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Abstract. We introduce the notion of a root system extended by an
abelian group G. This concept generalizes extended affine root systems. We
classify them in terms of (translated) reflection spaces of G. Then we see
that division (A, G)-graded Lie algebras have such root systems. Finally,
division (B;, G)-graded Lie algebras and as a special case, Lie G-tori of
type By, are classified for [ > 3.
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1. Introduction

We have two purposes in the paper. The first one is to introduce the notion of
a root system extended by an abelian group G'. This concept generalizes the
extended affine root systems in the sense of both [A-P] and [Sa]. More precisely,
the root systems extended by Z" correspond to Saito’s systems in [Sa] and the
‘reduced’ root systems extended by Z™ correspond to the systems in [A-P]. The
classification of such root systems is essentially the same as in [A-P]. But the
lattice in a vector space can be any abelian group in their classification, and it
seems that our definition and classification are simpler and easier to understand.
Moreover, it turns out that the set of certain support sets of a division (A, G)-
graded Lie algebra becomes a root system extended by G'. Thus the purpose
here is to acquaint people with a nice and natural class of Lie algebras and their
root systems.

The second purpose is to classify division (B;, G)-graded Lie algebras
for the root system B;. Division (A, G)-graded Lie algebras generalize the core
of extended affine Lie algebras (EALAs) when G = Z" [Y4] and the finite-
dimensional isotropic simple Lie algebras when G is trivial (see Example 4.3(3)).
Those Lie algebras were classified for A = A; (I > 3), D;, E; in [Y2], and A,
when G = 7" in [Y3] (see Example 4.3(3)). So the cases of type A1, B, C;, Fy,
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G2, and BC; were open. Using the recognition theorem of B;-graded Lie algebras
by Benkart and Zelmanov [BZ], and the approach in [AG] to the classification
of the cores of EALAs of type B;, we have classified division (A, G)-graded Lie
algebras in the case of type B; for [ > 3. For type Bs, it is more difficult to
classify.

As a special case of division (A, G)-graded Lie algebras, we define Lie
G-tori. This notion is more concrete and there is more hope to obtain a complete
classification. Lie G-tori again generalize the core of EALAs when G = Z". We
state the classification of Lie G-tori of type B; for [ > 3, using the notion of
a Clifford G-torus (which appears in several papers [A-P], [AG], [T], [Y1] and
[INY]), as a corollary of the result above.

The organization of the paper is as follows. In §2 we define a root system
extended by an abelian group, and in §3 they are classified. In §4 a division
(A, G)-graded Lie algebra and a Lie G-torus are defined, and in §5 we show
that these Lie algebras have root systems extended by G. In §6 we obtain the
classification of division (B;, G)-graded Lie algebras for [ > 3. In the final section
we specialize the result in §6 to the case of Lie G-tori.

Finally, I would like to thank Professors Bruce Allison, Georgia Benkart
and Erhard Neher for their encouragement and suggestions. Also, I would like to
thank the referee for pointing out some mistakes and Professor George Seligman
for answering several questions.

2. Definition of a root system extended by an abelian group

Let A be a finite irreducible root system, i.e., A = A; (I > 1), B; (I > 1,
B1 = Al), Cl (l > 2, CQ = Bg), Dl (l > 4), El (l = 6,7,8), F4, G2 or BCl
(I>1). Let

Ared . { A if A is reduced
"L {pe A pis reduced, ie., i ¢ A} otherwise, ie., if A =BC;.

Note that A =B, if A = BC;. Recall the Weyl group W acting on A, i.e.,
W= <0H | H € A>;

where
o,(V)=v—<v,u>p

is the reflection on A with Cartan integer < v, > for v € A. Let G be an
abelian group and

R = {Su}ueA

a family of nonempty subsets S, of G indexed by p € A. We define a subset
S-S, of G by

Sy Sy:i=8S,—<v,u>8,={s—<v,p>s]seS,seS,}
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Then R is called a root system of type A extended by G if it satisfies the following
3 axioms:
(R1) U,ea Su generates G
(R2) 0€ S, for all e A™d;
(R3) S-S, C S, forall pveA.
Furthermore, when A is nonreduced,
(R4) p,2pe A = Sy,N2S, =0, then R is called reduced.

Remark 2.1. If G is trivial, i.e., G = {0}, then the root system {S,}.ca
extended by {0} is given by the sets S, = {0} for all 4 € A, which can be
viewed as A itself. If A is nonreduced, there does not exist a reduced root
system extended by {0} since (R4) cannot be satisfied.

Remark 2.2. When G = 7", the root system {S,},,ca naturally corresponds
to an extended affine root system (see the last part of §3), and each S, is an
isotropic part of it.

