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Abstract

We derive integral representations for the Catalan numbers C(n), shifted Catalan numbers C(n + p),
and the numbers n!- C(n) and C(n) - B(n), where B(n) are the Bell numbers, forn = 0,1.... Our method
is to use inverse Mellin transform. All these numbers are power moments of positive functions, and their

representations turn out to be unique.
The Catalan numbers C(n), n =0,1,2,..., defined by

(%)

n+1

C(n) = ; (1)

are among the most ubiquitous sequences in enumerative combinatorics. Stanley ] cites no less than 66

different combinatorial settings where these numbers appear. The first few Catalan numbers are
1,1,2,5,14,42,132,429, 1430, 4862

forn =0...9. A plethora of information about the C'(n)’s can be found in [l ], under sequence no. .
In this note we derive an integral representation of C'(n) as the n-th power moment of a certain non-
negative function We () on the positive half-axis. We also study the ramifications of this representation for
other integer sequences involving C'(n).
To this end we seek a function We (z) such that

/OOO:L‘"WC(:B)CZ:E = C(n) (2)
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47T (n +1/2)

=0,1,...
V0 (n +2) ’ =
Replacing n by a complex variable s — 1, we rewrite Eq(ﬁ) as

e 45717 (s — 1/2)
2" We(2)de = —————FL2  , Res>1
/0 c(2) Val(s+ 1)
which implies that

eI (s 1/2)
We(z) = M ! [m,l‘]a
where M1 [f*(s); 2] = f(z) is the inverse Mellin transform (A, with f* (s) = M[f(z);s]

= fooo '~ f(x)dx
the Mellin transform of f(z). We note the following property of M :
1 s b
M[xbf(axh);s]:za___}{_bf* (8; >, bec R, h>0,

which, when specialized to a = %, b= —% and h = 1, implies that
-1 T A48 px _ ¢
Me75f (3) ] =47 (s - 1/2)/2 (7)
Adopting the standard notation (y)§ = y* if y > 0, (y)§ = 0 otherwise, and using the formula 2.2(1), p.151
of [ :
T
M=) 5] = D)2

Ta+s) ’ >0, s>0,
we can apply Eq(ﬂ) with f(z) = (1 — :L‘)?I‘__l and a = % This yields

(8)

et = (1-3)"

C(n):/:m" S de (10)

This is the solution of the Hausdorff moment problem on [0,4], which is always unique [m], and so the
representation of Eq.( is also unique.

By the same token we can find the solution of

/ "Wep(z)de=C(n+p), n=012..., p=12..., (11)
0

i.e. the unique representation of the shifted Catalan numbers C'(n + p), as the Hausdorff moments of

Wep(2) = x:% (1- 2); (12)

The Mellin convolution property for products of Mellin transforms, in its simplest incarnation, states ([@],

) that if M [W1 2(2); s] = p1,2(s) then

M i ()pa(s) 2l = WaaGa) = [ 3w (5) waar (13)

Observe that Wy 2(z) > 0 implies Wya(z) > 0.
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Figure 1: : The function W (z), s. Eq.(9). This function diverges at z = 0.

As an application of Eq(B) we look for an integral representation of the sequence n!- C(n) whose
initial terms are 1,1,4,30,336,5040, 95040, 2162160, 57657600, 1764322560, for n = 0...9; compare [[T],
no. . Using Eq(ﬂ) and performing the Mellin convolution in Eq() with Wi(z) = e and
Wa(z) = We(z), one ends up with the following Stieltjes moment problem :

/OO "Wie(z)dz = n! - C(n) = 0,1 (14)
x z)dx = n!-C(n) = , n=0,1,...,
0 e (n+ 1)t
with the solution
1 RV Z
= dt 1
Wic(z) oz - € . (15)
11 . 1 . (Vz
= Tyt e e (7) ! (16)

where erf(y) is the error function. The function Wi (z) is shown in Flg(ﬂ) As Wie(z) > 0, the (sufficient)
Carleman condition (Zle((ln%)_ﬁ = 00) (cf. Ref.[ﬁl]) indicates that the solution Wi (z) of Eq(@) is
also unique. Similar results are obtained by using We () instead of We () in Eq()

Another use of Eq.(||3) is illustrated by considering the sequence C(n) - B(n), where B(n) are the Bell
numbers ( see [E], no. , and [ﬂ] ). The initial terms of this sequence are 1, 1, 4, 25, 210, 2184,
26796, 376233, 5920200, 102816714, for n = 0...9. For this last sequence see [L]], no. [A06429]. The weight

function whose n-th moment is equal to B(n) is
1 = 3z — k)
w =- —_ 17
)= 13- , (17)

which is a consequence of Dobiriski formula, B(n)

=1y %, see [A. In Eq.([d), 6(y) is Dirac’s delta
function. By Mellin convolution of Wg(z) with W (z) one obtains

1 = 1 [dk—= T
)= —y — H(4-Z= 1
Whe(2) 271'6];]{7]{7! x ( k) ’ (18)
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Figure 2: : The function Wi¢(z), s. Eq.(16). This function diverges at = 0.

which, via Carleman’s criterion, is the only positive function such that its n-th moment is equal to C'(n)-B(n)
In Eq.(|lq) H(y) is the Heaviside function. The function Wp¢ () is displayed on Flg(ﬁ)
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: The function Wge (), s. Eq.(18). This function diverges at = 0.

Figure 3:
The last sequence that will concern us here is (n!)2C(n) = % Its initial terms are

1,1, 8,180, 8064, 604800, 68428800, 10897286400, 2324754432000

for n = 0...9; compare [EI], no. A060593. Proceeding as in Egs.(3) and (4), we are looking for Ws(x)
satisfying

e 45717 (s — 1/2)T2(s)
s—1
4% de = R 1 . 19
/0 T W ()da V(s + 1) o Hes> (19)
It appears that when studying Eq() it is possible to avoid using We (). As the first step we observe from
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Figure 4: : The function W3(z), s. Eq.(24). This function diverges at z = 0.

Eq.(6) that

1 e 7
-1 — =] = .
M [F (5 2) ,x] NG (20)
In addition, the following relation holds :

which is the formula 8.1(1), p.182 of [ﬂ] In Eq() Fi(y) is the exponential integral function. Combining
Eqs.() and () in the Mellin convolution we obtain

L [Ts—1/2r%s) 1 1 [
e [P

= 2\/Ee_Zﬁ+4\/FEi(—2\/E) , z>0 . (23)
X

In writing Eq() we have used the formula 2.5.4.2, p.72 of [ﬂ] Finally, we use Eq.(6) again (with a = %,
b=0and h = 1) and from Eq.(19) we get the solution
Wa(x) = —=e~V7 4 Bi(—/7) (24)
vz ’
which is plotted in Fig.(). As Ws(z) > 0, by Carleman’s criterion the solution is again unique.
Remark: E. P.Wigner ] has demonstrated that Eq.(@), under a suitable parametrization, describes
the distribution function of eigenvalues of an ensemble of random, symmetric, real matrices.

Integral representations of other combinatorial numbers can be found in [ For further applications of

Mellin convolution formula Eq.(), one may consult [ﬂ], , [n], [E] , [E] and [
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