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Abstract

We first prove two results which both imply that for any sequence B of asymptotic
density zero there exists an infinite sequence A such that the sum of any number of
distinct elements of A does not belong to B. Then, for any ¢ > 0, we construct an
infinite sequence of positive integers A = {a1 < a2 < az < ...} satisfying a, <
K(e)(1+ ¢)" for each n € N such that no sum of some distinct elements of A is a
perfect square. Finally, given any finite set U C N, we construct a sequence A of the
same growth, namely, a,, < K(g,U)(1 4 €)™ for every n € N such that no sum of its
distinct elements is equal to uv® with u € U, v € N and s > 2.

1 Introduction

Let B = {b; < by < b3 < ...} be an infinite sequence of positive integers. In this note we
are interested in the following two questions.

e For which B there exists an infinite sequence of positive integers A = {a; < ay <
az < ...} such that a;, +--- 4+ a;, ¢ B for every m € N and any distinct elements
Ajyy o ooy Qg e A?

e In the case when the answer is ‘yes’, how dense the sequence A can be?
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In his paper [, F. Luca considered the case when B is the set of all perfect squares
{1,4,9,16,25,36, ...} and of all perfect powers {1,4,8,9,16,25,27,32,36,...}. He showed
that in both cases the answer to the first question is ‘yes’. In particular, it was observed in [
that the sum of any distinct Fermat numbers 22" +1, n = 1,2,..., is not a perfect square.
Moreover, it was proved that the sum of any distinct numbers of the form aPP2-Pr 4 1,
n =mng,ng+ 1,..., where a > 2 is an integer, py is the kth prime number and ng = ng(a) is
an effectively computable constant, cannot be a perfect power.

2 Sets with asymptotic density zero

We begin with the following observation (see also [[[]) which settles the first of the two
problems stated above for every set B satisfying lim sup,,_, . (by41 — b,) = 0.

Theorem 2.1. Let m € N and let B = {b; < by < b3 < ...} be an infinite sequence
of positive integers satisfying limsup,, . (b,41 — mb,) = oo. Then there exists an infinite
sequence of positive integers A such that every sum over some elements of A, at most m of
which are equal, is not in B.

Proof. Take the smallest positive integer ¢ such that by.1 —b, > 2, and set a; := by+ 1. Then
a; ¢ B. Suppose we already have a finite set {a; < ay < -+ < ai} such that all possible
(m + 1)* — 1 nonzero sums dya; + - - - + dpax, where dy,...,6, € {0,1,...,m}, do not belong
to B. Put ap.; := b + 1, where [ is the smallest positive integer for which b, 1 — mb, >
1+m-+m(a;+---+ag) and b; > ax. Such an [ exists, because limsup,, (b1 —mb,) = oco.

Clearly, b; > a; implies that ag,q > ag. In order to complete the proof of the theorem
(by induction) it suffices to show that no sum of the form dya; + - - - + drax + dx1 10441, where
Oy vy 01 €{0,1,...,m}, lies in B. If ;1 = 0, this follows by our assumption, so suppose
that dp1 > 1. Then d1a1 + - -+ + Opag + 010k is greater than ag,y — 1 = b; and smaller
than

1+m(a1+---—|—ak+ak+1) < bl+1 —mbl—m~|—mak+1 = bl+1 —mbl —m—i—m(bl—l—l) = bH—la

so it is not in B, as claimed. [ |

Recall that the upper asymptotic density d(B) of the sequence B is defined as

_ b, <N
d(B) = limsup #{n EN: by }
N—oo N

(see, e.g., 1.2 in H]). Similarly, the lower asymptotic density d(B) is defined as d(B) =
liminfy oo N"'#{n € N : b, < N}. If d(B) = d(B), then the common value d(B) =
d(B) = d(B) is said to be the asymptotic density of B.

Evidently, if B has asymptotic density zero then, for any positive integer k, there are
infinitely many positive integers N such that the numbers N + 1, N +2,..., N + k do not
lie in B. This implies that the condition limsup,,_, . (b,4+1 — b,) = oo holds. Hence, by
Theorem P.J] with m = 1, for any sequence B of asymptotic density zero there exists an
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infinite sequence A such that the sum of any number of distinct elements of A is not in B.
It is well-known that the sequence of perfect powers has asymptotic density zero, so such an
A as claimed exists for B = {1,4,8,9, 16, 25,27,32,36, ... }.

