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Abstract

A prime Pythagorean triangle has three integer sides of which the hypotenuse and
one leg are primes. In this article we investigate their properties and distribution.
We are also interested in finding chains of such triangles, where the hypotenuse of
one triangle is the leg of the next in the sequence. We exhibit a chain of seven
prime Pythagorean triangles and we include a brief discussion of primality proofs
for the larger elements (up to 2310 digits) of the associated set of eight primes.
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1. Introduction

While investigating the distribution of special forms of primes, the first author ac-
cidently came across a conjecture about Pythagorean triangles (right triangles with
integral sides). The conjecture, based on the famous Conjecture (H) of Sierpiński
and Schinzel, states that there is an infinite number of Pythagorean triangles which
have a leg and hypotenuse both prime [9, page 408].
Pythagorean triangles have been the subject of much recreational material [1] as

well as the basis of some of the most important and fundamental topics in number
theory. However, we could not find any significant references to such two-prime
Pythagorean triangles, and hoping that we had found a new topic to study we
enthusiastically started
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(1) developing appropriate theory and computer programs;
(2) searching for large two-prime triangles;
(3) searching for sequences of two-prime triangles where the hypotenuse of the
previous triangle becomes the leg of the next one.

The largest two-prime Pythagorean triangle that was found had a leg of 5357
digits and an hypotenuse of 10713 digits. It soon became apparent that finding
sequences of triangles was exceptionally interesting and challenging. Eventually a
sequence of seven triangles was found. More significant than the seven triangles is
the improvement by the second author of the general method, APRCL, for primality
proving so that the seventh hypotenuse of 2310 digits could be proved prime.

2. Theory

A two-prime Pythagorean triangle, A2 +B2 = C2, must be primitive, so that

A = u2 − v2, B = 2uv, C = u2 + v2,

with gcd(u, v) = 1, and u, v of different parity. Since A = (u+ v)(u − v), for A to
be prime it is necessary that (u− v) = 1 so that

A = 2v + 1, B = 2v2 + 2v, C = 2v2 + 2v + 1.

Thus

(2.1) C =
A2 + 1

2
.

Note that the even leg is only one less than the hypotenuse. The triangles get quite
thin as A increases.
To find two-prime Pythagorean triangles it is necessary to find pairs of primes

A,C that satisfy the above equation. Table 1 lists the smallest two-prime Pythago-
rian triangles.

Table 1. Pythagorean triangles with two prime sides

rank prime leg even leg hypotenuse
1 3 4 5
2 5 12 13
3 11 60 61
4 19 180 181
5 29 420 421
6 59 1740 1741
7 61 1860 1861
8 71 2520 2521
9 79 3120 3121
10 101 5100 5101
100 4289 9197760 9197761
1000 91621 4197203820 4197203821

Small triangles are easy to find by a simple search, but finding large triangles
with thousands of digits is complicated by the difficulty of proving true primality
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of the hypotenuse, C. However, if (C − 1) has many factors then it is easy to prove
primality using [2], assuming that the factored part of (C − 1) exceeds 3

√
C. Since

(2.2) C − 1 = A
2 + 1

2
− 1 = (A2 − 1)/2 = (A− 1)(A+ 1)/2,

by picking an appropriate form for A, then (A − 1) can be completely factored so
that (C − 1) will be about 50% factored.
Using the form A = k ·10n+1, a computer search of a few days gave the following

large triangle:

A = 491140 · 101300 + 1, 1306 digits, C = 2612 digits.

A few days after this result was posted to the NMBRTHRY list we received a
message from Iago Camboa announcing a much larger triangle:

A = 1491 · 217783 + 1, 5357 digits, C = 10713 digits.

He cleverly used a previously computed list of primes as a source for A thus elimi-
nating the large amount of time required to find the first prime.

3. Two-prime Pythagorean triangle sequences

It is possible to find a series of primes, P0, P1, P2, ..., Pk , ..., Pn such that

(3.1) Pk+1 =
P 2k + 1

2
.

This represents a sequence of n two-prime triangles where Pk is the hypotenuse of
the k-th triangle and the leg of the (k + 1)-th triangle. Each P has about twice
the number of digits as the previous P . Table 2 is a list of the smallest sets of two
sequential prime Pythagorean triangles.

