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Abstract

Let H be the Hankel matriz formed from a sequence of real numbers S = {ag = 1,a1,a2,as, ...},
and let L denote the lower triangular matrixz obtained from the Gaussian column reduction of H.
This paper gives a matriz-theoretic proof that the associated Stieltjes matriz S is a tri-diagonal
matriz. It is also shown that for any sequence (of nonzero real numbers) T = {dy = 1,d;,ds ,ds, ...}
there are infinitely many sequences such that the determinant sequence of the Hankel matriz formed
from those sequences is T'.

1. Introduction. In this paper we give a matrix-theoretic proof (Theorem 2.1) of one of
the main theorems in [[]. In Section 2 we discuss the connection between the decomposition of a
Hankel matrix and Stieltjes matrices, and in Section 3 we discuss the connection between certain
lattice paths and Hankel matrices. Section 4 presents an explicit formula for the decomposition of
a Hankel matrix.

Definition 1.1. Let S = {ap = 1,a1,a2,as,...} be a sequence of real numbers. The Hankel
matrix generated by S is the infinite matrix

a az a3 a4 G5
az a3 a4 a5 Qg
ag a4 a5 ag ar
as a5 G ay asg

Definition 1.2. A lower triangular matrix
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is said to be a Riordan matrix if there exist Taylor series g(z) = 1+ ayz + asx? + ...+ apx™ + ...
and f(z) =x+ box? 4+ bsz® + ... 4+ bz + ... such that for every k > 0 the k-th column has ordinary
generating function g(z)(f(x))".

Definition 1.3. The Stieltjes matrix of a lower triangular matrix L is the matrix S which
satisfies LSy, = L" where L" is the matrix obtained from L by deleting the first row of L.

Thus

1 0 0 0 O lp 1 0 0 0
lip 1.0 0 0 .
o by 1 0 0 oo LoD
20 21 : S = l l l 1 0
L 30 31 32
lsp Is1 I3z 1 0 lap o lap Uz 1
l40 l41 l42 l43 1
and so
O B N
><10 ; ! 0 0 lo b1 1 0 0
S, =L"'L" = X ><21 -1 1 0 o tor te 10
32 lygo Iy lgo Uz 1
% X X =l 1
[ 1 0 0 0 .17
co b 1 0 0
| x a b 1 0
- X X ¢ b3 1
X X X c3 by
where

bo = lo, bk = lk1,k — Lk -1, K >0,

2 2
co =120 10, ck = (Ikp—1lesr1,k — ley1o-1) = lkr1p + lhtop, k> 0.

Definition 1.4. Let L and Sy, be as in Definition 1.3. We define



d 0 0 0 0

0 d 0 0 0

10 0 d 0 0
Dr=119 0o o0 ds 0
0 0 0 0 dy

to be the diagonal matrix with diagonal entries given by do = 1, diy+1 = dicg for k > 0.

2. Stieltjes and Hankel Matrices.
The following two theorems are proved in [[I].

Theorem 2.1. Let L be a lower triangular matrix and let D = Dy be the diagonal matrix
with nonzero diagonal entries {d;} as in Definition 1.4. Then LDL? is a Hankel matrix if and only

if Sy, is a tri-diagonal matrix, i.e. if and only if

b 1 0 0 O
Co b1 1 0 0
o 0 C1 b2 1 0
SL - 0 0 Co b3 1
0 0 0 C3 b4
where by =110, co=di, bp=lpr1p—lgr-1, o= dffl—:l ;

PROOF. Let H = LDL! be a Hankel matrix. Then
L=H(DLYH)™,
L7 = (H(DLt)—l)r — HT(DLt)_l,
Sy =L 'L" = L7Y(H"(DLY)™Y) = (L7'H")(DL")L.
Since H is a Hankel matrix, deleting the first row has the
column.

k>1.

same effect as deleting the first

[ do  dolio  dolao  dolzo  dolap
0 di dilar  dils1  dilg
i _pnrt_ | 0 0 da dolza  dalyo
L H=DL = 0 0 0 ds dslys ’
0 0 0 0 dy
[ dolio  dolao  dolzo  dolsg . |
dq diler  dilzr  diln
Agr _ p—1ge _ r—1gmye | O ds dalza  dalyo
L~ H =L""H —(L H) =10 0 d dalss
0 0 0 dy