For m > 2, it can very often happen that b,,; < mb, for every n € N. For such a set B
Theorem P.]] is not applicable. However, its conclusion is true for any set B of asymptotic
density zero.

Theorem 2.2. Letm € N and let B be an infinite sequence of positive integers of asymptotic
density zero. Then there exists an infinite sequence of positive integers A such that every
sum over some elements of A, at most m of which are equal, is not in B.

Proof. Once again, take the smallest positive integer ¢ such that b, ; — b, > 2, and put
aj := b+ 1. Then a; ¢ B. Suppose we already have a finite set {a; < as < -+ < a;} such
that all possible (m+1)*—1 nonzero sums d,a;+- - -+dax, where 8y, ..., € {0,1,...,m}, do
not belong to B. It suffices to prove that there exists an integer a,; greater than a; such that,
for every i € {1,...,m}, the sum iag 1 + dpag + - - - + d1aq, where d1,...,0; € {0,1,...,m},
is not in B.

Suppose that B = {b; < by < b3 < ...}. For any h € N, the set {hb; < hby < hbs < ...}
will be denoted by hB. Put B; := mT!B for i = 1,2,...,m. Since d(B;) = 0 for each i =
1,...,m, we have d(B1U---UB,,) = 0. Thus, for any v > m!(mS+1), where S := a1+ - -+ay,
there is an integer u > mla; such that the interval [u, u+ v] is free of the elements of the set
ByU---UB,,

Put ary1 = |[u/m!| + 1. Clearly, ari1 > aj. Furthermore, for any i € {1,...,m},
no element of B; lies in [u,u + v]. Thus there is a nonnegative integer j = j(i) such that
mlb;/i < wand m!bji1/i > u+wv. (Here, for convenience of notation, we assume that by = 0.)
Hence iag1 > iu/m! > b; and

ik+1 +mS <iappr +1mS <i(u/m! +14+mS) <i(u+v)/m! <bji.

In particular, these inequalities imply that, for each i € {1,...,m}, the sum iay,; + dpay +
<-4 61a1, where 6y, ...,0, € {0,1,...,m}, is between bj(;) + 1 and bj(;)+1 — 1, hence it is not
in B. This completes the proof of the theorem. [J |

Several examples illustrating Theorem 2 will be given in Section 5. In particular, for any
e > 0, there is a set B C N with asymptotic density d(B) < € such that for any infinite set
A C N some of its distinct elements sum to an element lying in B. On the other hand, there
are sets B C N with asymptotic density 1 for which there exists an infinite set A whose
distinct elements do not sum to an element lying in B.

3 Infinite sets whose elements do not sum to a square

The second question concerning the ‘densiest’ sequence A for a fixed B seems to be much
more subtle. It seems likely that this question is very difficult already for the above mentioned



sequence of perfect squares {1,4,9,16,25, 36, ... }. The example of Fermat numbers 2" + 1,

n=1,2,..., given above is clearly not satisfactory, because this sequence grows very rapidly.
In this sense, much better is the sequence 22"~! n = 1,2,.... The sum of its distinct
elements

22n1—1 et 22nl_1 — 22n1—1(1 + 4n2—n1 et 4nl—n1)’

where 1 < n; < --- < ny, is not a perfect square, because it is divisible by 22"~ but not
divisible by 2271,
Smaller, but still of exponential growth, is the sequence 2-3", n=10,1,2,.... No sum of

its distinct elements is a perfect square, because
23" 4 3M) =23 (143" 4 4 3T = ]

implies that n; is even, so 2(1 + 3™™™ 4 ... 4+ 3™7™) must be a square too. However, this
number is of the form 3k + 2 with integer k, so it is not a perfect square.

A natural way to generate an infinite sequence whose distinct elements do not sum to
square is to start with ¢; = 2. Then, for each n € N, take the smallest positive integer ¢,
such that no sum of the form ¢, 1 + 0,¢, + -+ + d1¢1, where 6y, ...,6, € {0,1}, is a perfect
square. Clearly, co =3, c3 =5. Then, as 6 +3 =32, 7+2=3%8+5+3 =42, 9 =32 we
obtain that ¢, = 10, and so on. In the following table we give the first 18 elements of this
sequence:

¢, | loge, | n Cn, log ¢,
21 0.6931 | 10 2030 | 7.6157
31 1.0986 | 11 3225 | 8.0786
51 1.6094 | 12 8295 | 9.0234
10 | 2.3025 | 13 15850 | 9.6709
3.2958 | 14 0642 | 11.2977