Table 2. Two sequential prime Pythagorean triangles

triangle 1 triangle 2
1 3 4 5 5 12 13
2 11 60 61 61 1860 1861
3 19 180 181 181 16380 16381
4 59 1740 1741 1741 1515540 1515541
5 271 36720 36721 36721 674215920 674215921
6 349 60900 60901 60901 1854465900 1854465901
7 521 135720 135721 135721 9210094920 9210094921
8 929 431520 431521 431521 93105186720 93105186721

Table 3 is a list of the starting primes for the smallest prime Pythagorean se-
quences for two, three, four and five triangles. These were found by straight forward
unsophisticated searching and took about 10 computer-days (Pentium/200), mostly
for finding five triangles.
Finding the starting prime for the smallest prime sequence of six triangles took

about 120 computer days.

P0 for 6 triangles = 2500282512131.
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Table 3. Starting prime for smallest prime Pythagorean sequences

2 triangles 3 triangles 4 triangles 5 triangles
1 3 271 169219 356498179
2 11 349 1370269 432448789
3 19 3001 5965699 5380300469
4 59 10099 15227879 10667785241
5 271 11719 17750981 11238777509
6 349 12281 19342559 12129977791
7 521 25889 21828601 23439934621
8 929 39901 24861761 28055887949
9 1031 46399 27379621 33990398249
10 1051 63659 34602049 34250028521
11 1171 169219 39844619 34418992099
12 2381 250361 48719711 34773959159
13 2671 264169 50049281 34821663421
14 2711 287629 51649019 36624331189
15 2719 289049 52187371 40410959231
16 3001 312581 52816609 43538725229
17 3499 353081 58026659 47426774869
18 3691 440681 73659239 48700811941
19 4349 473009 79782821 49177751131
20 4691 502501 86569771 59564407571

Next, we attempted to derive the number of n triangle sequences that could
be expected. If the (n + 1) numbers that make up the n triangles were selected
randomly but were of the proper size then the probability that P is the start of n
triangles is

(3.2) Q(P, n) =
n
∏

0

1

logPi
=

n
∏

0

1

2i(logP )
=

1

2n(n+1)/2(logP )n+1
.

However, there are correlations between the primes that affect the prime probabil-
ities. It is easy to show from equation (2.1) that P0 can only end in 1 or 9, which
elininates half the possible P0’s, and assures that all subsequent potential primes
cannot be divisible by 2, 3 or 5. Thus, the probability of each subsequent number
being prime is increased by the factor (2/1)(3/2)(5/4) = 3.75. The probability that
P is the start of n prime triangles now becomes,

(3.3) Q(P, n) =
0.5(3.75)n

2n(n+1)/2(logP )n+1
.

The expected number of prime triangles up to a given P0 is

(3.4) E(P0, n) =

P0
∑

P=3

Q(P,N) =
0.5(3.75)n

2n(n+1)/2

P0
∑

P=3

1

(logP )n+1
.
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The last summation can be approximated by an integral, which after integrating
by parts becomes,

R(P, n) =
1

n!
Li(P )− 1

n!

P

logP
− · · · − 1

n(n− 1)
P

(logP )(n−1)
− 1
n

P

(logP )n
,

where Li(P ) is the logarithmic integral. Equation (3.4) now becomes

(3.5) E(P0, n) =
0.5(3.75)n

2n(n+1)/2
R(P0, n)(1.3)

n .

Note the inclusion of a correction factor, (1.3)n. As is discussed in the following
section on sieving, there are other correlations between the primes which affect
the expectation. These are difficult to derive theoretically so we determined it
empirically. Table 4 compares the estimated and actual number of triangles found.
The corrected estimate appears adequate to assist in estimating the search time for
seven prime Pythagorean triangles.

