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Introduction

When one looks up the sequence 1, 6, 31, 160, 856, 4802, 28 337,
175 896, . . . in one of Sloane’s integer sequence identifiers [HIS, EIS,
OIS], one learns that these numbers are the numbers of driving-point
impedances of an n-terminal network for n = 2, 3, 4, 5, 6, 7, 8, 9, . . .
as described in an old article by Riordan [Ri].
In combinatorics there are two common ways of generalizing classical
enumerative facts. One such generalization arises by replacing the set
[n] = {1, . . . , n} by an n-dimensional vector space over the finite field
�
q to get a q-analogue. The other generalization or extension is by
considering “B- and D-analogues” of an “A-case”. This terminology
stems from Lie theory. (There is no “C-case” here since it coincides with
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the “B-case”.) Of course one may try to combine the two approaches
and supply q-B- and q-D-analogues.
In this note I shall describe B- and D-analogues of the numbers of
driving-point impedances of an n-terminal network. To assuage any
possible curiosity about how these sequences look, here are their first
few terms:

B-analogue 1, 8, 58, 432, 3396, 28 384, 252 456, 2 385 280, . . .

D-analogue 0, 4, 31, 240, 1931, 16 396, 147 589, 1 408 224, . . .

I should probably emphasize that I will only give mathematical argu-
ments and will not attempt to provide a physical realization of B- and
D-networks.
We start from certain classical hyperplane arrangements. A hyper-
plane arrangement defines a family of subspaces, namely those sub-
spaces which can be written as intersections of some of the hyperplanes
in the arrangement. For each such subspace we will choose a normal
form that represents the subspace. Such a normal form consists of an
equivalence class of partial {±1}-partitions in the terminology of Dowl-
ing [Do]. Dowling actually constructed G-analogues of the partition
lattices for any finite group G. Using the concept of voltage graphs (or
signed graphs for |G| = 2) or more generally biased graphs, Zaslavsky
gave a far-reaching generalization of Dowling’s work. It is amusing to
see that not only the network but also the mathematical treatment of
hyperplane arrangements carries a graph-theoretical flavour. Here we
will stick to the normal form and not translate things into the frame-
work of graph theory, despite the success this approach has had for
example in [BjSa]. In some sense the normal form approach pursues a
strategy opposite to that of Zaslavsky’s graphs.
Whitney numbers and characteristic polynomials for hyperplane ar-
rangements or more generally for subspace arrangements, that is, the
numbers of vertices with fixed rank in the Hasse diagrams and the
Möbius functions, have been studied by many authors. Apparently lit-
tle attention has been paid so far to the numbers of edges in the Hasse
diagrams.
There is another point worth mentioning. It concerns a dichotomy
among the A-, B-, and D-series. We will see that everything is very
easy for the first two series whereas for the D-series we must work a
little harder. Such a dichotomy between the A- and B-series on the
one hand and the D-series on the other also occurs in other contexts,
e. g., in the problem of counting reduced decompositions of the longest
element in the corresponding Coxeter groups (see [St] for the initial
paper). In contrast, in the Lie theory one has a different dichotomy,
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namely, between the simply laced (like A and D) and the non-simply-
laced (like B and C) types.
Finally, an obvious generalization, which, however, we do not go into,
concerns hyperplane arrangements for the infinite families of unitary
reflection groups.

Hyperplane arrangements and their intersection lattices

Let A = {H1, . . . , HN} be a collection of subspaces of codimension 1
in the vector space

� n . We let L(A) denote the poset of all intersections
Hi1∩· · ·∩Hir , ordered by reverse inclusion. This poset L(A) is actually

a geometric lattice. Its bottom element 0̂ is the intersection over the
empty index set, i. e.,

� n . The atoms are the hyperplanes H1, . . . , HN ,
and the top element 1̂ is H1 ∩ · · · ∩HN . For many further details the
reader is referred to Cartier’s Bourbaki talk [Ca], Björner’s exposition
[Bj] for more general subspace arrangements, and the monograph by
Orlik and Terao [OT] for a thorough exposition of the theory.
A theorem due to Orlik and Solomon states that for a finite irre-
ducible Coxeter group W with Coxeter arrangement A = A(W ) we
have the equality

|AH | = |A|+ 1− h(1)

where H ∈ A is any hyperplane of the arrangement, h is the Coxeter
number of W , and AH is the hyperplane arrangement in H with the
hyperplanes H ∩H ′ for H ′ ∈ A − {H}. In other words, (1) says that
each atom in the intersection lattice L(A) is covered by |A| + 1 − h
elements. One may wonder what can be said about the number of
elements that cover an arbitrary element in L(A).
The intersection lattices that concern us here come from the following
hyperplanes in