38 | 3.6375 | 15 378295 | 12.8434
120 | 4.7874 | 16 | 1049868 | 13.8641
258 | 5.5529 | 17 | 3031570 | 14.9245
907 | 6.8101 | 18 | 12565348 | 16.3464

NelNoslIEN [ RN NG IS NGUI I NI IS
\V]
\]

Here, the values of logc, are truncated at the fourth decimal place. At the first glance,
they suggest that the limit liminf, ..o n~'logec, is positive. If so, then the sequence c,,
n=1,2,3,...,is of exponential growth too. It seems that the sequence ¢,, n =1,2,3,...,
ie.,

2,3,5,10,27, 38,120, 258,907, 2030, 3225, 8295, 15850, 80642, 378295, 1049868, . . .

was not studied before. At least, it is not given in N.J.A. Sloane’s on-line encyclopedia of
integer sequences http://www.research.att.com/ njas/sequences/. We thus raise the
following problem.

e Determine whether liminf, .., n~'log ¢, is zero or a positive number.
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In the opposite direction, one can easily show that ¢, < 4" for each n > 1. Here is
the proof of this inequality by induction (due to a referee). Suppose that ¢, < 4" If
Cnp1 < Cp +47, then ¢, < 4" +4™ < 471 Otherwise, for each j = 1,2,...,4", there exists
aset [ =1; C{1,2,...,n} such that ¢, +j + S(I) = s3, where S(I) := )", ., ¢; and 5; € N.
There are 2™ different subsets I of {1,2,...,n}, so the set {4" — 2" ... 4" — 1,4"} with
2" 4+ 1 elements contains some two indices j < j" for which the corresponding subsets I (and
so the values for S(I)) are equal. Subtracting ¢, + j + S(I) = 7 from ¢, + j' + S(I) = s,
we deduce that j' — j = (s; — s;)(sy + s;). Since j' — 7 < 2", we have s; +s; < 27, i.e.,
55 < 2" — 1. Hence

A" =2t < <5+ SI) =5, < (2" =1 =4" = 2" 41,

a contradiction.

Of course, ¢, < 4" implies that limsup,,_.. n 'logc, < log4. Our next theorem shows
that, for any fixed positive ¢, there is a sequence A = {a; < ay < az < ...} whose
distinct elements do not sum to a square and whose growth is small in the sense that
limsup,, .., n 'loga, < ¢.

Theorem 3.1. For any e > 0 there is a positive constant K = K () and an infinite sequence
A={a <ay <az<...} CN satisfying a, < K(1+¢&)" for each n € N such that the sum
of any number of distinct elements of A is not a perfect square.

Proof. Fix a prime number p to be chosen later and consider the following infinite set
A= {gp" +p* 1 :ge€{0,1,...,p—2}, m € N}.

Each element of A in base p can be written as g100...0 with 2m — 1 zeros, where the ‘digit’
g is allowed to be zero. So all the elements of A are distinct.

First, we will show that the sum of any distinct elements of A is not a perfect square. As-
sume that there exists a sum S which is a perfect square. Suppose that for everyt =1,2,...,1
the sum S contains s; > 0 elements of the form gp*™ + p*™~1 where g € {0,1,...,p — 2}
and 1 <mq <mgy < --- <my. Clearly, s; < p— 1. Let us write S in the form

S _ 81p2m171 T h1p2m1 4 82p2m271 4 h2p2m2 NI Slp2mlfl 4 hlpzml

= p2m1_1(31 + hlp + .o 4 Slp2ml—2m1 + hlp2ml—2m1+l> — p2m1—1(s1 +pH)

Now, since s; € {1,...,p—1} and since H is an integer, we see that S is divisible by p?™ 1,

but not by p?™, so it is not a perfect square.

It remains to estimate the size of the nth element a, of A. Write n in the form n =
(p—1)(m—1)+r, wherer € {1,...,p—2,p—1} and m > 1 is an integer. Suppose that the
elements of A are divided into consecutive equal blocks with p — 1 elements in each block.
Then all the elements of the mth block are of the form ¢g100...0 (with 2m — 1 zeros), where
g=20,1,...,p— 2. Hence the nth element of A, where n = (p —1)(m — 1) + r, is precisely
the rth element of the mth block, i.e., a, = agp-1)im-1)+r = (r — 1)p*™ + p*™~ 1. It follows
that

a, < (p _ 2)p2m +p2m—1 < p2m+1 _ p2(n—r)/(p—1)+3 < p2n/(p—1)+3 _ p36(2n10gp)/(p—1).
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Clearly, (2logp)/(p—1) — 0 as p — oo. Thus, for any € > 0, there exists a prime number p
such that e(21°82)/(P=1) < 14 Take the smallest such a prime p = p(e). Setting K () := p(¢)?,
we obtain that a,, < K(¢)(1+¢)" for each n € N. OJ O

