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Abstract

We provide a new elementary proof for a Ramanujan-type congruence for the over-

partition function modulo 40, which was previously conjectured by Hirschhorn and

Sellers and later proved by Chen and Xia. We also find some new congruences for the

overpartition function modulo 5 and 9.

1 Introduction and Main Results

An overpartition of an integer n is a partition in which the first occurrence of a part may
be overlined. The number of overpartitions of n is denoted by p(n). For example, p(3) = 8
as there are 8 overpartitions of 3: 3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1. We
define p(0) = 1 for convenience. It is well known (see [5], for example) that the generating
function of p(n) is

∑

n≥0

p(n)qn =
(−q; q)∞
(q; q)∞

=
1

ϕ(−q)
, (1)

where (a; q)∞ = (1 − a)(1 − aq) · · · (1 − aqn) · · · is standard q-series notation, and ϕ(q) =
∑∞

n=−∞ qn
2

is one of Ramanujan’s theta functions.
Overpartitions were first introduced by MacMahon [14] and have drawn much attention

during the past ten years. There are numerous results concerning the arithmetic properties
of p(n). For more details, we refer the reader to [3, 5, 8, 15].
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In 2005, Hirschhorn and Sellers [9] proved numerous Ramanujan-type identities for p(n).
For example,

∑

n≥0

p(4n+ 3)qn = 8
(q2; q2)∞(q4; q4)6∞

(q; q)8∞
, (2)

which clearly implies p(4n+3) ≡ 0 (mod 8). Meanwhile, they proposed a curious conjecture:

Conjecture 1. For any integer n ≥ 0, we have

p(40n+ 35) ≡ 0 (mod 40).

In a recent paper, Chen and Xia [3] gave a proof of Conjecture 1 using (p, k)-parametrization
of theta functions. Their proof is relatively long and complicated, and in this paper we give
a shorter proof.

Let rk(n) denote the number of representations of n as sum of k squares. We find the
following arithmetic relation.

Theorem 2. For any integer n ≥ 1, we have

p(5n) ≡ (−1)nr3(n) (mod 5).

We have two remarkable corollaries.

Corollary 3. For any integers n ≥ 0 and α ≥ 0, we have

p(4α(40n+ 35)) ≡ 0 (mod 5)

and
p(5 · 4α+1n) ≡ (−1)np(5n) (mod 5).

By letting α = 0 in Corollary 3, we get p(40n + 35) ≡ 0 (mod 5). Together with (2),
Conjecture 1 follows immediately.

Corollary 4. For any prime p ≡ −1 (mod 5), we have

p(5p3n) ≡ 0 (mod 5)

for all n coprime to p.

Corollary 4 was first proved by Treneer (see [17, Proposition 1.4]) in 2006 using the theory
of modular forms, which is not elementary.

Furthermore, with Corollary 3 in mind, we are ready to generalize Conjecture 1 to the
following result.

Theorem 5. For any integers n ≥ 0 and α ≥ 0, we have

p(4α(40n+ 35)) ≡ 0 (mod 40).
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Some miscellaneous congruences can be deduced from Theorem 2, and we list some of
them here.

Theorem 6. For any integers α ≥ 1 and n ≥ 0, we have

p(52α+1(5n+ 1)) ≡ p(52α+1(5n+ 4)) ≡ 0 (mod 5).

Theorem 7. Let p ≥ 3 be a prime, and N a positive integer which is coprime to p. Let α
be any nonnegative integer.
(1) If p ≡ 1 (mod 5), then p(5p10α+9N) ≡ 0 (mod 5).
(2) If p ≡ 2, 3, 4 (mod 5), then p(5p8α+7N) ≡ 0 (mod 5).

Using properties of r3(n), we can establish some other congruences as corollaries of The-
orem 2. Recently, Chen et al. [2] found some Ramanujan-type congruences mainly based on
the theory of modular forms. Their work also contains a proof of Theorem 5. In addition,
they proved some congruences such as p(5n) ≡ (−1)np(4 · 5n) (mod 5).

Finally, we mention some congruences for overpartitions modulo 3. In 2011, based on the
generating function of p(3n) discovered by Hirschhorn and Sellers [8], Lovejoy and Osburn
[13] proved the following result. For any integer n ≥ 1, we have

p(3n) ≡ (−1)nr5(n) (mod 3).

Using the same method as in the proof of Theorem 2, we are able to improve this congruence
to the following one.