3. Classification of root systems extended by G
Let R = {S,}.ca be aroot system extended by G. By (R2) and (R3), we have
Sy CSu-Su C Sy, )

for all 4 € A™ and v € A. Since W is generated by o, for u € Ard,
(1) Swwy =S, forall weW and v e A.
In particular, for pu,v € A,
(2) S, =S, if p and v have the same length,
and S_, =95, for all p € A. Also, by (R3) and (1), we have
(3) Sy—<v,u>8,CS, forall p,veA.
In particular, taking v = pu,
(4) S,—25,cS, forall peA,
which implies =S, = 5, for all p € A.

We next partition the root system A according to length. Roots of A
of minimal length are called short. Roots of A which are two times a short root
of A are called extra long. Finally, roots of A which are neither short nor extra

long are are called long. We denote the roots of short, long and extra long roots
of A by Ay, Ay and A, respectively. Thus

A=Ag U Alg UA,.
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Of course the last two terms in this union may be empty. Indeed,
Ajg =0 <= A has simply laced type or type BCy,

and
Ay =0 — A=A

In view of (2), we can simplify the notation. We define

S =S5, forue g,
L=2S5, forpe Ay, provided that A;, # O, and
E =S, forpue A, provided that A., # O.

Thus our root system R = {S,},ca can be written as
R=R(S,L,E)a.

Definition 3.1. Let G be an abelian group.
(i) A subset E of G is called a translated reflection space if E —2E C E.
(ii) A translated reflection space E of G is called full if E generates G.
(iii) A translated reflection space E of G is called a reflection space if 0 € E.

Remark 3.2. (1) The notion of a reflection space was introduced in [L], which
is a more general concept than ours. If G = Z", it was called a semilattice in
[A-P].

(2) If S is a reflection space of G, then sois S+ S. In fact, we have
0eSCcS+S,and S+S5—-2(5+85)=(5—-295)+(S—-25)CcS+S.

By (R2) and (4), S and L in our root system R are reflection spaces of
G, and E is a translated reflection space of G. If R is reduced, i.e., assuming
(R4), then

EN2S =0,

and in particular, 0 ¢ E.

We will see that L and E are always contained in S. Moreover, we
can prove certain properties of S, L and FE, depending on the type of A. If
Ay # O, we use the notation k for the ratio of the long square root length to
the short square root length in A. Hence,

{ 2 if A has type By, C;, F4 or BC; for [ > 2.
3 if A has type Go.

Proposition 3.3. Let R = R(S,L,E)a be a root system extended by G .
(a) If Ayg # O, then

L+kESCL and S+ LCS.
(b) If Aey # D, i.e., A has type BCy, then

E+45SCFE and S+ECS.
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Moreover, if Nig # O, i.e., if | > 2, then
E+2LCFE and L+ EC L.

(¢) ECLCS, and S is a full reflection space of G. (S is the biggest!)
(d) If A does not have type Ay, By or BCj, then S =G.
(e) If A has By, Fy, Gy or BC; for 1 >3, then L is a subgroup of G.

Proof. If the Dynkin diagram of A contains a subgraph o = o or o = o,
then there exist p,v € A with p short such that < p,v >= —2 and < v, u >=
—1,0r < p,v >= -3 and < v, u >= —1, respectively. So (a) follows from (3).

If A has type BC;, then there exists u € A such that —2u € A, and
so < —2u,pu >= —4 and < p,—2u >= —1. So the first assertion of (b) follows
from (3). The second assertion also follows from (3) since there exist u € Ay
and v € A, such that < p,v >= -2 and < p,v >= —1.

The fourth inclusion of (b) and the second inclusion of (a) show that
E CLcC S since 0€ L and 0 € S. Hence, by (R1), we obtain (c).

If the Dynkin diagram of A4 contains a subgraph o — o, then there
exist p,v € A of the same length such that < p,v >= —1. In this case, by (3),
we get S+.5 C S if p and v are short, and L+ L C L if 4 and v are long. If A
does not have type Ay, B;, BC; or Gg, you can find a subgraph o — o in short
roots, and so S becomes a subgroup of G. Hence S = GG since S generates G.
Similarly, for the types in (e) except type Gz, you can find a subgraph o — o in
long roots, and so L becomes a subgroup of G'. So (d) and (e) hold except type
Ga. But if A has type Gz, both Ay, and A;, have type Ay whose Dynkin
diagram is o — o. Hence (d) and (e) also hold for type Gs. u

Theorem 3.4.  Let {S,},ca be a root (resp. a reduced root) system extended
by G of type A. Then S, =S for all p € Ay, S, = L for all p € Ay and
Sy = FE for all p € Ay, where S is a full reflection space, L is a reflection
space and FE is a translated reflection space satisfying

L+kSCL and S+ L CS,

E+4SCFE and S+ ECS

E+2LCFE and L+ECL

S=G if A+ Ay, B, BC,

L is a subgroup if A = B; (1 > 3), Fy, Gy, BCj (1 > 3)
(resp. and furthermore, FE N2S = Q).