� n .

type of A elements of A

(A1)
n {xa = 0}a=1,...,n

An−1 {xb = xc}1 � b<c � n

Bn {xa = 0}a=1,...,n, {xb = xc}1 � b<c � n, {xb = −xc}1 � b<c � n

Dn {xb = xc}1 � b<c � n, {xb = −xc}1 � b<c � n

Note that
⋂
H∈A

H is the line x1 = · · · = xn for type An−1 (so the rank is

n− 1 in this case if n > 0) whereas for the other types the hyperplanes
only meet in the zero vector. We agree to let A−1 denote the empty
hyperplane arrangement in 0. So the intersection lattices for A−1 and
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A0 are isomorphic. Also there is a slight abuse of notation for type
A1 because it can be considered as (A1)

1 or as A2−1. But this will not
cause trouble.
For each subspace E ∈ L(A) we define the subset BE ⊆ [n] =
{1, . . . , n} by the property that

CE :=
⋂

a∈[n]−BE

{xa = 0}

is the smallest intersection of coordinate hyperplanes that contains E.
For instance if A is of type An−1, we have BE = [n] for all E ∈ L(A).
For the hyperplane E = {x1 = x2} ∩ {x2 = x3} ∩ {x1 =−x3} ∩ {x4 =
x7} ∩ {x5=x8} ∩ {x8=0} ⊆

� 8 we get BE = {4, 6, 7}.
Regarded as a subspace of CE, E is described by a partition of BE
together with a function ζ : BE → {±1}. If {B1, . . . , Bk} is a partition
of BE into k blocks, then E is the k-dimensional subspace

E =
{
(x1, . . . , xn) ∈ CE

∣∣ b, c ∈ Bj for some j =⇒ ζ(b) xb = ζ(c) xc
}
.

Clearly, the correspondence between E and
(
{B1, . . . , Bk}, ζ

)
is 1 to 2k

because for each block there is a choice of sign.
This correspondence gives us a convenient notation for the subspaces
in L(A). We write down a partition of some B ⊆ [n] and decorate the
numbers a ∈ B with ζ(a) = −1 with an overbar. Having the possibility
of choosing an overall sign for each block, we agree that the smallest
number in each block does not have an overbar. As an example take
the Coxeter arrangement of type B3. There are 24 subspaces to be
considered. Their representations as “signed permutations” are shown
in the vertices (boxes) of the following Hasse diagram.

3 123 123 13 12 12 2 23 23 13 123 123 1

2|3 12|3 12|3 13|2 1|3 13|2 1|23 1|23 1|2

1|2|3

Figure 1. Hasse diagram of the B3 lattice

For instance 3 stands for the line x1 = x2 = 0, 123 is for x1 = −x2 = x3,
1|23 denotes the plane x2 = −x3, 1|2 means x3 = 0 etc.
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Vertices in the Hasse diagrams

Lemma 1. For a partition {B1, . . . , Bk} of a subset B ⊆ [n] and a
function ζ : B → {±1} the k-dimensional subspace
{
(x1, . . . , xn) ∈

� n
∣∣∣∣
a ∈ [n]− B =⇒ xa = 0
b, c ∈ Bj for some j =⇒ ζ(b) xb = ζ(c) xc

}

belongs to L(A) according to the following table.

type of A condition

(A1)
n |B| = k, ζ = 1

An−1 B = [n], ζ = 1

Bn —

Dn

∣∣[n]−B
∣∣ 6= 1

Proof. The conditions in the table above should be clear. For the types
(A1)

n and An−1 we put ζ = 1 for simplicity (literally, ζ must only be
constant on each block Bj). The condition for Dn simply takes into
account that the hyperplanes xa = 0 do not belong to L(A). But for
instance x1 = · · · = xr = 0 for r

�
2 can be written as x1 = −x2,

x1 = · · · = xr and hence this subspace is an element of L(A).