Theorem 8. For any integer n ≥ 1, we have

p(3n) ≡ (−1)nr5(n) (mod 9).

Similar to Theorem 7, we can deduce the following interesting congruences from Theorem
8.

Theorem 9. Let p ≥ 3 be a prime and N a positive integer which is coprime to p.
(1) If p ≡ 1 (mod 3), then p(3p6α+5N) ≡ 0 (mod 3) and p(3p18α+17N) ≡ 0 (mod 9).
(2) If p ≡ 2 (mod 3), then p(3p4α+3N) ≡ 0 (mod 9).

2 Preliminaries

Lemma 10. (Cf. [16, Lemma 1.2].) Let p be a prime and α a positive integer. Then

(q; q)p
α

∞ ≡ (qp; qp)p
α−1

∞ (mod pα).

Lemma 11. (Cf. [1, Theorem 3.3.1, 3.5.4].) For any integer n ≥ 1, we have

r4(n) = 8
∑

d|n,4∤d

d, r8(n) = 16(−1)n
∑

d|n

(−1)dd3.
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Lemma 12. For any prime p ≥ 3, we have

r4(pn) ≡ r4(n) (mod p), r8(pn) ≡ r8(n) (mod p3).

Proof. By Lemma 11, we have

r4(n) = 8
∑

d|n,4∤d

d = 8
∑

d|n
4∤d,p∤d

d+ 8
∑

d|n
4∤d,p|d

d ≡ 8
∑

d|n
4∤d,p∤d

d (mod p),

and
r4(pn) = 8

∑

d|pn,4∤d

d = 8
∑

d|pn
4∤d,p∤d

d+ 8
∑

d|pn
4∤d,p|d

d = 8
∑

d|n
4∤d,p∤d

d+ 8p
∑

d|n
4∤d

d.

Combining them together, we deduce that r4(pn) ≡ r4(n) (mod p).
Similarly we can prove r8(pn) ≡ r8(n) (mod p3).

Lemma 13. (Cf. [6, Theorem 1 in Chapter 4].) For any integers α ≥ 0 and n ≥ 0, we have
r3(4

α(8n+ 7)) = 0 and r3(4
αn) = r3(n).

Lemma 14. (Cf. [7].) Let p ≥ 3 be a prime. For any integers n ≥ 1 and α ≥ 0, we have

r3(p
2αn) =

(

pα+1 − 1

p− 1
−
(−n

p

)pα − 1

p− 1

)

r3(n)− p
pα − 1

p− 1
r3(n/p

2).

where ( ·
p
) denotes the Legendre symbol, and we take r3(n/p

2) = 0 unless p2|n .

Lemma 15. (Cf. [10, Theorem 3].) Let n be an integer which is neither a square nor twice
a square. Then p(n) ≡ 0 (mod 8).

Lemma 16. (Cf. [4].) Let p ≥ 3 be a prime, and n a positive integer such that p2 ∤ n. For
any integer α ≥ 0, we have

r5(p
2αn) =

(

p3α+3 − 1

p3 − 1
− p

(n

p

)p3α − 1

p3 − 1

)

r5(n).

3 Proofs of The Theorems

Proof of Theorem 2. Replacing q by −q in (1), we get

∑

n≥0

p(n)(−q)n =
1

ϕ(q)
.

Hence we have
ϕ(q)5

∑

n≥0

p(n)(−q)n = ϕ(q)4 =
∑

n≥0

r4(n)q
n.
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By Lemma 10, we have ϕ(q)5 ≡ ϕ(q5) (mod 5) and thus

ϕ(q5)
∑

n≥0

p(n)(−q)n ≡
∑

n≥0

r4(n)q
n (mod 5).

Collecting all the terms of the form q5n on both sides, we get

ϕ(q5)
∑

n≥0

p(5n)(−q)5n ≡
∑

n≥0

r4(5n)q
5n (mod 5).

Replacing q5 by q and applying Lemma 12 with p = 5, we obtain

ϕ(q)
∑

n≥0

p(5n)(−q)n ≡
∑

n≥0

r4(5n)q
n ≡

∑

n≥0

r4(n)q
n = ϕ(q)4 (mod 5).

Hence we have
∑

n≥0

p(5n)(−q)n ≡ ϕ(q)3 =
∑

n≥0

r3(n)q
n (mod 5).

Theorem 1 follows by comparing the coefficients of qn on both sides.