Conversely, let S, L and E be as above, and define S, = S for all
p € Agp, Sy = L forall p € Ay and S, = E for all p € Acp. Then
R(S,L,E)a is a root (resp. a reduced root) system extended by G .

Proof. We only need to show the second statement. So we show that the set
R(S,L,E)a is a (reduced) root system. Thus, we must check the axioms (R1)-
(R4). But all except (R3) are clear. Considering the possible Cartan integers
< p,v > in each type A, (R3) also follows from the relations among S, L
and F. |
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Example 3.5. (1) Let G = Z4 X Z4. By Theorem 3.4, a root system extended
by G of type B; for [ > 3 is determined by a subgroup L and a full reflection
space S of G satisfying S+ L C S and L 4+ 2S5 C L. Note that the second
inclusion is equivalent to 25 C L since L is a subgroup. This is not the case for
type Bo. Let L = 2G and

S=LU(L+(1,0))U(L+(0,1)).

Then R(S,L)p, is an example of a root system extended by G.

(2) Let R be a root system extended by Q of type B; for [ > 3. Then
since Q = 2Q = 2(S) C L, where (S) is the subgroup of Q generated by S, we
have L =5 = Q. Hence R = R(Q,Q)p, .

(3) Let R be aroot system extended by Z of type B; for [ > 2. Then any
reflection space of Z is a subgroup of Z. Hence R = R(Z,Z)p, or R(Z,27)g, .

A reduced root system {S,},ca extended by Z"™ can be considered
as an extended affine root system (EARS): Let Vi be a euclidean space with
root system A, V5 an n-dimensional real vector space and V = V; @ V5 the
vector space with positive semidefinite symmetric bilinear form (-,-) which is the
natural extension of the form on V; with radical V5. Identify Z™ with the lattice
spanned by a basis of V5. Let

So =5, + S,
for any u € Agp, (see Remark 3.2(2)) and

R = U (1 =+ Su)-
neAU{0}

Then the descriptions of S, for 4 € AU {0} in Theorem 3.4 are exactly the
same as in the classification of EARS (see [A-P, 2.32 and 2.37]), and so (V, R)
is an EARS and any EARS can be considered as a root system extended by Z".
In particular, a reduced root system extended by Z can be thought as an affine
root system.

A root system {S,},ca extended by Z™ can be considered as a Saito’s
extended affine root system (SEARS) (see [Sa]): In the same setting as above,

let
Rs = U (1 + Sp)-
REA

Then by the same argument as Azam did (he showed a one-to-one correspondence
between EARS and reduced SEARs in [A]), (V, Rg) is a SEARS, and any SEARS
can be considered as a root system extended by Z™. We summarize these as a
corollary.

Corollary 3.6.  We have the following one-to-one correspondences:
{root systems extended by Z"} < {SEARS of nullity n}
U U

{reduced root systems extended by Z"} < {reduced SEARS of nullity n}
— {EARS of nullity n}
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4. Division (A, G)-graded Lie algebras

Throughout the paper the base field F' has characteristic 0. We first recall A-
graded Lie algebras and division (A, G)-graded Lie algebras, and as a special
case, we define Lie G-tori. Let g be a finite-dimensional split simple Lie algebra
over F with a split Cartan subalgebra h and the root system A™9 so that g has
the root space decomposition g = @ (@HEAred gu) with h = go. A A-graded
Lie algebra L over F' with grading subalgebra g or grading pair (g, h) is defined
as

(i) L contains g as a subalgebra;

(ii) L = @ueavqoy Ly, where L, = {x € L | [h,z] = p(h)x for all h € b};

and

(i) Lo=Y,ca [Lus Lo,

Note that the Jacobi identity implies [L,,L,] C L,4, for all p,v €
AU{0}, defining L1, =0 if p+v ¢ AU{0}. Also, the centre Z = Z(L) of L
is contained in Lo, and L/Z is again a A-graded Lie algebra with Z(L/Z) = 0.
A A-graded Lie algebra having trivial centre is called centreless.

