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Abstract. It was proved by Huckleberry that the Akhiezer-Gindikin domain
is included in the “Iwasawa domain” using complex analysis. We show here that
no complex analysis is necessary for a proof of this result. Indeed we generalize
the notions of the Akhiezer-Gindikin domain and the Iwasawa domain for two
associated symmetric subgroups in real Lie groups and prove the inclusion.
Moreover, by the symmetry of two associated symmetric subgroups, we also give
a direct proof of the known fact that the Akhiezer-Gindikin domain is included
in all cycle spaces.

1. Introduction

1.1. Akhiezer-Gindikin domain and Iwasawa domain

Let GC be a connected complex semisimple Lie group and GR a connected real
form of GC . Let KC be the complexification in GC of a maximal compact subgroup
K of GR . Let gR = k⊕m denote the Cartan decomposition of gR = Lie(GR) with
respect to K . Let t be a maximal abelian subspace in im . Put

t+ = {Y ∈ t | |α(Y )| < π

2
for all α ∈ Σ}

where Σ is the restricted root system of gC with respect to t . Then the “Akhiezer-
Gindikin domain” D in GC is defined in [AG] by

D = GR(exp t+)KC.

Let B be a Borel subgroup of GC such that GRB is closed in GC . Then
KCB is the unique open dense KC -B double coset in GC ([M2]). Define an open
subset

Ω = {x ∈ GC | x−1GRB ⊂ KCB}
in GC . Clearly, Ω is left GR -invariant and right KC -invariant. The connected
component Ω0 of Ω containing the identity is often called the “Iwasawa domain”.
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Remark 1. Let Sj (j ∈ J) be the KC -B double cosets in GC of (complex)
codimension one and Tj the closure of Sj . Then the complement of KCB in GC
is
⋃
j∈J Tj . So we can write

Ω = {x ∈ GC | x−1GR ∩ Tj = φ for all j ∈ J}
= {x ∈ GC | x /∈ gT−1

j for all j ∈ J and g ∈ GR}.

Thus Ω0 is Stein because Ω is the complement of an infinite family {gT−1
j | j ∈

J, g ∈ GR} of complex hypersurfaces.

The equality

D = Ω0 (1.1)

was proved in [GM] when GR is classical type or exceptional Hermitian type.
Independently, Krötz and Stanton proved D ⊂ Ω0 for classical cases in [KS]. We
should note that the proofs in these two papers are based on elementary linear
algebraic computations. (Remark that [FH] did not refer [GM] in their historical
reference on (1.1).) On the other hand, Barchini proved the inclusion D ⊃ Ω0 by
a general but elementary argument in [B]. Recently, Huckleberry ([H], Proposition
2.0.2 in [FH]) gave a proof of the opposite inclusion

D ⊂ Ω0 (1.2)

by using strictly plurisubharmonicness of a function ρ proved in [BHH] (revised
version).

But we can see that we need no complex analysis to prove (1.2). In this
paper, we will generalize the notions of the Akhiezer-Gindikin domain and the
Iwasawa domain for real Lie groups as in the next subsection and prove the
inclusion (1.2).

1.2. Generalization to real Lie groups

Let G be a connected real semisimple Lie group and σ an involution of G . Take
a Cartan involution θ such that σθ = θσ . Put H = Gσ

0 = {g ∈ G | σ(g) = g}0

and H ′ = Gσθ
0 . Then the symmetric subgroup H ′ is called “associated” to the

symmetric subgroup H (c.f. [M1]). The structure of the double coset decompo-
sition H ′\G/H is precisely studied in [M3] in a general setting for arbitrary two
involutions.

Remark 2. (i) For example, if G = GC , then KC and GR are associated.

(ii) We should remark here that all the results on Jordan decompositions
and elliptic elements etc. for the decomposition GR\GC/KC in Section 3 of [FH]
were already proved in [M3]. In [FH], they are not referred at all.

Let g = k ⊕ m = h ⊕ q be the +1,−1-eigenspace decompositions of
g = Lie(G) with respect to θ and σ , respectively. Then the Lie algebra h′ of
H ′ is written as h′ = (k ∩ h) ⊕ (m ∩ q). Let t be a maximal abelian subspace of
k ∩ q . Then we can define the root space

gC(t, α) = {X ∈ gC | [Y,X] = α(Y )X for all Y ∈ t}
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for any linear form α : t→ iR . Here gC = g⊕ ig is the complexification of g . Put

Σ = Σ(gC, t) = {α ∈ it∗ − {0} | gC(t, α) 6= {0}}.