_ - 1
dolio  dol2o dolzo  dolayo » XX XX
dy diloy  dilzr  dily 0 % >; X X
_(r-1gneprty-1_ | O da dalza  dalao 0 0 g x X
Sp=(LTHDL) = | 0 ds  dslss 0 0 0 £ x
0 0 0 dy 0o 0 0 0 +
4
(b 1 0 0 0 i
Co b1 1 0 0
. 0 C1 b2 1 0
o 0 0 Co b3 1
0 0 0 C3 b4
where
d d
bo =1l1p, o= =dj, b = lky16 — lkp—1 =2 k>
d() dk
Conversely, let Sy, be a tri-diagonal matrix and let H = LDL!. Then
L'H" = L7Y(LDLY)" = L~Y(L"DL") = (L7'L")DL! = Sy DL?
[bp 1 0 0 0 .7 [ do dolio dolao dolzo dolso - |
C b1 1 0 0 0 dl d1l21 d1l31 d1l41
. 0 C1 b2 1 0 0 0 d2 d2l32 d2l42
- 0 0 Co b3 1 0 0 0 d3 d3l43
0 0 0 C3 b4 0 0 0 0 d4
Therefore
(L_lHT)n,k = Cn—ldn—llk,n—l + bndnlk,n + dn-l—llk,n-l—l
= diil dn—llk,n—l + bndnlk,n + Cndnlk,n—l—l
= dn(lk,n—l + bnlk,n + Cnlk,n—l—l)
=dnlgt1n = (DLt)n,k+1 = (DLt)%,k = (L_IH)%,I@ = (L_ch)n,k'
We have shown that L~'H" = L~'H¢ and so H" = H¢. Hence H is a Hankel matrix. [

Theorem 2.2. L is a Riordan matrix (i.e. by = by = b and ¢ = ¢; = ¢ for k > 1) if and only

if f=a(14+bf 4 cf?) and
1

gzl—xbo—xcof’

where f, g are as in Definition 1.2.

See [[[] for the proof.

Corollary 2.3. Let T' = {dy = 1,dy,ds ,ds,...} be any sequence of (nonzero) real numbers.
Then there exists a sequence S = {ag = 1,a1,a29,as,...} such that T is equal to the sequence of
diagonal entries of D in the decomposition H = LDL? of the Hankel matrix generated by S .



ProOOF. As in Theorem 2.1, let ¢y =dy ,c, = d’;l:l ,k > 1, and form the Stieltjes matrix

bp 1 0 O
bp 1 0
C1 b2 1
0 Co b3
0 0 C3 b4

Q
o

St =

_ o O O

o O O

where the b;s are arbitrary. By Definition 1.3 there is a lower triangular matrix L such that
LSy, = L". Let S be the sequence formed by the first column of L and let H denote the Hankel
matrix generated by S. By Theorem 2.1 the diagonal entries of D in the decomposition H = LDL!
form the sequence T. [ |

Example 2.4. Let T = {1,1,2,5,14,42,132,...} be the Catalan sequence ([L00010g in [P]) and

let
[0 1 0 0 0 .7
101 00
020 10
SL_00301
000 % 0
Then
(10 0 0 0 .]
01 0 00
10100
L=103 010 ’
11
302 01
10 0 00 .J[1 000 0 .71 010 3 .7
01 0 00 0100 0 0103 0
¢ |10 1 00 0020 0 0010 %
LPL'=143 0 1 0 0005 0 0001 0
304 01 0000 14 0000 1
10 1 0 3 .7
01 0 3 0
103 0 14
103 0 14 0 =4
3014 0 &

3. Lattice Paths and Hankel Matrices
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We consider those lattice paths in the Cartesian plane running from (0,0) that use steps from
S ={u=(1,1), h=(1,0), d = (1,—1)} with assigned weights 1 for u, w; for h and wy for d.
Let L(n, k) be the set of paths that never go below the z-axis and end at (n,k). The weight of a
path is the product of the weights of its steps. Let [, ;. be the sum of the weights of all the paths
in L(n, k). See also [, [

Theorem 3.1. Let L = (l,, x)n k>0. Then L is a lower triangular matrix, the Stieltjes matrix

of L is
[w; 1 0 0 O i
w2 Wi 1 0 0
SL _ 0 wy W1 1 0
0 0 w2 Wi 1
0 0 0 wy W1

and H = LDL! is the Hankel matrix generated by the first column of L and dj, = w§ for k > 0.

PROOF.

From Theorem 2.1.