Remark 4.1. The A-graded Lie algebras for a reduced A were introduced by
Berman and Moody [BM], and have been recently generalized for a nonreduced
case by Allison, Benkart and Gao [ABG]|. They classified more general BC;-
graded Lie algebras in [ABG] (and [BS] for [ = 1) than our concept above.
We only consider a special class of BC;-Lie algebras in their sense. The reason
comes from the theory of EALAs. Namely, the core of an EALA is a A-graded
Lie algebra in our sense, which was shown in [AG, Proposition 1.16].

Let G be an abelian group. We will consider a G-graded (Lie) algebra
L = @yec L9, which is a G-graded vector space satisfying LILM C LI+"
([L9, L") c L9th if L is Lie) for all g,h € G. For convenience, we always
assume that

supp L :={g € G | LY # 0} generates G.

Definition 4.2.
(1) A A-graded Lie algebra L = ®©,cauqoy Ly with grading pair (g, bh) is
called (A,G)-graded if L = @®4ce LY is a G-graded Lie algebra such
that g € LY. Then we have

- @ Pu

neAU{0} geG

where Lj = L, N LY since LY is an h-submodule of L. Note that if G
is trivial, L is just a A-graded Lie algebra.

(2) Let Z(L) be the centre of L and let u¥ € h for p € A be the coroot
of p. Then L is called a division (A,G)-graded Lie algebra if for any
p € A and any 0 # x € LY, there exists

y € LZ;, such that [z,y] = p” modulo Z(L). (division property)
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(These Lie algebras for a reduced A were introduced in [Y2].)

If G is trivial, L is called a division A-graded Lie algebra.

A division (A, G)-graded Lie algebra L = ©,caufoy Dgec L is called
a Lie G-torus of type A if

dimp LY, <1 for all g€ G and € A. (1-dimensionality)

If G=27Z", we call it a Lie n-torus or simply a Lie torus.

Example 4.3.

(1)

A finite-dimensional simple isotropic Lie algebra L is a centreless division
A-graded Lie algebra. In fact, let h be a maximal abelian diagonalizable
subalgebra of L (a maximal split torus in [Se]), which is nonzero since
L is isotropic. Then L has the root space decomposition relative to b,
and the root system A is a finite irreducible root system (see [Se, Ch.I,
§2]). Thus L = @ cauqoy Ly, which is the condition (ii) of A-graded Lie
algebras. Since > A ([Ly,L—p] 4+ L,) is a nonzero ideal of L and L
is simple, the condition (iii) holds. The division property relative to this
h is one of the most important and starting properties to develop the
theory, which is shown in [Se, Ch.I, Lemma 3]. Thus we need to show the
condition (i) of A-graded Lie algebras, i.e., the existence of a grading
subalgebra g so that the grading pair is (g,h). Let II = {aq,... ,aq}
be the set of simple roots of A*. As Seligman did in [Se, Ch.III, §1],
using the division property, one can choose an sla-triplet 0 # e; € Ly, ,
0+# fi € Lo, and o) € b for each «;. These e;, f;, ) for 1 <i <1
satisfy the Serre relations, and by Serre’s Theorem, one can show that the
Lie algebra g generated by those elements is a split simple Lie algebra
of type A™ and b is a Cartan subalgebra of g. Note that for the
nonreduced case, he constructed a split simple Lie algebra of type C;
instead of type A™ = B;. See also the remark [ABG, 1.15].

Loop (or twisted loop) algebras, toroidal Lie algebras and the cores of
EALAs are all examples of Lie tori.

Let F'[G] be a twisted group algebra. Then sl;1(F*[G]) is a centreless
Lie G-torus of type A;. Moreover, any Lie G-torus of type A; for [ > 3
is isomorphic to a central extension of some sl; ;1 (F*[G]). More generally,
division (A, G)-graded Lie algebras of type A; (I > 3), D; and E; were,
up to central extensions, classified in terms of crossed product algebras,
and if G = Z™, they were classified in more precise description (see
[Y2]). Also, division (A, Z™)-graded Lie algebras were, up to central
extensions, classified in [Y3].

Centreless division A-graded Lie algebras are (possibly infinite-dimen-

sional) isotropic simple Lie algebras by the following;:

Lemma 4.4. A centreless division (A, G)-graded Lie algebra is G -graded sim-
ple. Hence, in particular, a centreless division A-graded Lie algebra is simple.

Proof.