Then Σ satisfies the axiom of the root system ([R]). Since θ(Y ) = Y for all Y ∈ t ,
we can decompose gC(t, α) into +1,−1-eigenspaces for θ as

gC(t, α) = kC(t, α)⊕mC(t, α). (1.3)

Define a subset Σ(mC, t) = {α ∈ it∗ − {0} | mC(t, α) 6= {0}} of Σ and put

t+ = {Y ∈ t | |α(Y )| < π

2
for all α ∈ Σ(mC, t)}.

Then we define a generalization of the Akhiezer-Gindikin domain D in G by

D = H ′T+H.

where T+ = exp t+ . (We will show in Proposition 1 that D is open in G .)

Let P be an arbitrary parabolic subgroup of G such that H ′P is closed in
G . Then HP is open in G by [M2]. Define an open subset

Ω = {x ∈ G | x−1H ′P ⊂ HP} = {x ∈ G | H ′x ⊂ PH}

in G . Then we may call the connected component Ω0 a “generalized Iwasawa do-
main”. As a complete generalization of (1.2), we can prove the following theorem.

Theorem. D ⊂ Ω0 .

Here we should explain the construction of this paper to prove this theorem.
In Section 2, we prove properties on the generalized Akhiezer-Gindikin domain D .
Lemma 2 is the most important basic technical lemma. It implies (h′ ∩Ad(a)h)⊕
(q′ ∩Ad(a)q) ⊂ k for a ∈ T+ where q′ = (k∩ q)⊕ (m∩ h). Note that H ′ ∩ aHa−1

is the isotropy subgroup of the action of H ′ at the point aH ∈ G/H . So the
inclusion h′ ∩ Ad(a)h ⊂ k is a generalization of Proposition 2 in [AG]. But we do
not find statements in [AG] corresponding to the inclusion q′ ∩ Ad(a)q ⊂ k . This
inclusion is the key of this paper.

In Proposition 1, we show that D is open in G . This is a generalization of
Proposition 4 in [AG]. We also give a precise orbit structure H ′\D/H ∼= T+/W
of D where W = NK∩H(t)/ZK∩H(t) in Proposition 2. This is a generalization
of Proposition 8 in [AG]. In Section 3, we construct a left H ′ -invariant right H -
invariant real analytic function ρ on D and prepare the key lemma (Lemma 3)
which follows from Lemma 2. In Section 4, we prove Theorem. Basic formulation
is the same as Proposition 2.0.2 in [FH]. But we do not need complex analysis.

1.3. Application to cycle spaces

Note that we can exchange the roles of H and H ′ . We can aplly this to the pair
of KC and GR in GC . Let P be a parabolic subgroup of GC such that S = KCP
is closed in GC . Then S ′ = GRP is open in GC . Put

Ω(S) = {x ∈ GC | x−1KCP ⊂ GRP}.



566 Matsuki

Then by Theorem, we have D−1 = KCT
+GR ⊂ Ω(S)0 by the notation in Section

1.1 and therefore D ⊂ Ω(S)−1
0 . Since Ω(S)−1 = {x ∈ GC | xKCP ⊂ GRP} =

{x ∈ GC | xS ⊂ S ′} , the domain Ω(S)−1
0 is usually called the “cycle space” for

S ′ . Hence we have given a direct proof of the known fact:

Corollary. Akhizer-Gindikin domain D is included in all cycle spaces.

(Remark: This fact was known by combining (1.2) and Proposition 8.3 in [GM]
because Proposition 8.3 implies that the Iwasawa domain Ω0 is included in all the
cycle spaces Ω(S)−1

0 .)

Aknowledgement: The author would like to express his hearty thanks to S.
Gindikin for his encouragement and for many useful discussions.

2. A generalization of Akhiezer-Gindikin domain

We will use the notations in Section 1.2 (not in Section 1.1). In this section, we
will prepare basic results on a generalization of the Akhiezer-Gindikin domain by
extending elementary arguments in [M3] Section 3.

First we should note that we have only to consider the problem on each
minimal σ -stable ideals of g . So we may assume that g has no proper σ -stable
ideals. We may also assume that g is noncompact, otherwise we have P = G and
the problem is trivial.