Table 4. Estimated and actual number of prime Pythagorean triangles

triangles corrected
n P0 actual estimate estimate
1 130000 1302 1090 1420
2 1980000 1005 741 1252
3 108 953 469 1030
4 18 · 108 205 53 151
5 63 · 109 21 4 15
6 28 · 1012 1 0.14 0.7

Next, we use equation (3.5) to estimate the smallest P0 that will give seven
triangles. The following table shows we can expect that P0 for seven triangles will
be about 6700 times larger than P0 for six triangles. Using performance data from
the search for six triangles, this means that the search for the smallest sequence of
seven prime Pythagorean triangles could be expected to take about 200 computer-
years!

n P0 for expectation=1 actual P0
2 28 3
3 1,350 271
4 1,000,000 169, 219
5 1.5 · 109 3.5 · 108
6 4.0 · 1012 2.5 · 1012
7 2.7 · 1016

It was clear that the search for the smallest sequence of seven triangles as
presently constituted was impractical. For every P0 the search method included
testing by division to see if each of the (n + 1) potential primes was free of small
factors. The second author then proposed an efficient sieving method that limited
the search to sequences that had a high probability of success. This made a search
for seven triangles reasonable.
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4. The Sieve

A set of seven Pythagorean triangles with the desired properties is equivalent to
a chain of eight primes, P0, P1, . . . , P7, linked by the condition Pi+1 = (P

2
i + 1)/2,

i = 0, 1, . . . , 6.
The purpose of the sieve is to eliminate from further consideration numbers P0

for which either P0 itself or one of the numbers Pi, i = 1, 2, . . . , 7, is divisible by a
small prime. Let q be an odd prime and suppose P is to be considered as a possible
value of P0. Clearly, we can reject P if P ≡ 0 (mod q). Furthermore, we can reject
P if P1 is divisible by q, that is, if

P ≡
√
−1 (mod q),

on the assumption that
(

−1
q

)

= 1. Continuing in this way, we can reject P if

P ≡
√

2
√
−1− 1 (mod q)

(for then P2 is divisible by q), or if

P ≡
√

2

√

2
√
−1− 1− 1 (mod q),

and so on, provided that the various square roots (mod q) exist. In each case,
where there is a square root (mod q) there are two possible values and hence two
extra residues (mod q) that can be eliminated.
For prime q, we compute the set E(q) of forbidden residues (mod q) as follows.

Start with E0(q) = {0}. Given Ei(q), let

Ei+1 =

{

±
√
2e− 1 (mod q) : e ∈ Ei and

(

2e− 1
q

)

= 1

}

.

Then E(q) is the union of E0(q), E1(q), . . . , E7(q). In Table 5 we list E(q) for the
first few primes q ≡ 1 (mod 4).
Now let

P = NQ+H,

where Q is the product of small primes and H is allowed to run through all the
permitted residues (mod Q). We sieve the numbers N . That is, we start with an
interval N0 ≤ N < N1 and for each sieving prime q, gcd(q,Q) = 1, we remove all
those N ∈ [N0, N1) for which NQ+H is divisible by q.
We split Q into pairwise coprime divisors m0, m1, . . . , mr. For each divisor

mj of Q, j = 0, 1, . . . , r, we make a list of the permitted residues (mod mj); h
is a permitted residue (mod mj) if h is not zero (mod mj) and if the function
h→ (h2 +1)/2 (mod mj) does not produce zero (mod mj) during the first seven
iterations. The permitted residues H (mod Q) are constructed from permitted
residues h (mod mj) using the Chinese Remainder Theorem. It works well if Q is
the product of primes which have small percentages of permitted residues. From
this perspective the best primes, in descending order of merit, turn out to be: 29
(34%), 5 (40%), 2 (50%), 17 (59%), 13 (62%), 3 (67%), 53 (68%), 101 (71%), 89
(74%) and 233 (77%).
For the actual search we chose Q = 21342962305470, with divisors 6630 = 2 · 3 ·

5 · 13 · 17, 29, 89, 101, 53, and 233. The number of values of H (mod Q) turns out
to be 320 · 10 · 66 · 72 · 36 · 180 = 98537472000, the indicated factors of this product
being the numbers of permitted residues modulo the corresponding factors of Q.
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The construction of the sieve and the method of computing H (mod Q) were
based on computer programs designed for finding prime k-tuplets; see [6] for the
details. We set up a table of sieving primes q together with pre-computed values of
−1/Q (mod q) as well as, for q ≡ 1 (mod 4), e/Q (mod q) for each pair e, q− e in
E(q). We can then rapidly calculate the index of the first N to be removed from
the sieve array for P ≡ e (mod q): e/Q−H/Q−N0 (mod q).
The program also allows us to limit the size of primes q ≡ 3 (mod 4) used by the