Suppose L = @ucavfoy @gec LY is a centreless division (A, G)-

graded Lie algebra with grading pair (g,h), and I = @®yce 19 is a nonzero
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graded ideal. Since I9 is an h-submodule, 1Y is graded for the A-grading, say
I9 = &ueauqoy I for all g € G. Since I # 0, there exists some k € G such
that I" # 0. If I¥ = I, then [I*,LI] c I}* for pe A and l € G. If I}t =0
for all 4 € A and I € G, then I* C Z(L) = 0, contradiction. Hence there exist
some p € A and [ € G such that I l’j“ # 0. Therefore, without loss of generality,
we may assume that [ # 0 for some p € A and g € G. Then Y € I by the
division property. If < v, ># 0, then p¥ € I implies L, C I. Hence, by the
division property, vV € I. Repeating this process, we get L, C I for all v € A,
by the irreducibility of A. So I = L. Thus L is graded simple. ]

5. The root systems of division (A, G)-graded Lie algebras

We show that a division (A, G)-graded Lie algebra has a root system extended
by G of type A in the following sense:

Theorem 5.1.  Let L= D caufoy Pgec L be a division (A, G)-graded Lie
algebra with centre Z. For each p € AU{0}, let

Sy ={9€G|L#0} and R=R(L):={Su}uen.

Then R = R(L/Z), R is a root system extended by G, and Sy = S, + S, for
JIAS szh'
Moreover, if L is a Lie G -torus, then R is reduced.

Proof. Let S):={g€ G| (L/Z)]#0}. Clearly S| C Sp. We claim that

(%) So=J (Su+5-.) =5

HEA

Since £ is A-graded, So C Upuea (S, + S—,). So we need to show that
Upea (S +S—u) € Sy Let g € S, and k € S, and let 0 # = € L and
0#ve ﬁliu' Suppose [z,v] =0 in L£/Z. By the division property, there exists
y € L7 so that sly := (x,y,p") in L£/Z is isomorphic to sly(F). Consider £
as an slp-module and the submodule generated by v. Note that [u",v] = —2v,
and so v has the negative weight. Hence 0 # (ady)?(v) € L£_3,, which cannot
happen. Hence 0 # [x,v] € £8+k, i.e.,, g+k € S, and our claim is settled. Since
ZCLy, L, =(L/Z), for p#0,and so R(L) =R(L/Z).

For the second statement, we need to check the axioms (R1)-(R3). (R1)
and (R2) follow from the definition of a division (A, G)-graded Lie algebra. Thus
we show (R3). Notice that adz, for any g € G, p # 0 and 0 # x € L], is
ad-nilpotent since A is finite. Let y € £LZ¥ be such that [z,y] = ¥ mod Z.
Then one can define the automorphism

0% :=expadzexpad (—y)expadz
of £. Then by the same way as in [A-P, Prop. 1.27], one can see that

k k—<v,u>
075.(Ly) =L e

ou(v)
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for all v € A and k € G. So S,— < v,u > S, C Sy, ), which is (R3).
Therefore, R is a root system extended by G. So in particular, S, C S, =5_,
for all v € A and p € Agp, (see §3, the equation (2) and Proposition 3.3(c)).
Hence by (), we get So =S, + S, for p € Agy,.

For the last statement, we need to check (R4). Let p,2u € A and
g €S,. Since R= R(L/Z), we may assume that £ is centreless. Thus again let
x € L9 and y € LT be so that sly := (x,y, u") = sla(F). By 1-dimensionality,
we have [L£9,L77] + [Egi, E:SZ] C FuV . Hence,

M:=LY&L,eFu eLlLlleccy
is a finite-dimensional sly-module. Since the 0-weight subspace of M which is
FuV is 1-dimensional, M is irreducible. Since M contain sl as a submodule,
M = sly. So in particular, Egi = 0. Hence Sy, N2S, =0. [ ]

The 1-dimensionality forces the root system to be reduced. The following
shows that 2-dimensionality is enough to have a nonreduced example.

Example 5.2. (An example of a Lie algebra which has a nonreduced root
system extended by Z", or a nonreduced SEARS of nullity n.) Let 6 = (6;5)
be an n x n skew symmetric matrix over R, and let T := Cy[t{',... ,tF!] be
the noncommutative torus determined by @, i.e., the associative algebra over C
generated by tlﬂ, . ,tfl with relations

tit; = eV~1itt; forall 1<i,j<n.

Let ~— be the involution of T" over R determined by

letla ceey by =g,

which extends the complex conjugation of C. So (7,7) is an associative al-
gebra with involution over R. Also, T has the natural Z"-grading, i.e., T =
®aeczn Ct,, where t, == t{* -0 for o = (aq,... ,0,) € Z™. (All the ho-
mogeneous spaces are 2-dimensional over R.) Thus it is easy to show that the
Kantor construction K := K(T,7), which is a BC;-graded Lie algebra over R,
is a division (BCy,Z")-graded Lie algebra over R. So R(K) = R(S, E)pc, is a
root system extended by Z", S =supp1 = Z", and

E={aecZ"|Ct,NT- # 0},

where T_ is the set of skew elements of (7,7). It is easy to see that E = Z".
Thus R(K) is nonreduced.