For integers n, k
�
0 and b > 0 let Sb(n, k) denote the number of

partitions of [n] into k blocks each containing at least b elements. So
S1(n, k) = S(n, k) is a Stirling number of the second kind. Besides
b = 1 we shall only need the case where b = 2, which one knows from
Pólya-Szegő [PS, Part I, Chap. 4, § 3; Part VIII, Chap. 1, No. 22.3].
Nevertheless we state the following more general proposition.

Proposition 2. For every integer b > 0 the generating function for
the numbers Sb(n, k) of partitions of [n] into k blocks of length at least
b is
∑

n,k � 0
Sb(n, k)

xn

n!
yk = exp

(
y ·
(
ex − 1− x−

x2

2!
− · · · −

xb−1

(b− 1)!

))
.

Proof. For k
�
1 we have the recurrence relation

Sb(n, k) = k Sb(n− 1, k) +
(
n−1
b−1

)
Sb(n− b, k − 1).(2)

In fact, to obtain a partition of [n] into k blocks of lengths at least b,
we can either take a partition of [n−1] into k blocks of lengths at least
b and append the element n to any one of the k blocks, or we can take
b − 1 elements from [n − 1] which together with n constitute a block
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with b elements and partition the remaining n− b elements into k − 1
blocks of lengths at least b.
To prove the proposition we must show that for every integer k

�
0

fk(x) :=
∑

n � 0
Sb(n, k)

xn

n!
=
1

k!

(
ex − 1− x−

x2

2!
− · · · −

xb−1

(b− 1)!

)k
.

(3)

This follows by induction on k. The case k = 0 is clear: Sb(n, 0) = δn,0.
For k

�
1 we get a differential equation for fk(x), namely

f ′k(x) =
∑

n

Sb(n, k)
xn−1

(n− 1)!

(2)
=
∑

n

k Sb(n− 1, k)
xn−1

(n− 1)!
+
∑

n

(
n−1
b−1

)
Sb(n− b, k − 1)

xn−1

(n− 1)!

= k fk(x) +
xb−1

(b− 1)!
fk−1(x)

= k fk(x) +
xb−1

(b− 1)!

1

(k − 1)!

(
ex − 1− x−

x2

2!
− · · · −

xb−1

(b− 1)!

)k−1

whose unique solution satisfying fk(0) = 0 is in fact given by the right
hand side in equation (3).

The lattices L(A) are graded posets with rank function the codimen-
sion. The rth Whitney number of the second kind of a graded poset is
by definition the number of elements of rank r. We begin by making
the Whitney numbers quite explicit. We fix one of our hyperplane ar-
rangements A in

� n and letW (n, r) be the rth Whitney number (of the
second kind) of the intersection lattice L(A). The Whitney numbers
W (n, n− k) when written in an array can be seen as a generalization
of Pascal’s triangle. In fact, Pascal’s triangle arises for the Boolean
lattices of type (A1)

n.

Let us digress for a moment to consider such generalized Pascal tri-
angles or arrays. The (upper left) corner in the arrays that follow carry
the Whitney number W (0, 0), and the entries (p, q) for the other Whit-
ney numbers W (p, q) are in accordance with the following diagram.

W (n, n− k) −−−−→ W (n+ 1, n− k + 1)
y

W (n+ 1, n− k)
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• Pascal arrangements = Coxeter arrangements of type (A1)
n.

W (n, n− k) =
(
n
k

)
.

1 −−−−→ 1 −−−−→ 1 −−−−→ 1 −−−−→ · · ·
y

y
y

y

1 −−−−→ 2 −−−−→ 3 −−−−→ 4 −−−−→ · · ·
y

y
y

y

1 −−−−→ 3 −−−−→ 6 −−−−→ 10 −−−−→ · · ·
y

y
y

y

1 −−−−→ 4 −−−−→ 10 −−−−→ 20 −−−−→ · · ·
y

y
y

y
...

...
...

...

• Stirling arrangements = Coxeter arrangements of type An−1.
W (n, n− k) = S(n, k). For the An−1 lattices the analogue of the
equation

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
reads S(n, k) = k S(n−1, k)+S(n−

1, k − 1), the case b = 1 of (2).

1
·0

−−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ · · ·
y

y
y

y

1 −−−−→ 1 −−−−→ 1 −−−−→ 1 −−−−→ · · ·
y

y
y

y

1
·2

−−−−→ 3
·2

−−−−→ 7
·2

−−−−→ 15
·2

−−−−→ · · ·
y

y
y

y

1
·3

−−−−→ 6
·3

−−−−→ 25
·3

−−−−→ 90
·3

−−−−→ · · ·
y

y
y

y

1
·4

−−−−→ 10
·4

−−−−→ 65
·4

−−−−→ 350
·4

−−−−→ · · ·
y

y
y

y
...