Let [m,m] denote the linear subspace of k spanned by [Y, Z] for Y, Z ∈ m .
Then g′ = [m,m] ⊕ m becomes a σ -stable ideal of g because g′ is σ -stable and
[k, [m,m]] ⊂ [[k,m],m] + [m, [k,m]] ⊂ [m,m] . Since g′ = g , we have k = [m,m] and
therefore

kC = [mC,mC]. (2.1)

Lemma 1. (i) Every root α ∈ Σ such that kC(t, α) 6= {0} is written as a sum
of two elements in Σ(mC, t) ∪ {0}.

(ii) If Y ∈ t+ , then |α(Y )| < π for all α ∈ Σ.

(iii) If Y ∈ t satisfies α(Y ) = 0 for all α ∈ Σ, then Y = 0.

(iv) If Y, Z ∈ t+ satisfy expY ∈ (expZ)(T ∩H), then Y = Z . Especially,
exp is injective on t+ .

Proof. (i) Let X be a nonzero element in ∈ kC(t, α). Then by (2.1), we
can write X =

∑
j[Yj, Zj] with some nonzero elements Yj ∈ mC(t, βj) and Zj ∈

mC(t, γj) such that βj + γj = α .

(ii) is clear by (i) and the definition of t+ .

(iii) If α(Y ) = 0 for all α ∈ Σ, then Y commutes with gC(t, α) for all
α ∈ Σ ∪ {0} . Hence Y commutes with g and therefore Y = 0 because g is
semisimple.

(iv) Suppose expY = (expZ)h with some Y, Z ∈ t+ and h ∈ T ∩ H .
Applying σ , we have exp(−Y ) = (exp(−Z))h . So we have exp 2Y = exp 2Z .
Put a = exp 2Y = exp 2Z and apply Ad(a) to gC(t, α) for α ∈ Σ(mC, t). Then
we have e2α(Y ) = e2α(Z) and therefore α(Y ) − α(Z) ∈ πiZ . Since |α(Y )| < π/2
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and |α(Z)| < π/2 by the definition of t+ , we have α(Y − Z) = α(Y ) − α(Z) =
0 for all α ∈ Σ(mC, t). This implies α(Y − Z) = 0 for all α ∈ Σ by (i) and
therefore Y − Z = 0 by (iii).

Let Y be an element of t and put a = expY . Consider the conjugate
σa = Ad(a)σAd(a)−1 = σAd(a)−2 of σ by Ad(a). Then σa is an involution of g

such that gσa = Ad(a)h and Gσa
0 = aHa−1 . Put τ = σθ = θσ . The key idea of

[M3] was to consider the automorphism τσa (which is not involutive in general)
of g . Since τσa = τσAd(a)−2 = θAd(a)−2 and since θ and Ad(a) commutes, the
automorphism τσa is semisimple. Hence by Lemma 1 in [M3], we have a direct
sum decomposition

g = (h′ + Ad(a)h)⊕ (q′ ∩ Ad(a)q) (2.2)

where q′ = (k ∩ q)⊕ (m ∩ h). On the other hand, we have the +1,−1-eigenspace
decomposition of gτσa for τ by gτσa = (gτσa ∩ h′)⊕ (gτσa ∩ q′) = (h′ ∩ Ad(a)h)⊕
(q′ ∩ Ad(a)q) as in [M3] Section 3.

Lemma 2. If Y ∈ t+ , then gτσa = zk(Y ) = {X ∈ k | [Y,X] = 0}.

Proof. By (1.3), we have a direct sum decomposition

gC =
⊕

α∈Σ∪{0}

(kC(t, α)⊕mC(t, α)). (2.3)

If X ∈ kC(t, α), then we have τσaX = θAd(a)−2X = e−2α(Y )X . On the other
hand, if X ∈ mC(t, α), then we have τσaX = θAd(a)−2X = −e−2α(Y )X . Hence
the decomposition (2.3) is the eigenspace decomposition of gC for τσa . We have
only to verify whether every direct summand in (2.3) is contained in gτσa

C
or not.

Note that α(Y ) is pure imaginary. Let X be a nonzero element in mC(t, α).
Since |α(Y )| < π/2 by the assumption, we have −e−2α(Y ) 6= 1. Hence X /∈ gτσa

C
.