6. Division (A,G)-graded Lie algebras of type B

In this section we will classify division (B;,G)-graded Lie algebras for [ > 3,
and see that there exist such Lie algebras for each root system extended by G
of type B; for [ > 3.
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First we recall a Jordan algebra of a symmetric bilinear form. Let Z be a

commutative associative algebra, W a Z-module, and f a symmetric Z-bilinear
form on W. Then

J=ZoW
is called a Jordan algebra of f if the multiplication is defined as
(z4+w)- (2 +w') =22+ flw,w') + 20 + 2w
for 2,2’ € Z and w,w’ € W, which is a Jordan algebra over Z.
Next we need a concrete realization of a finite-dimensional split simple
Lie algebra g over F' of type B; (I > 2). Let V be a (20 + 1)-dimensional space

over F' with basis vy,... ,v941. Let u be the symmetric bilinear form on V' so
that

w(vi, i) = 1for 1 <4 <1, wu(vaq1,v241) =1 and u(v;,v;) = 0 otherwise.

We may identify g as the Lie algebra of endomorphisms of V' which are skew
relative to u. We may also identify the Cartan subalgebra § of g with the Lie
algebra of elements of g which are diagonal relative to the basis vy,... ,v941.
Let {e1,...,e;} be a basis for h defined by

2041
ei(z a;v;) = Q;V; — Q4+iVi4i
j=1
for a; € F. Let {e1,...,€} be the dual basis of {ej,...,e} in h*. Then
Ve, = Fv;, V_. =Fuvy;, fori=1,...,l, and Vy= Fugy.
In this case,
(1) Agp={£e|1<i<Il} and Ay ={*(exe)|1<i#7 <1}
In particular, the weights of the module V' are the elements of Ay, U {0}. Let
J=FaV
be the Jordan algebra of u. Then we may identify

g = Dyy :=span{D, . | v,v € V},

where D, = [Ly, L] and L is the left multiplication operator, by extending
the action of elements of g to J so that they kill F'. We use the following
recognition theorem by Benkart and Zelmanov [BZ]:
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Theorem 6.1. Let L be a centreless Bj-graded Lie algebra for | > 3 with
grading pair (g,b). Then there exists a Jordan algebra J = Z & W of a

symmetric bilinear form f over a commutative associative algebra Z so that
L=9B(T), where

B(IT)=@rZ)®(VRrW)®Dww with gol=g=Dyy,

Dy vy :=span{ Dy, . | w,w" € W}
with Dy .y = [Luy, Ly] as above, and the Lie bracket is defined by

[t ® 2,2’ @2 =[z,2'] ® 22,
[*® z,v®@w] =2v® 2w,

=
]
(2) [t ® z,D] =
[v@w, v @w'] =Dy @ flw,w) +u(v,v) Dy,
[D,v®@w] =v&®& Dw
for x,2' € g, 2,2 € Z, v, € V, w,w' €W and D € Dyy,y, containing
Dyy .y as a subalgebra.

Conversely, for any such Jordan algebra J, B(J) is a centreless B -
graded Lie algebra for [ > 2.

Remark 6.2. If W =0, i.e., J = Z is a commutative associative algebra,
then B(J) = g®p Z is called untwisted.

Remark 6.3. In [BZ] or [AG], D, = —[Ly,Ly]| and Dy, = —[Ly, Ly]
were chosen. Let 87 (7) be the Lie algebra constructed by a Jordan algebra
J =Z@&W of f as above, using their choice. Let 7~ = Z @& W be the Jordan
algebra of —f. Then our Lie algebra B(J) is isomorphic to B~ (J ) via the
identity map. We will explain in Remark 6.5 that our choice is more natural.
Also, Seligman [Se| originally defined the Lie bracket on the same space

Bs(T)=(g0r Z) & (VOrW) o Dy w
as B(J), using the natural right action of g on V' and identifying
g = span{[R,, Ry/] | v,v" € V},

where R is the right multiplication operator, as

[zt ® 2,2’ ® 2] = [z,2'] ® 22,
VR w,x® z] =v.r®wsz,

/

= [RU,Rv/] R flw,w") + u(v,v" )[Ry, Ru],
[v®@w, D] =v®wD

=
]
[z ® z, D] =
[v®w, v @uw]

]
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for x,2’ €g, 2,2/ € Z, v,v" €V, w,w’ €W and
D € Dy = span{[Ry, Rw] | w,w" € W},

containing Dyy yy as a subalgebra. One can see that the natural right action is
equivalent to the action defined by

V.X ‘= —IV

for x € g and v € V (the right-hand side is the natural left action defined above).
Then since v"[Ry, Ry/| = —|[Ly, Ly v” for v € V', we have v".([L,, L,]) =
—[Ly, Ly Jv" = v"[Ry, Ryv]. Thus, the map from B(J) onto Bs(J) defined by

TR 2+VRQW A Ly, Ly | = 2@ 24+ 0@ w ~+ Ry, Ry

is an isomorphism of Lie algebras.