...
...

...
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• 2-Dowling arrangements = Coxeter arrangements of type Bn.
W (n, n− k) = T (n, k). For the Bn lattices the Whitney numbers
satisfy the relation T (n, k) = (2k+1)T (n−1, k)+T (n−1, k−1)
(see Corollary 5).

1 −−−−→ 1 −−−−→ 1 −−−−→ 1 −−−−→ · · ·
y

y
y

y

1
·3

−−−−→ 4
·3

−−−−→ 13
·3

−−−−→ 40
·3

−−−−→ · · ·
y

y
y

y

1
·5

−−−−→ 9
·5

−−−−→ 58
·5

−−−−→ 330
·5

−−−−→ · · ·
y

y
y

y

1
·7

−−−−→ 16
·7

−−−−→ 170
·7

−−−−→ 1520
·7

−−−−→ · · ·
y

y
y

y
...

...
...

...

Continuing in the obvious way, one gets Whitney numbers of Dowling
lattices corresponding to the complete monomial groups (

�
/m

�
) o � n,

the wreath product of the symmetric group of degree n acting on
(

�
/m

�
)n. This is straightforward, and calculations can be found in

[Be1, Be2]. For the Dn lattices the situation is more subtle. The fol-
lowing table suggests why this is so.

type exponents

(A1)
n 1, 1, . . . , 1

An 1, 2, . . . , n

Bn 1, 3, . . . , 2n− 1

Dn 1, 3, . . . , 2n− 3, n− 1

The maverick exponent n− 1 for type Dn reveals the fact that the de-
terminant of a 2n×2n skew-symmetric matrix is the square of a poly-
nomial in the matrix entries.
This ends our digression. Also from now on we will neglect the nearly
trivial case of type (A1)

n.
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Proposition 3. The Whitney numbers W (n, n − k) are given by the
following formulae.

type W (n, n− k)

An−1 S(n, k)

Bn

n∑
j=k

2j−k
(
n
j

)
S(j, k)

Dn

n∑
j=k

2j−k
(
n
j

)
S(j, k)− 2n−1−knS(n− 1, k)

Proof. The proof follows by elementary combinatorial reasoning from
the table in Lemma 1. (Recall that S(n, k) is a Stirling number of the
second kind.)

The table in Proposition 3 can also be found in the last corollary of
[Za].

Theorem 4. The generating functions for the Whitney numbers are

as given in the following table.

type
∑
n,k � 0

W (n, n− k)
xn

n!
yk

A exp
(
y · (ex − 1)

)

B ex exp
(y
2
·
(
e2x − 1

))

D (ex − x) exp
(y
2
·
(
e2x − 1

))

Proof. For type A this is Proposition 2 with b = 1. For type B the
coefficients

an(y) =
∑

k � 0

n∑

j=k

2j−k
(
n
j

)
S(j, k) yk ∈

�
[y]

are the binomial transforms of

bj(y) =
∑

k � 0
2j−kS(j, k) yk ∈

�
[y].

Hence
∑

n � 0
an(y)

xn

n!
= ex

∑

j � 0
bj(y)

xj

j!

= ex
∑

j,k

S(j, k)
(2x)j

j!

(y
2

)k
= ex exp

(y
2
·
(
e2x − 1

))
.
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Finally, for type D we need to subtract
∑

n,k

2n−1−knS(n− 1, k)
xn

n!
yk = x

∑

n,k

S(n− 1, k)
(2x)n−1

(n− 1)!

(y
2

)k

= x exp
(y
2
·
(
e2x − 1

))

from the generating function for type B.

Setting y = 1 in Theorem 4 we get the exponential generating func-
tion for the numbers of vertices in the Hasse diagrams. The coefficients
in this exponential generating function are the Bell numbers for type
A and the Dowling numbers for type B. For type D these numbers are
apparently unnamed.

Corollary 5. The Whitney numbers T (n, k) = W (n, n − k) for the
2-Dowling arrangements satisfy the recurrence relation

T (n, k) = (2k + 1)T (n− 1, k) + T (n− 1, k − 1).

Proof.
( ∂
∂x
− 2 y

∂

∂y
− 1− y

)
ex exp

(y
2
·
(
e2x − 1

))
= 0.

