 12. For any prime p > 3, we have

ra(pn) = r4(n) (mod p), rs(pn) =rs(n) (mod p?).

Proof. By Lemma 11, we have

—82 d=38 Z d+8 Z d=28 Z d (mod p),

dn,44d dn

4{d Md 44d,p|d 4fd Md
and
rapn) =8 Y d=8 > d+8 Y d=8 > d+8p) d
d|pn,4td dlpn dlpn dn din
44d,pld Ad,p|d Afd,pid 44d

Combining them together, we deduce that r4(pn) = r4(n) (mod p).
Similarly we can prove rg(pn) = rg(n) (mod p?). O

Lemma 13. (Cf. [6, Theorem 1 in Chapter 4].) For any integers o > 0 and n > 0, we have
r3(4%(8n + 7)) = 0 and r3(4°n) = r3(n).

Lemma 14. (Cf. [7].) Let p > 3 be a prime. For any integers n > 1 and a > 0, we have

r3(p**n) = (& — <—_n)pa — 1)7“3(71) —pZZ _117“3(71/]92).

p—1 p/ p—1

where () denotes the Legendre symbol, and we take r3(n/p?) = 0 unless p*|n .

Lemma 15. (Cf. [10, Theorem 3].) Let n be an integer which is neither a square nor twice
a square. Then p(n) =0 (mod 8).

Lemma 16. (Cf. [/].) Let p > 3 be a prime, and n a positive integer such that p* { n. For
any integer o > 0, we have

3a+3

o P —1 n p3°‘ —1
rs(p**n) = (pg—_l —p(5> P 1 )7“5(")-

3 Proofs of The Theorems

Proof of Theorem 2. Replacing ¢ by —¢ in (1), we get

Hence we have



By Lemma 10, we have ¢(q)” = ¢(¢°) (mod 5) and thus

p(¢°) Y B(n)(—q)" =Y ra(n)g" (mod 5).

n>0

Collecting all the terms of the form ¢°" on both sides, we get

NN Bn) ()™ = ra(5n)g™  (mod 5).

n>0 n>0

Replacing ¢° by ¢ and applying Lemma 12 with p = 5, we obtain

q)ZTo(5n)( ZM 5n)q" —Zm n)¢" = ¢(q)*  (mod 5).

n>0 n>0 n>0

Hence we have

Zp (5n)(—q)" = ¢(q)® = ng(n)q" (mod 5).

n>0 n>0

Theorem 1 follows by comparing the coefficients of ¢” on both sides. O]

Proof of Corollary 3. This corollary follows immediately from Theorem 2 and Lemma 13.
]

Proof of Corollary 4. Let a =1 and we replace n by np in Lemma 14. We have

r3(p’n) = (p + 1)rs(n) — prs(n/p).

Since n is coprime to p and p+1 =0 (mod 5), we get r3(p*n) = 0 (mod 5). By Theorem 2,
we deduce that p(5pn) = 0 (mod 5). O

Proof of Theorem 5. Since 40n + 35 = 5(8n + 7) is an odd number, it cannot be twice a
square. If 5(8n + 7) = x? is a square where x is an odd number, then we know 5|z. Let
x = 5y where y is an odd number, we get 8n + 7 = 5y%. But 5y* = 5 (mod 8), which is
a contradiction! Hence we know 4%*(40n + 35) is neither a square nor twice a square. By
Lemma 15, we have p(4*(40n+35)) = 0 (mod 8). Combining this with Corollary 3 completes
the proof. O

Proof of Theorem 6. Set p=>5 and n = 5m + r where r € {1,4} in Lemma 14. It is easy to
deduce that 73(5%*(5m +7r)) = 0 (mod 5) for any integer @ > 1. By applying Theorem 2, we
complete the proof. O

Proof of Theorem 7. (1) Let n = pN and then replace o by 5o + 4 in Lemma 14. Since

p5a+5_
=1+p+---+p™ =0 (mod 5),

p—1



we have r3(p'"*™N) = 0 (mod 5). By Theorem 2, we deduce that p(5p'**™N) = 0 (mod
5).

(2) Let n = pN and then replace a by 4 + 3 in Lemma 14. Since p**** =1 (mod 5), we
deduce that r3(p®**t"N) = 0 (mod 5). By Theorem 2, we deduce that p(5p***"N) = 0 (mod
5). 0

Proof of Theorem §. We have
0(@)" > ) (—)" = 9(@)° = rs(n)q"

n>0 n>0

By Lemma 10, we have ¢(q)? = ¢(¢%)° (mod 9) and thus
2(¢*)" D _pn)(=)" = Y _rs(n)g"  (mod 9).

n>0 n>0

Collecting all the terms of the form ¢®* on both sides, we get

0@ B0 ()" = rs(3n)¢*  (mod 9).

n>0 n>0

Replacing ¢® by ¢ and applying Lemma 12 with p = 3, we obtain

p(a)’ Y pBn)(=q)" =) _rs(B3n)g" =Y rs(n)g" = ()" (mod 9).

n>0 n>0 n>0

Hence we have

Zﬁ(3n)(—q)” =p(q)° = ng,(n)q" (mod 9).

n>0 n>0

Theorem 8 follows by comparing the coefficients of ¢" on both sides. O]

Proof of Theorem 9. (1) Let n = pN and then replace a by 3+ 2 in Lemma 16. Since

9a+9
P _

p*—1
we have r5(p®*™>N) = 0 (mod 3). By Theorem 8, we deduce that p(3p®**°N) = 0 (mod 3).

Similarly, let n = pN and replace o by 9o+ 8 in Lemma 16. Since p = 1 (mod 3) implies
p? =1 (mod 9), we have

=14+p°+--+p%D =0 (mod 3),

27a+27
P _

p*—1

Hence 75(p'8* ™" N) = 0 (mod 9), and we deduce by Theorem 8 that p(3p***™1"N) = 0 (mod
9).

(2) Let n = pN and replace a by 2a + 1 in Lemma 16. Note that p = 2 (mod 3) implies
p? = —1 (mod 9). Since p®** =1 (mod 9), we have r5(p***N) =0 (mod 9). By Theorem
8, we deduce that p(3p**™N) =0 (mod 9). O

:1+p3_}_...+p3(9a+8) EO (mOd 9)
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