Proof of Corollary 3. This corollary follows immediately from Theorem 2 and Lemma 13.

Proof of Corollary 4. Let α = 1 and we replace n by np in Lemma 14. We have

r3(p
3n) = (p+ 1)r3(n)− pr3(n/p).

Since n is coprime to p and p+ 1 ≡ 0 (mod 5), we get r3(p
3n) ≡ 0 (mod 5). By Theorem 2,

we deduce that p(5p3n) ≡ 0 (mod 5).

Proof of Theorem 5. Since 40n + 35 = 5(8n + 7) is an odd number, it cannot be twice a
square. If 5(8n + 7) = x2 is a square where x is an odd number, then we know 5|x. Let
x = 5y where y is an odd number, we get 8n + 7 = 5y2. But 5y2 ≡ 5 (mod 8), which is
a contradiction! Hence we know 4α(40n + 35) is neither a square nor twice a square. By
Lemma 15, we have p(4α(40n+35)) ≡ 0 (mod 8). Combining this with Corollary 3 completes
the proof.

Proof of Theorem 6. Set p = 5 and n = 5m+ r where r ∈ {1, 4} in Lemma 14. It is easy to
deduce that r3(5

2α(5m+ r)) ≡ 0 (mod 5) for any integer α ≥ 1. By applying Theorem 2, we
complete the proof.

Proof of Theorem 7. (1) Let n = pN and then replace α by 5α + 4 in Lemma 14. Since

p5α+5 − 1

p− 1
= 1 + p+ · · ·+ p5α+4 ≡ 0 (mod 5),

5



we have r3(p
10α+9N) ≡ 0 (mod 5). By Theorem 2, we deduce that p(5p10α+9N) ≡ 0 (mod

5).
(2) Let n = pN and then replace α by 4α + 3 in Lemma 14. Since p4α+4 ≡ 1 (mod 5), we
deduce that r3(p

8α+7N) ≡ 0 (mod 5). By Theorem 2, we deduce that p(5p8α+7N) ≡ 0 (mod
5).

Proof of Theorem 8. We have

ϕ(q)9
∑

n≥0

p(n)(−q)n = ϕ(q)8 =
∑

n≥0

r8(n)q
n.

By Lemma 10, we have ϕ(q)9 ≡ ϕ(q3)
3
(mod 9) and thus

ϕ(q3)
3
∑

n≥0

p(n)(−q)n ≡
∑

n≥0

r8(n)q
n (mod 9).

Collecting all the terms of the form q3n on both sides, we get

ϕ(q3)
3
∑

n≥0

p(3n)(−q)3n ≡
∑

n≥0

r8(3n)q
3n (mod 9).

Replacing q3 by q and applying Lemma 12 with p = 3, we obtain

ϕ(q)3
∑

n≥0

p(3n)(−q)n ≡
∑

n≥0

r8(3n)q
n ≡

∑

n≥0

r8(n)q
n = ϕ(q)8 (mod 9).

Hence we have
∑

n≥0

p(3n)(−q)n ≡ ϕ(q)5 =
∑

n≥0

r5(n)q
n (mod 9).

Theorem 8 follows by comparing the coefficients of qn on both sides.

Proof of Theorem 9. (1) Let n = pN and then replace α by 3α + 2 in Lemma 16. Since

p9α+9 − 1

p3 − 1
= 1 + p3 + · · ·+ p3(3α+2) ≡ 0 (mod 3),

we have r5(p
6α+5N) ≡ 0 (mod 3). By Theorem 8, we deduce that p(3p6α+5N) ≡ 0 (mod 3).

Similarly, let n = pN and replace α by 9α+8 in Lemma 16. Since p ≡ 1 (mod 3) implies
p3 ≡ 1 (mod 9), we have

p27α+27 − 1

p3 − 1
= 1 + p3 + · · ·+ p3(9α+8) ≡ 0 (mod 9).

Hence r5(p
18α+17N) ≡ 0 (mod 9), and we deduce by Theorem 8 that p(3p18α+17N) ≡ 0 (mod

9).
(2) Let n = pN and replace α by 2α + 1 in Lemma 16. Note that p ≡ 2 (mod 3) implies
p3 ≡ −1 (mod 9). Since p6α+6 ≡ 1 (mod 9), we have r5(p

4α+3N) ≡ 0 (mod 9). By Theorem
8, we deduce that p(3p4α+3N) ≡ 0 (mod 9).
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