Edges in the Hasse diagrams

There are two obvious ways to count edges in a Hasse diagram.
Namely, go through all vertices and add up the numbers of edges that
go upwards, or, dually, that go downwards. As the result of Orlik
and Solomon for the elements of rank 1 suggests, it is easier here to
count edges corresponding to vertices that cover a given vertex than to
count those edges corresponding to vertices that are covered by a given
vertex.
An edge in the Hasse diagram for L(A) emanating in an upward
direction from E ∈ L(A) corresponds to a subspace E ′ ∈ L(A) of
codimension 1 in E. We shall count how many such subspaces are
contained in E.
Schematically, we have(

{B1, . . . , Bk}, ζ
)

�
(
{B′1, . . . , B

′

k−1}, ζ
′
)

with

E =

{
(x1, . . . , xn) ∈

� n
∣∣∣∣
a ∈ [n]− B =⇒ xa = 0
b, c ∈ Bj for some j =⇒ ζ(b) xb = ζ(c) xc

}

where B = B1 ∪ · · · ∪ Bk, and E
′ is obtained by imposing a further

equation,

E ′ =

{
(x1, . . . , xn) ∈

� n
∣∣∣∣
a ∈ [n]−B′ =⇒ xa = 0
b, c ∈ B′j for some j =⇒ ζ

′(b) xb = ζ
′(c) xc

}
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where B′ = B′1 ∪ · · · ∪B
′
k−1.

Imposing a further equation may have two different types of incar-

nations in terms of normal forms. (As usual, B̂k means that Bk is
omitted.)

• Fusing two blocks. Choose 1
�
i < j

�
k, ε ∈ {±1}.

∣∣∣∣∣∣∣

{B′1, . . . , B
′
k−1} := {B1, . . . , B̂i, . . . , B̂j, . . . , Bk, Bi ∪ Bj}

ζ ′(a) :=

{
ζ(a) if a ∈ B −Bj

ε · ζ(a) if a ∈ Bj

• Dropping one block. Choose 1
�
i

�
k.

∣∣∣∣∣
{B′1, . . . , B

′
k−1} := {B1, . . . , B̂i, . . . , Bk}

ζ ′(a) := ζ(a) for all a ∈ B −Bi

Lemma 6. For
(
{B1, . . . , Bk}, ζ

)
�
(
{B′1, . . . , B

′

k−1}, ζ
′
)

with fixed
(
{B1, . . . , Bk}, ζ

)
there are the following numbers of possibil-

ities for fusing two blocks or dropping one block.

type conditions fusing dropping

An−1
B = [n], ζ = 1

B′ = [n], ζ ′ = 1

(
k
2

)
0

Bn —
(
k
2

)
· 2 k

Dn

∣∣[n]− B
∣∣ 6= 1∣∣[n]− B′
∣∣ 6= 1

(
k
2

)
· 2

{
k if B 6= [n]

#
{
i
∣∣ |Bi|

�
2
}
if B = [n]

The total number of subspaces of dimension k − 1 in L(A) lying in
some fixed subspace E ∈ L(A) of dimension k is thus

(
k
2

)
for type A

and k2 for type B, while for type D this number is not specified by the
dimension alone and can vary between k2 − k and k2.
The following diagrams give a rough idea of how the Hasse diagrams
look for the first few lattices in the D-series. The first diagram abbre-
viates the relevant piece of information for the Hasse diagram of the
B3 lattice, whose full form was given earlier. For instance the Hasse
diagram for D4 contains

1 · 12 + 12 · 7 + 16 · 3 + 18 · 4 + 24 · 1 + 1 · 0 = 240
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edges.

B3

0

1

1

13

4

9

9

1

D2 = (A1)
2

0

1

1

2

2

1

D3 = A3

0

1

1

7

3

6

6

1

D4

0

1

1

24

3

16

4

18

7

12

12

1
D5

0

1

1

81

3

40

4

150

7

40

8

60

9

10

13

20

20

1

D6

0

1

1

268

3

96

4

955

7

120

8

480

9

320

13

80

14

180

16

15

21

30

30

1
Figure 2. Abbreviated Hasse diagrams

Theorem 7. The exponential generating functions for the numbers of

edges in the Hasse diagrams for types (An−1)n � 0, (Bn)n � 0, and (Dn)n � 0
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are as given in the following table.