sieve. One reason for doing so would be to give priority to primes q ≡ 1 (mod 4);
they have more residues for sieving and therefore one would expect them to be in
some sense more efficient. In fact it was found by experiment that if P has about
19 digits, a sieve limit L0 = 20000 for q ≡ 3 (mod 4) and 480000 for q ≡ 1 (mod 4)
was approximately optimal.
Further performance improvements are possible by limiting the influence of

primes q ≡ 1 (mod 4). For each P that survives the sieve we do a probable-
primality test, 2P ≡ 2 (mod P ), on P as well as, if P turns out to be a probable-
prime, the numbers that follow P in the chain, stopping as soon as a composite
is found. The effort required to perform the probable-primality test increases by
a factor of about eight as we move from Pi to Pi+1. Therefore it might be bet-
ter if priority were given to sieving primes q and residues e (mod q) which would
eliminate composite numbers from the larger elements of the chain.
For controlling the effect of primes q ≡ 1 (mod 4) we provided a set of parameters

L1, L2, . . . . If q ≡ 1 (mod 4) is a sieving prime and e ∈ Ei(q) then we do not use
residue e (mod q) for sieving unless q < Li. As a result of a certain amount of
experimentation we found that the optimum sieving rate occurs with the limits set
approximately as follows: L1 = 120000, L2 = 240000, L3 = 360000, together with
a limit L0 = 20000 for primes ≡ 3 (mod 4) and an overall sieve limit of 480000.
From these values we can compute an expected survival rate of

∏

q prime

q − νq
q
=
1

3770
,

approximately, where νq is the number of residues (mod q) used by the sieve.

5. Eight Primes

In September 1999 the search was successful and this chain of eight probable
primes was found:

P0 = 2185103796349763249 (19 digits),

P1 = (P 20 + 1)/2 (37 digits),

P2 = (P 21 + 1)/2 (73 digits),

P3 = (P 22 + 1)/2 (145 digits),

P4 = (P 23 + 1)/2 (289 digits),

P5 = (P 24 + 1)/2 (579 digits),

P6 = (P 25 + 1)/2 (1155 digits),

P7 = (P 26 + 1)/2 (2310 digits).

The search program was designed to run on standard IBM PCs. We employed
about 15 such machines, with clock speeds ranging from 200 MHz to 400 MHz. The
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faster computers were sieving and testing numbers at rates of about ten billion per
hour. We also found 174 additional chains of seven (probable) primes.

6. Primality Proofs

The first six numbers, P0, P1, . . . , P5, as well as other small primes mentioned in
this section are easily verified by the UBASIC [3] program APRT-CLE, a straight-
forward implementation of the APRCL test. For i = 6 and 7 we attempt to factorize

Pi − 1 = (P0 − 1)
i−1
∏

j=0

1

2
(Pj + 1) .

Thus

P0 − 1 = 24 · 233 · 586132992583091,
(P0 + 1)/2 = 32 · 53 · 13 · 761 · 19087 · 5143087,
(P1 + 1)/2 = 72 · 1063 · 189043 · 7552723 · 113558719 · 141341652553,
(P2 + 1)/2 = 7058053 · 5848063479673576700713235221

·34520041584369005634844907730019249777,
(P3 + 1)/2 = 2179 · 1847645923 · C132,
(P4 + 1)/2 = 307 · 769 · 262513 · P278,
(P5 + 1)/2 = 108139 · 11360649709 · 5586562264501 · C550,
(P6 + 1)/2 = 4177 · 1372052449 · 5098721569 · 84098816095916212867 · C1113,

where C132, C550 and C1113 are composite numbers of 132, 550 and 1113 digits,
respectively, and P278 is a 278-digit prime:

P278 = 66505518540598996114987486506055236521044267373138

69473288000457727001877127498646545001634613677898

53932112480508999228232340454335875401889420451888

17780482079524485531037464472393979852934170207932

02663155485302406204947222346461607409301255277393

4788467292248055697961196019.