A G-graded Jordan algebra is called division graded if all nonzero ho-
mogeneous elements are invertible. Now we are ready to show one of our main
results.

Theorem 6.4.  Let L be a centreless (B, G)-graded Lie algebra for [ > 3.
Then there exists a G -graded Jordan algebra J = ZEW = Ggeca (2, BW,) of
a symmetric bilinear form f over a commutative associative algebra Z so that
L=B(T).

Moreover, if L is division graded, then so is J . In this case supp J = S
and Z s division L-graded with supp Z2 = L, where S and L are defined in the
system R(L) = R(S,L)p, .

Conversely, for a root system R(S,L)p, for | > 2 so that a division
G -graded Jordan algebra J = ®geq (24 ® Wy) of a symmetric bilinear form
satisfies supp J = S and supp Z = L, B(J) is a centreless division (B, G)-
graded Lie algebra whose root system is R(S,L)g, .

Proof. Let
- @ @y

nweAU{0} geG

be a centreless division (B, G)-graded Lie algebra for [ > 3 with grading pair
(g,bh). Then, by Theorem 6.1, we have

_{gu®Z it e Ay
=

) (gu@Z)® (V,@W) if pe Ag,.

Let L={g€G|L]#0,u€ Ay}. Forall p€ Ay and g € G, we define Z
as
‘CZ :gu®zi7

and so Z = @gec 2, and in particular, Z7 =0 if g ¢ L. If p,v € Ay and
p—v e A, then

9u®Zﬁ - [gV®Zg7gu—y®]-] :gM®Z£
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Thus by the same argument in [AG, (5.11)], we get Z9 = ZJ for any p,v € Ayy.
So for g € G we put

Zy:=Z7 for any choice of € Ayy.

Then

4 2= 2,=EP 2, with L, =g,®2 forall pcAyandlclL,
geqG leL

is an L-graded space. Moreover, there exist u,v,u+v € Ay, from (1) (I > 3),
and so for [,k € L, we have

[0, © 21,00 @ 2] = 80 ® 212k C LY = 9440 ® 214

Hence 2,2 C Z;4 Thus Z is a (L)-graded algebra with 1 € Z;, where (L) is
the subgroup of G generated by L. (L = supp Z is not necessarily a subgroup
here.)

Let p € Agp, and g € G. We define ZJ and WY as
0 ® 29 =(g,®Z)NLY and g, @Wi = (V,@W)N LY.
We claim that
L=, ®Z])®(V,@Wj) and ZJ=2Z,

Let x € £f. Then by (3), z =t + v for some t € g, ® Z and v € V}, ® W. So
we need to show that t,v € Lf. By (4), we have t = >, ., e, ® 2 for some
0+#e, €9, and z; € Z;. From (1), one can see that there exists v € A such
that u+v € Ayy. Let 0£e, €9, =g, ®1 C LY. Then

0 if L
5) ev.al € L0, — { ¢
9M+V (2 Zg lf g c L.

Also, [ey,v] € [g, ® 20, V, @W] C g,.V, @W, but g,.V, =0 since p+v € Ay,.
Hence [e,,v] = 0. Thus we obtain [e,,t] = [e,, x].

If g L, then > ., [es, e, ® 2] =0 by (5), and so [e,,e, ® 2] = 0 for
all [ € L. Since [g,,9,] #0, we get 2z, =0 forall [ € L, i.e., t =0. Therefore,
r=v€L].

If g€ L, then [e,,t] € L], and so t = e, ® 2, € g, ® Z4. (From (1),
there exists £ € Ay, such that p—& € A. So by (4), we have

0 ® 29 = (06 ® Z4,8,-¢ ©1] C [L, L) _¢] C L],
Therefore, t € £, and v =2z —t € L. Finally, since p+v € A}y, we get

[gu ® Zﬁagu ® 1] = Gutv ® Zﬁ Cgutrr ®Zy.
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Hence Zj C Z9. Also,
(8040 ® 27,9, ®1] =g, ® 29 C g, ® 2,
and hence 29 C Z7. Thus our claim is settled.
Now, W = @gec WY, and V, @ Wi = L] if g ¢ L since Z, = 0. If
v € Agp, and p— v € A, then
VieWi=[V,@Wl, g, ®1] =V, @WJ forall geG.