type exponential generating function

A
1

2
(ex − 1)2 exp(ex − 1)

B ex
1

4

(
e4x − 1

)
exp
(1
2

(
e2x − 1

))

D (ex − 1− x)
1

4

(
e4x − 1

)
exp
(1
2

(
e2x − 1

))

+ ex
1

4

(
e4x − 1− 4x

)
exp
(1
2

(
e2x − 1− 2x

))

Proof. For type An−1 there are S(n, k) k-dimensional subspaces each
containing

(
k
2

)
subspaces in L(A) of codimension 1. Thus we get the

generating function

∑

n,k

S(n, k)
(
k
2

)xn
n!
=
1

2

∂2

∂y2

∑

n,k

S(n, k)
xn

n!
yk
∣∣∣
y=1

=
1

2

∂2

∂y2
exp
(
y · (ex − 1)

)∣∣∣
y=1
=
1

2
(ex − 1)2 exp(ex − 1).

For type Bn there are
n∑
j=k

2j−k
(
n
j

)
S(j, k) k-dimensional subspaces

each containing k2 subspaces in L(A) of codimension 1. Thus we get
the generating function

∑

n,k

n∑

j=k

2j−k
(
n
j

)
S(j, k) k2

xn

n!

=
∑

j,n

xn−j

(n− j)!

∂

∂y
y
∂

∂y

∑

k

2j−kS(j, k)
xj

j!
yk
∣∣∣
y=1

=
∑

m � 0

xm

m!

∂

∂y
y
∂

∂y

∑

j,k

2j−kS(j, k)
xj

j!
yk
∣∣∣
y=1

=
∑

m � 0

xm

m!

∂

∂y
y
∂

∂y
exp
(y
2
·
(
e2x − 1

))∣∣∣
y=1

=
∑

m � 0

xm

m!

1

4

(
e4x − 1

)
exp
(1
2

(
e2x − 1

))

= ex
1

4

(
e4x − 1

)
exp
(1
2

(
e2x − 1

))
.
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The reader may wonder why we did not insert the formula for

∑

n,k

∑

j

2j−k
(
n
j

)
S(j, k)

xn

n!
yk

directly. The reason for going through the seemingly arcane substi-
tution m = n − j is that we can then use this calculation for type D.
Namely, for type D we must subtract the terms for j = n−1 and j = n,
that is, for m = 1 and m = 0 in the generating function for B and then
add the modified term corresponding to j = n.
Let us direct our attention to the case B = [n] for Dn. We get
a partition of [n] into k blocks with exactly h blocks of length 1 by
choosing h elements from [n] and partitioning the remaining set of
n − h elements into k − h blocks of lengths at least 2. Taking into
account also the choice of ζ : [n]→ {±1}, we have

2n−k
(
n
h

)
S2(n− h, k − h)

elements of rank n− k in the Hasse diagram for Dn which are covered
by k2 − h elements. The modified term corresponding to j = n is thus

∑

n,k

∑

h

2n−k
(
n
h

)
S2(n− h, k − h) (k

2 − h)
xn

n!

=
∑

n,k

∑

h

xh

h!
2n−kS2(n− h, k − h) (k

2 − h)
xn−h

(n− h)!
yk
∣∣∣
y=1

=
∑

h

xh

h!

( ∂
∂y
y
∂

∂y
− h
)
yh
∑

n,k

2n−kS2(n− h, k − h)
xn−h

(n− h)!
yk−h
∣∣∣
y=1

=
∑

h

xh

h!

( ∂
∂y
y
∂

∂y
− h
)
yh exp

(y
2
·
(
e2x − 1− 2x

))∣∣∣
y=1

=
∑

h

xh

h!

(
h2 − h + (2h+ 1)

1

2

(
e2x − 1− 2x

)
+
1

4

(
e2x − 1− 2x

)2)

× exp
(1
2

(
e2x − 1− 2x

))

= ex
(
x2 + (2x + 1)

1

2

(
e2x − 1− 2x

)
+
1

4

(
e2x − 1− 2x

)2)

× exp
(1
2

(
e2x − 1− 2x

))

= ex
1

4

(
e4x − 1− 4x

)
exp
(1
2

(
e2x − 1− 2x

))
.



15

The exponential generating function for the numbers of edges for the
D-series therefore takes the form

(ex−1−x)
1

4

(
e4x−1

)
exp
(1
2

(
e2x−1

))
+ex
1

4

(
e4x−1−4x

)
exp
(1
2

(
e2x−1−2x

))
.