The 28-digit factor of P2+1 and the 20-digit factor of P6+1 were found by Manfred
Toplic and Paul Zimmermann.
Since we have a 41% partial factorization of P6−1 we can establish the primality

of P6 by the methods of Brillhart, Lehmer and Selfridge [2]. (Similarly a 77%
factorization of P5 − 1 provides an alternative proof for P5.)
It remains to deal with P7. We do not have enough prime factors of P7 − 1 for

a simple proof, so we use a combination of methods. Suppose d < P7 is a prime
factor of P7. The proof that no such d exists proceeds in several stages.
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Gathering together the prime factors of P7 listed above, let

F1 = 11364028773118678645863393880225035110068188490680

74284625807644534721210969640169863192044176288720

57382836214336492569310719940321645143241641366672

31704620613678520580684280352992373327229897947340

09917692032743575475918022578947700337216860293874

96561498464943981086970289943873321681460108830000

00131801406514260770804840415255291401064877989705

76202962420323563098312300324091122817224414751412

15123765209184430598589590008879997663256918503367

07250451432160496252649191808276871593840887080642

91103468534974000 (517 digits).

Then, after confirming that the conditions of Pocklington’s theorem [8] hold, we
have

(6.1) d ≡ 1 (mod F1).

Similarly, by Morrison’s theorem [2, Theorem 16],

(6.2) d ≡ ±1 (mod F2),

where F2 = 43
2 · 73 = 134977.

Next, we confirm that the conditions for the APRCL test (see, for example, Co-
hen and A. K. Lenstra [4] or Cohen and H. W. Lenstra [5]) are satisfied with the
prime powers pk: {25, 33, 52, 7, 11, 13}, and primes q: {11, 17, 19, 23, 29, 31, 37, 41,
53, 61, 67, 71, 79, 89, 97, 101, 109, 113, 127, 131, 151, 157, 181, 199, 211, 241, 271,
281, 313, 331, 337, 353, 379, 397, 401, 421, 433, 463, 521, 541, 547, 601, 617, 631,
661, 673, 701, 757, 859, 881, 911, 937, 991, 1009, 1051, 1093, 1171, 1201, 1249, 1301,
1321, 1801, 1873, 1951, 2003, 2017, 2081, 2161, 2311, 2341, 2377, 2521, 2731, 2801,
2861, 2971, 3121, 3169, 3301, 3361, 3433, 3511, 3697, 3851, 4159, 4201, 4621, 4951,
5281, 5851, 6007, 6301, 6553, 7151, 7393, 7561, 7723, 8009, 8191, 8317, 8581, 8737,
9241, 9829, 9901, 11551, 11701, 12601, 13729, 14561, 14851, 15121, 15401, 15601,
16381, 16633, 17551, 18481, 19801, 20021, 20593, 21601, 21841, 23761, 24571,
25741, 26209, 28081, 30241, 34651, 36037, 38611, 39313, 42901, 47521, 48049,
50051, 51481, 54601, 55441, 65521, 66529, 70201, 72073, 79201, 81901, 92401,
93601, 96097, 103951, 108109, 109201, 110881, 118801, 120121, 123553, 131041,
140401, 150151, 151201, 180181, 193051, 196561, 200201, 216217, 218401, 257401,
270271, 300301, 332641, 393121, 415801, 432433, 450451}. The result is that

(6.3) d ≡ P i7 (mod S) for some i = 1, 2, . . . , T − 1,

where T = 21621600 is the product of the pks and S = 8.164364 · 10634, approxi-
mately, is the product of the qs.
Let G = F1F2S and observe that F1, F2 and S are pairwise coprime. We combine

(6.1), (6.2) and (6.3) by the Chinese Remainder Theorem to obtain

d ≡
(

1

F2S
mod F1

)

F2S +

(

e

F1S
mod F2

)

F1S
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+

(

P i7
F1F2

mod S

)

F1F2 (mod G)

for some e = ±1 and i = 1, 2, . . . , T−1. After eliminating all possible d <
√
P7 < G

by trial division we can conclude that P7 is prime.

7. Acknowledgements

We would like to thank Jeremy Humphries, Manfred Toplic and Paul Zimmer-
mann for contributing their own computer resources to the search for seven prime
Pythagorean triangles. We are specifically grateful to Paul Zimmermann, who also
made his Elliptic Curve program available to us for the partial factorization of
P7 − 1.

References

1. A. H. Beiler, Recreations In the Theory of Numbers, 2nd ed., Dover Publications, New York,
ch. XIV, 1966.

2. John Brillhart, D. H. Lehmer and J. L. Selfridge, New primality criteria and factorizations of
2m ± 1, Math. Comp., 29 (1975), 620-647.