On the other hand, let X be a nonzero element in kC(t, α). Since |α(Y )| < π by
Lemma 1 (ii), we have e−2α(Y ) = 1⇐⇒ α(Y ) = 0. Hence X ∈ gτσa

C
⇐⇒ α(Y ) = 0.

Thus we have proved

gτσa
C

=
⊕

α∈Σ∪{0}, α(Y )=0

kC(t, α) = zkC(Y )

and therefore gτσa = zk(Y ).

Since gτσa = zk(Y ) is a compact Lie algebra and since t is maximal abelian
in q′ ∩ Ad(a)q = zk∩q(Y ), we have q′ ∩ Ad(a)q = Ad(H ′ ∩ aHa−1)0t . Moreover if
U is a neighborhood of the origin 0 in t , then

V = Ad(H ′ ∩ aHa−1)0U is a neighborhood of 0 in q′ ∩ Ad(a)q. (2.4)

Proposition 1. D is open in G.
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Proof. By the left H ′ -action and the right H -action on D , we have only to
show that a neighborhood of a = expY for Y ∈ t+ is contained in D . Take a
neighborhood U = {Z − Y | Z ∈ t+} of 0 in t . Then we have T+a−1 = expU .
Hence

e ∈ H ′T+Ha−1 = H ′T+a−1aHa−1 = H ′(expU)aHa−1

= H ′ exp(Ad(H ′ ∩ aHa−1)0U)aHa−1 = H ′(expV )aHa−1. (2.5)

Since V is a neighborhood of 0 in q′ ∩ Ad(a)q by (2.4), it follows from
(2.2) that H ′T+Ha−1 contains a neighborhood of e . Hence H ′T+H contains a
neighborhood of a .

Proposition 2. Let a and b be elements of T+ . Then b = `ah−1 for some
` ∈ H ′ and h ∈ H ⇐⇒ b = waw−1 for some w ∈ NK∩H(t). Here NK∩H(t) is the
normalizer of t in K ∩H . (Write K = Gθ as usual ).

Proof. Since the implication ⇐= is clear, we have only to prove =⇒ . Suppose
b = `ah−1 for some ` ∈ H ′ and h ∈ H . Put t′ = Ad(`)t = Ad(`a)t = Ad(bh)t .
Then t′ is a maximal abelian subspace of q′ ∩ Ad(b)q . Since (h′ ∩ Ad(b)h, q′ ∩
Ad(b)q) is a compact symmetric pair by Lemma 2, there is an x ∈ H ′ ∩ bHb−1

such that Ad(x)t′ = t . Put `′ = x` ∈ H ′ and h′ = b−1xbh ∈ H . Then we have
`′ah′−1 = x`ah−1b−1x−1b = xbhh−1b−1x−1b = b and

`′Th′
−1

= x`Th−1b−1x−1b = x`aTh−1b−1x−1b

= xbhTh−1b−1x−1b = xT ′x−1b = Tb = T (2.6)

where T = exp t and T ′ = exp t′ .

Since `′h′−1 = `′eh′−1 ∈ T by (2.6) and since `′T`′−1`′h′−1 = T also
by (2.6), we have `′T`′−1 = T . Write `′ = k expX with k ∈ K ∩ H and
X ∈ m ∩ q . Then it is well-known that [X, t] = {0} by a standard argument.
(Suppose Ad(k expX)Y = Y ′ for some Y, Y ′ ∈ k . Then applying θ , we have
Ad(k exp(−X))Y = Y ′ and therefore Ad(exp 2X)Y = Y . Since adX : g → g is
expressed by a real symmetric matrix, we have [X,Y ] = 0.)

Hence we have kTk−1 = T and b = `′a`′−1`′h′−1 = kak−1`′h′−1 . We have
only to prove c = `′h′−1 = e . Write h′ = k′ expX ′ with k′ ∈ K∩H and X ′ ∈ m∩h .
Then it follows from `′ = ch′ that k expX = ck′ expX ′ . Since c ∈ T ⊂ K , we
have k = ck′ and X = X ′ = 0. Hence c ∈ T ∩ H . Since kak−1, b ∈ exp t+ , we
have c = e by Lemma 1 (iv).