4 Infinite sets whose elements do not sum to a power

Observe that distinct elements of the sequence 2-6™, n = 0,1,2, ..., cannot sum to a perfect
power. Indeed,

S = 2(6n1 + 4 6"1) — 2n1+13n1(1 + Gr2—n1 N 6nl—n1),

where 0 < n; < --- < ny, is not a perfect power, because n, + 1 and n; are exact powers of
2 and 3 in the prime decomposition of S. So if S > 1 were a kth power, where k is a prime
number (which can be assumed without loss of generality), then both n; 4+ 1 and n; must
be divisible by k, a contradiction.

This example is already ‘better’ than the example aP'P2~P» + 1, n = ng,ng + 1,...,
given in [[] not only because it is completely explicit, but also because the sequence 2 - 6,
n=20,1,2,..., grows slower.

As above, we can also consider the sequence 2, 3,10, 18, ..., starting with e; = 2, whose
each ‘next’ element e, > e,, where n > 1, is the smallest positive integer preserving the
property that no sum of the form die; + - -+ + e, + €py1, where 61,...,0, € {0,1}, is a
perfect power. By an argument which is slightly more complicated than the one given for
Cn, One can prove again that e, < 4" for n large enough.

However, our aim is to prove the existence of the sequence whose nth element is bounded
from above by K(¢)(1 + )" for n € N. For this, we shall generalize Theorem 2 as follows:

Theorem 4.1. Let U be the set of positive integers of the form ¢ ...qp*, where qu,. .., q
are some fixed prime numbers and aq, ..., Tun through all nonnegative integers. Then,
for any e > 0, there is a positive constant K = K(e,U) and an infinite sequence A = {a; <
as < az < ...} C N satisfying a, < K(1+¢)" forn € N such that the sum of any number of
distinct elements of A is not equal to uv® with positive integers u,v, s such that u € U and
s = 2.

In particular, Theorem 3 with U = {1} implies a more general version of Theorem 2 with
‘perfect square’ replaced by ‘perfect power’.

Proof. Fix two prime numbers p and ¢ satisfying p < ¢ < 2p. Here, the prime number p
will be chosen later, whereas, by Bertrand’s postulate, the interval (p, 2p) always contains at
least one prime number, so we can take ¢ to be any of those primes. Consider the following
infinite set

A= {gperlqm —|—pmqm71 S {1, N 1}, m e N}



The inequality p™2¢™ " + p™ g™ > (p — 1)p™ g™ + p™q¢™ ! implies that all the elements
of A are distinct. Also, as above, by dividing the sequence A into consecutive equal blocks
with p — 1 elements each, we find that

an = rp"™ " + "
forn=(p—1)(m—1)+r, wherem € Nand r € {1,...,p—2,p— 1}.

Assume that there exists a sum S of some distinct a,, which is of the form wv®. Without
loss of generality we may assume that s > 2 is a prime number. Suppose that for every
t=1,2,...,1 the sum S contains s, > 0 elements of the form gp™ g™t + p™tq™ !, where
ge{l,....,p—1tand 1 < my < my < --+- < my. Clearly, s; < p — 1, so, in particular,
1 < sy < p—1. Then, as above, S = p™¢™ (s, + pgH) with an integer H. If ¢ > p > qs,
then p,q ¢ U, so the equality uv® = p™¢™ (s, + pgH) implies that s|m; and s|(m; — 1),
a contradiction.

Using a,, = rp™™¢™ + p™g™!, where n = (p — 1)(m — 1) + 7 and p < ¢ < 2p, we find
that

a, < (p o 1)q2m+1 + q2m71 < q2m+2 < <2p>2(nfr)/(pfl)+4 < (2p)46(2nlog(2p))/(p71).