3. C. K. Caldwell, UBASIC, J. Recreational Math., 25 (1993), 47-54.
4. H. Cohen and A. K. Lenstra, Implementation of a new primality test, Math. Comp., 48 (1987),
103-121.

5. H. Cohen and H. W. Lenstra, Primality testing and Jacobi sums, Math. Comp., 42 (1984),
297-330.

6. Tony Forbes, Prime clusters and Cunningham chains, Math. Comp., 68 (1999), 1739-1747.
7. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford
University Press, 1979.

8. H. C. Pocklington, The determination of the prime or composite nature of large numbers by
Fermat’s theorem, Proc. Cambridge Philos. Soc., 18 (1914-16), 29-30.

9. P. Ribenboim, The New Book of Prime Number Records, 3rd ed., Springer-Verlag, New York,
1995.

(Mentions sequences A048161, A048270 and A048295.)

Received May 6, 2001; revised version received Sept. 3, 2001. Published in Journal
of Integer Sequences Sept. 13, 2001.

Return to Journal of Integer Sequences home page.

http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=048161
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=048270
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=048295
http://www. research.att.com/~njas/sequences/JIS/


11

Table 5. E(q)

q E(q)
5 {0, 2, 3}
13 {0, 3, 5, 8, 10}
17 {0, 3, 4, 5, 12, 13, 14}
29 {0, 2, 3, 5, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 24, 26, 27}
37 {0, 6, 8, 14, 23, 29, 31}
41 {0, 9, 32}
53 {0, 4, 14, 16, 17, 18, 19, 22, 23, 30, 31, 34, 35, 36, 37, 39, 49}
61 {0, 11, 50}
73 {0, 23, 27, 46, 50}
89 {0, 9, 26, 27, 30, 34, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52,

55, 59, 62, 63, 80}
97 {0, 7, 22, 25, 72, 75, 90}
101 {0, 7, 10, 12, 15, 16, 22, 23, 25, 26, 34, 35, 37, 38, 50, 51, 63, 64,

66, 67, 75, 76, 78, 79, 85, 86, 89, 91, 94}
109 {0, 33, 76}
113 {0, 2, 15, 46, 54, 59, 67, 98, 111}
137 {0, 22, 37, 100, 115}
149 {0, 44, 105}
157 {0, 10, 28, 31, 126, 129, 147}
173 {0, 32, 80, 93, 141}
181 {0, 2, 9, 19, 30, 33, 41, 47, 54, 56, 64, 78, 80, 88, 93, 101, 103, 117,

125, 127, 134, 140, 148, 151, 162, 172, 179}
193 {0, 57, 81, 112, 136}
197 {0, 14, 37, 94, 103, 160, 183}
229 {0, 18, 19, 30, 48, 54, 59, 69, 91, 107, 110, 119, 122, 138, 160, 170,

175, 181, 199, 210, 211}
233 {0, 3, 5, 7, 12, 13, 16, 21, 25, 27, 30, 42, 43, 44, 48, 52, 53, 55, 61,

67, 71, 80, 85, 89, 101, 104, 115, 118, 129, 132, 144, 148, 153, 162, 166,
172, 178, 180, 181, 185, 189, 190, 191, 203, 206, 208, 212, 217, 220, 221,

226, 228, 230}
241 {0, 64, 177}
257 {0, 16, 51, 206, 241}
269 {0, 82, 187}
277 {0, 8, 52, 60, 106, 171, 217, 225, 269}
281 {0, 53, 228}
293 {0, 4, 121, 138, 155, 172, 289}
313 {0, 7, 21, 25, 92, 221, 288, 292, 306}
317 {0, 17, 23, 24, 31, 44, 50, 52, 56, 74, 97, 114, 115, 126, 130, 134,

141, 142, 145, 153, 164, 172, 175, 176, 183, 187, 191, 202, 203, 220, 243,
261, 265, 267, 273, 286, 293, 294, 300}

337 {0, 21, 31, 34, 50, 71, 73, 90, 110, 114, 116, 144, 148, 153, 157, 162,
175, 180, 184, 189, 193, 221, 223, 227, 247, 264, 266, 287, 303, 306, 316}