3. Construction of a function ρ

Write W = NK∩H(t)/ZK∩H(t). Let ρ0 be a W -invariant real analytic function
on t+ which has no critical points except the origin. For the sake of later use, we
should also assume ρ0(Z) tends to +∞ when Z goes to the boundary of t+ . For
example, we may put

ρ0(Z) =
∑

α∈Σ(mC,t)

1

π − 2iα(Z).
(3.1)
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This function (3.1) is clearly convex and therefore it has no critical points except
the origin. By Proposition 2 and Lemma 1 (iv), we can define a function ρ on D
by

ρ(`(expZ)h) = ρ0(Z) for ` ∈ H ′, h ∈ H and Z ∈ t+.

Proposition 3. ρ is real analytic on D .

Proof. By the left H ′ -action and the right H -action on D , we have only to
show ρ is real analytic at every a = expY ∈ T+ . Consider the right a-translate
ρa(x) = ρ(xa) for x ∈ Da−1 of ρ . Since ρa is left H ′ -invariant and right aHa−1 -
invariant, we have only to show that the function ρ′a(X) = ρa(expX) for X ∈ V
is real analytic at 0 by (2.2) and (2.5) where U ⊂ t and V = Ad(H ′∩aHa−1)0U ⊂
q′ ∩ Ad(a)q are as in the proof of Proposition 1. Since ρa(gxg

−1) = ρa(x) for
g ∈ H ′ ∩ aHa−1 and x ∈ expV , ρ′a is Ad(H ′ ∩ aHa−1)-invariant. Note that
(H ′ ∩ aHa−1)0 = (ZK∩H(Y ))0 by Lemma 2 and that ρ′a(Z) = ρ((expZ)a) =
ρ0(Z+Y ) for Z ∈ U is invariant under the action of w ∈ W such that w(Y ) = Y .
Since we can easily extend the well-known Chevalley’s restriction theorem to real
analytic functions at 0, the function ρ′a on V = Ad(H ′∩aHa−1)0U is real analytic
at 0.

Remark 3. (i) The function ρ on D has no critical points outside H ′H =
H ′eH by the assumption on ρ0 .

(ii) If ρ0 is a W -invariant smooth function on t+ . Then we can show that
ρ is a smooth function on D by using [S].

The tangent space Ta(G) of G at a is identified with g = Te(G) by the
right a-action. In other words, we identify Ta(G) with the left infinitesimal action
of g at a . Now we have the following key lemma.

Lemma 3. Let a = expY with Y ∈ t+ − {0}. Then the hyperplane in Ta(G)
defined by dρ = 0 is orthogonal, with respect to the Killing form on g, to a nonzero
vector Z in k.

Proof. Taking the right a-translate ρa of ρ as in the proof of Proposition 3,
we have only to consider the hyperplane in the tangent space Te(G) ∼= g defined
by dρa = 0.

Since ρa is left H ′ -invariant and right aHa−1 -invariant, the differential dρa
vanishes on h′+Ad(a)h . Hence the normal vector Z is contained in the orthogonal
complement q′ ∩ Ad(a)q (⊂ k by Lemma 2) of h′ + Ad(a)h .

Proof of Theorem. The basic formulation is the same as Proposition 2.0.2 in
[FH]. Suppose that D 6⊂ PH . We will deduce a contradiction.

Let PxH be a P -H double coset with the least dimension among the P -H
double cosets intersecting D . So the intersection PxH∩D is relatively closed in D .
Since H ′P = (K∩H)P by [M2], we have H ′ = (K∩H)(P∩H ′) = (P∩H ′)(K∩H).
Hence PxH intersects (K∩H)T+ and the image of ρ|PxH∩D is equal to the image
of ρ|PxH∩(K∩H)T+ . The set {x ∈ (K∩H)T+ | ρ(x) ≤ m} is compact for any m ∈ R
because we carefully assumed that ρ0 is +∞ on the boundary of t+ . Hence the
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function ρ|PxH∩D attains its minimum on some point ka with k ∈ K ∩ H and
a ∈ T+ . Replacing P by the k -conjugate k−1Pk , we may assume k = e . Since
a ∈ PxH and PxH ∩ PH = φ , we have a 6= e .

By Lemma 3, there is a nonzero element Z in k such that Z is orthogonal
to p = Lie(P ). But this leads a contradiction because Z ∈ k is also orthogonal to
θp and therefore Z is orthogonal to p + θp = g which cannot happen since the
Killing form is nondegenerate on g .
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