For any ¢ > 0, there exists a positive number p. such that e(1°e(P)/(P=1) < 1 4 ¢ for
each p > p.. Take the smallest prime number p = p(e) greater than max{p., g}, and put
K(e,qp) = K(g,U) := 2p(e)*. Then a,, < K(g,U)(1 +¢)" for each n € N, as claimed. O [J

5 Concluding remarks

We do not give any lower bounds for the nth element a, of the ‘densiest’ sequence A =
{a; < ay < ...} whose distinct elements do not sum to a square or, more generally, to
a power. As a first step towards solution of this problem, it would be of interest to find
out whether every infinite sequence of positive integers A which has a positive asymptotic
density (i.e., d(A) > 0) contains some elements that sum to a square. It is essential that we
can only sum distinct elements of A, because, for any nonempty set A C N, there is a sumset
A+ A+ ---+ A which contains a square. In this direction, we can mention the following
result of T. Schoen [[]: if A is a set of positive integers with asymptotic density d(A) > 2/5
then the sumset A + A contains a perfect square. For more references on sumset related
results see the recent book [ of T. Tao and V. H. Vu.

A ‘finite version’ of the problem on the ‘densiest’ set whose elements do not sum to a
square was recently considered by J. Cilleruelo [l]. He showed that there is an absolute
positive constant ¢ such that, for any positive integer N > 2, there exists a subset A of
{1,2,..., N} with > ¢N'/3 elements whose distinct elements do not sum to a perfect square.
In fact, by taking the largest prime number p < N'/3, we see that the set A := {p,p* +
P, 2p°+p,...,(p—2)p* +p} with p—1 element is a subset of {1,2,..., N}. Since any sum of
distinct elements of A is divisible by p, but not by p?, we conclude that no sum of distinct
elements of the set A of cardinality p — 1 > %N 1/3 is a perfect power.



Notice that in this type of questions not everything is determined by the density of
B. In fact, there are some ‘large’ sets B for which there is a ‘large’ set A whose elements
do not sum to an integer lying in B. For example, for the set of all odd positive integers
B ={1,3,5,7,...} whose density d(B) is 1/2, the ‘densiest’ set A whose elements do not
sum to an odd number is the set of all even positive integers {2,4,6,8,...} with density
d(A) = 1/2. On the other hand, taking B = {2,4,6,8, ...}, we see that no infinite sequence
A as required exists. Moreover, if B is the set of all positive integers divisible by m, where
m € N is large, then the density d(B) = 1/m is small. However, by a simple argument
modulo m, it is easy to see that there is no infinite set A C N (and even no set A with
> m distinct positive integers) with the property that its distinct elements always sum to a
number lying outside B. Indeed, if a1, ...,a, € N then either at least two of the following
m numbers S; 1= >7_ a;, where j = 1,...,m, say, S, and S, (u < v, u,v € {1,...,m}) are
equal modulo m or m|S;, where t € {1,...,m}. Therefore, either their difference S, — S, =
Gyt + Qyio + -+ a, or Sy = a1 + - - - + a; is divisible by m. In both cases, there is a sum
of distinct elements of {ay,as, ..., a,} that lies in B.

It follows that if, for an infinite set B C N, there exists an infinite sequence of positive
integers A = {a; < ay < ag < ...} for which a;, + -+ a;,, ¢ B for every m € N and any
distinct elements a;,, ..., a;,, € A, then B must have the following property. For each m € N
there are infinitely many k£ € N such that km ¢ B.

This necessary condition is not sufficient. Take, for instance, B := N\ {j* : j € N}.
Then, for each m € N, there are infinitely many positive integers k, say, k = ¢?>m, where

¢ =1,2,..., such that km = (¢m)? ¢ B. However, there does not exist an infinite set of
positive integers A = {a; < ay < az < ...} such that for any n € N and any distinct
Qiyy .-y a;, € Athe sum a; + -+ a;, is a perfect square. See, e.g., the proposition in the

same paper [[], where this was proved in a more general form with ‘perfect square’ replaced
by ‘perfect power’.

Given any infinite set B C N, put K := N\ B. Our first question stated in the introduction
can be also formulated in the following equivalent form.

e For which K = {k; < kg < k3 < ...} C N there exists an infinite subsequence of
{ki;, < ki, < ki, < ...} of K such that all possible sums over its distinct elements lie
in K7

Theorem P implies that if d(K) = 1 then such a subsequence exists. On the other hand,
take the sequence K of positive integers that are not divisible by m with asymptotic density
d(K) =1 —1/m (which is ‘close’ to 1 if m is ‘large’). Then such a subsequence does not
exist despite of d(K) being large. Finally, set D := {2?' : j € N} and suppose that K is the
set of all possible finite sums over distinct elements of D. Then d(K) is easily seen to be 0,
but for K such a subsequence exists, e.g., D.
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