A curious determinant

Apparently it was A. Lenard who discovered that the Hankel deter-
minant with the Bell numbers as entries is a superfactorial (see the
reference in [We]). Let us compute its B-analogue. So let the Dowling
numbers Dn be given by

∑

n � 0
Dn
xn

n!
= ex exp

(1
2

(
e2x − 1

))
.

Proposition 8.
∣∣∣∣∣∣∣∣∣∣∣

D0 D1 . . . Dn

D1 D2 . . . Dn+1
...

...
...

Dn Dn+1 . . . D2n

∣∣∣∣∣∣∣∣∣∣∣

= 2n(n+1)/2
n∏

k=1

k!

We shall prove the following generalization which involves the num-
bers Gn (for l = 0) that occurred in Kerber’s note [Ke, (7)] in connexion
with multiply transitive groups and also in M. Bernstein’s and Sloane’s
“eigen-sequence paper” [BeSl, Table 1(a)] in a new setting.

Proposition 9. Define the sequence of generalized Bell numbers (Gn)n � 0
depending on l and m by

∑

n � 0
Gn
xn

n!
= elx exp

( 1
m

(
emx − 1

))
.(4)

Then
∣∣∣∣∣∣∣∣∣∣∣

G0 G1 . . . Gn

G1 G2 . . . Gn+1
...

...
...

Gn Gn+1 . . . G2n

∣∣∣∣∣∣∣∣∣∣∣

= mn(n+1)/2
n∏

k=1

k!(5)
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Proof. The statement in [Ko, p. 113/114] can be rephrased by saying
that a Hankel determinant does not change its value when the matrix
entries are subject to a binomial transform. Hence the determinant
in (5) is independent of l ∈

�
and consequently also independent of

l when l is considered as an indeterminate. Therefore we will assume
that l = 0 in the definition (4) of the numbers Gn.
As an aside let us mention that the invariance under binomial trans-
form gives the following identity between Hankel determinants with
Bell numbers as entries.∣∣∣∣∣∣∣∣∣∣∣

B0 B1 . . . Bn

B1 B2 . . . Bn+1
...

...
...

Bn Bn+1 . . . B2n

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

B1 B2 . . . Bn+1

B2 B3 . . . Bn+2
...

...
...

Bn+1 Bn+2 . . . B2n+1

∣∣∣∣∣∣∣∣∣∣∣

To compute the determinant (5) we proceed by induction. Let us
first define Hn,k ∈

�
[m] by

∑

n � 0
Hn,k
yn

n!
=
1

k!
e−y
1

mk
(
log(1 +my)

)k
(k = 0, 1, 2, . . .).(6)

Note that Hn,n = 1. Hence with

Ih,n =

n∑

k=0

Gh+kHn,k(7)

we have∣∣∣∣∣∣∣∣∣∣∣

G0 G1 . . . Gn

G1 G2 . . . Gn+1
...

...
...

Gn Gn+1 . . . G2n

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

G0 . . . Gn−1 I0,n
...

...
...

Gn−1 . . . G2n−2 In−1,n

Gn . . . G2n−1 In,n

∣∣∣∣∣∣∣∣∣∣∣

.(8)

From
∑

h,n

Ih,n
xh

h!

yn

n!
= exp

( 1
m

(
emx − 1

))
exp
(
y ·
(
emx − 1

))
(9)

we see that I0,n = · · · = In−1,n = 0 and In,n = m
n ·n!. Hence (5) follows

from (8) by induction.
We must finally prove (9). So let us compute:

∑

h,n

Ih,n
xh

h!

yn

n!

(7)
=
∑

h,k,n

Gh+kHn,k
xh

h!

yn

n!
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(6)
=
∑

h,k

Gh+k
xh

h!

1

k!
e−y
1

mk
(
log(1 +my)

)k

= e−y
∑

h,k

Gh+k
1

(h+ k)!

(
h+k
h

)
xh
1

mk
(
log(1 +my)

)k

= e−y
∑

n

Gn
1

n!

(
x+

1

m
log(1 +my)

)n

(4)
= e−y exp

(
1

m

(
em
(
x+ 1

m
log(1+my)

)
− 1
))

= exp
( 1
m

(
emx − 1

))
exp
(
y ·
(
emx − 1

))
.

We have thus verified equation (9).
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