Example 3.2. For w; = 0, ws = 1, L is the Catalan matrix. For wy = t, wy = 1, L is the
t-Motzkin matrix. In both cases D is the identity matrix. For example, when ¢ = 1,

where S ={1,1,2,4,9,21,51, ...} is the Motzkin sequence [A001006}

1 0 0 0 O
11 0 0 O
2 2 1 0 0
L= 4 5 3 1 0 ’
9 12 9 4 1
11 2 4 9 i
1 2 4 9 21
2 4 9 21 51
t_ —
LDL = 4 9 21 51 127 =H
9 21 51 127 323

Theorem 3.3. If wy, wy depend on the height k, i.e. wy(k) = by and wy(k + 1) = ¢, then

b 1 0 0 O ]
Co b1 1 0 0
o 0 C1 b2 1 0
SL - 0 0 Co b3 1
0 0 0 C3 b4

and H = LDL! is the Hankel matrix generated by the first column of L and d}, = ILi<pc;.

PROOF.

From Theorem 2.1.

See Example 2.4 for an illustration.
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4. Gaussian Column Reduction
Let S = {ag = 1,a1,a2,as,...} be a sequence of real numbers and let H denote the Hankel

matrix generated by S. All the results in this section are well-known in matrix theory. We shall
express the entries of L in term of S. We assume that H is positive definite.

Lemma 4.1. The decomposition of a positive definite Hankel matrix H = LDU is unique and
U = L', where L is a lower triangular matrix with diagonal entries 1, D is a diagonal matrix and
U is an upper triangular matrix with diagonal entries 1.

Proor. Let LDU = H = L1DU;. Then DUUl_1 = L~'L{D; is both an upper and lower
triangular matrix, hence UU; V' — =1L, = I is the infinite identity matrix. [ |

Let H, be the truncated submatrix of H with n > 0 . For example,

1 aq as as Qa4
al as az Q4 as
az az a4 a5 Qg
a3 a4 a5 ag ar
as as ag ar ag

1 al as as
ap a2 a3 a4

Hs = , Hy=
as as Qa4 as

a3 a4 as  ag

Let H, (k) be the matrix obtained from H,, by replacing the last column of H, by ag, ax11,0k12, s Gftn-
For example,

1 aq a9 aq 1 al as as
ap a2 az a2 ap a2 asz ae
Hs(1) = , Hs(5) =
a2 a3 a4 a3 a2 az a4 ag
as a4 Qs G4 a a4 as ag

Let h; = det H; and define an infinite upper triangular matrix R = (r, ) in term of (n,k)-
cofactor of Hy by 7, = 0 for £ <n, and

[ 1 ai as . Ap—1
aq as as . ag
a2 as a4 . Ap+1
1
Tk = (=1)»tF+2 det
hi—1 p-1 Qn  Qptl - Gkyp—2
an+1 QGp+2 Ant3 - Qk+tn
L Gk  OGkg41 Qkt2 - Ak+k

for k > n. For example,

1 aj a9 as

1 aq as as a4

’I"274 = —(—1)(2+4)+2 det
hs a3 a4 as Gg

a4 as ag ar

Remark 4.2. HR = LD, where L = (l,, ;) is the Gaussian column reduction of the Hankel
matrix H and D is the diagonal matrix with diagonal entries {d;}, R~' = L! with d; = h?—il and

Ink = 72— det Hy(n).




Remark 4.3. If L is a Riordan matrix, then for i > 1, ¢ = ¢; = di_fil = % and b = b; =
liv1i—liji—1 = T{l det H;(i +1) — ﬁ det H;_1(7) is a recurrence relation for the sequence S.
Example 4.4. Let S = {1, 3,13,63,321, 1683, 8989, 48639, 265729, ...} be the central Delannoy

numbers |A00185(), and let H be the Hankel matrix generated by S. Then

1 3 13 63

3 13 63 321
H= |13 63 321 1683 . |,

63 321 1683 8989

1 -3 5 -9
0 1 -6 21
R={0 0 1 -9 .|,
0 0 0 1
1 0 0 O
3 4 0 0
LD=HR=|13 24 8 0

63 132 72 16

100 0
040 0
RIHR=D=|0 0 8 0 ,
0 0 0 16
1 0 0 0
3 1 00
L=HRD'=]13 6 1 0 ,
63 33 9 1
1 0 0 0 3 1 0 0 0
-3 1 0 0 13 6 1 0 0
S, =L 'L"=RL"=|5 -6 1 0 63 33 9 1 0
-9 21 -9 1 321 180 62 12 1
3100
4 310
=102 31 ,
00 2 3
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1 0 00 100 O 1 3 13 63

31 00 0 40 0 01 6 33
LDL!=|13 6 1 0 0 08 0 00 1 9
63 33 9 1 0 0 0 16 00 0 1

1 3 13 63
3 13 63 321

=13 63 321 1683 . | =H.
63 321 1683 8989

Remark 4.5. If H is the Hankel matrix corresponding to a sequence S, then by Theorem 3.1
and Theorem 3.3 we may use lattice paths to find L, the Gaussian column reduction of H.
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