Therefore, W{ = Wg. Thus by the same argument in [AG, (5.11)], we get
Wi =Wy for any p,v € Agp, and all g € G. So for g € G we put

Wy =W, for any choice of p € Agp,.

Consequently,
W= w,, with
geG
LY =V, oW, foral pe Ay and g ¢ L,
and
(6) LY =(9,®24) 0V, @W,) forall pe Ay, and g € L.

Our next claim is that

Zo,0W, itgel

jz@ Jg, Where J, ::{Wg gL,

geG

satisfies for all ¢,k € G,
ZWr C Wi, WoWe C 244, and W W, =0 if g+k ¢ L.

In fact, there exist € Ay and v € Ay, such that u+v € Ag, by (1). Since
[gl.u Vu] — V‘u,+y7 we have

[0, ® 24, Vi @ Wi| = Vo ® ZW, C EZi]f/ = (Bu1r @ Zg41) © (Virw @ W)

Hence Z,W), C Wy . Next, one can choose p,v € Ay, such that p4v € Ayy.
Let 0 #v1 €V, and 0 # vy € V,,. Then we have

[01 © We,v2 @ Wi] = Dy, o, @ fF(We, Wi) C LIES = 840 @ 241

since u(v1,v2) = 0. Since Dy, 4, # 0 (e.8. Dy, 0, Vo # 0), we get f(Wy, Wy) =
WeWi C Z441. The last equality is clear since Z44, =0 for g+ %k ¢ L. Hence
our claim is settled.

Let S :=suppJ =suppL, for p € Ag,. By (6), we have L C S, and
so S+ S D supp L, which generates G. Hence S generates G, and so J is a
G-graded Jordan algebra.
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Suppose that £ is division graded. Let 0 # 2 +w € Z;, & W, = J, for
z€Zy,weW,and g€ S (z=0if g ¢ L). To show the invertibility of z+w,
we identify g with the matrices relative to the basis {v1,... ,v941}. Let e :=
€i 2041 — €21+1,1+i € ge; (see (1)) for any fixed 1 < i <[, where e;; is the matrix
unit, and let €’ := 2e9;41,;—2€14+i 2141 € g, - Then [e, €] = 2e;;,—2¢14i1+i = €.
Also, let v:=v; and v' := 2v;4;. Then u(v,v") =2, Dy = [Ly, Ly] = ¢ and
ev' + e'v = —2v911 + 2v911 = 0.

Now, e® z+v®w € LI, and by the division property of L, there exists
y € LZ? suchthat e@z+v@w,y] =¢€’. Since LI = (g_, ®Z2_4) ® (V_, ®
W_,), we have y =€’ @ 2/ + v/ ® w’ for some 2’ € Z_, and w’ € W_,. So

& Rl=¢=lexkz+tvw,e 2 +v @u
=le,e'] ® 22" + Dy @ fw,w') + e’ @ 2z — €' v @ 2'w + u(v,v") Dy 4
=¢ ® (22 +ww') +ev ® (2w + 2'w) + 2Dy 4.

Hence zz' +ww’ =1 and zw’ + 2w = 0. So (2 + w)(z' + w’') = 1. Also, we
have D, 4w /4w = Dw.w = 0. Therefore, z + w is invertible. Thus J is a
division G-graded Jordan algebra, and in particular L = supp £, for pu € Ay is
a subgroup of GG, and Z is a division L-graded commutative associative algebra.
Also, the root system of L is determined by these S and L.

We show the last statement. For g € G, let LY 1= (9,82Z,)D(V,@W,) if
p € Agp,and L :=g,@Z, if p € Ay,. Then a centreless B;-graded Lie algebra
?g(j) admits the compatiblqu—g‘rading, say B(J) = Suecauv{o} 6?96@ LY, where

0= 2oper Dug=ptq LN LL,], is a centreless (B, G)-graded Lie algebra.

For € Ajg and g€ L, let e € g, and €’ € g_, such that [e,e'] = p"

. Then for 0 # x € Lf, there exists 0 # z € Z; such that z = e ® z. Taking

y=¢e ®z71! € LT, we get [z,y] = p.

For ¢, € Agp, and g€ S, let e € g.,, € €g_,, v =0v; and v/ = 2u;4;
as before so that [e,e'] = ¢ = D, and ev’ +¢'v = 0. Then for 0 # x € LY,
there exist z € Z;, and w € W, such that * = e ® 2z + v ® w. Taking
y=e 2 +v@w € LZY, where 2’ and w’ are defined as (z+w)™ ! = 2"+,
we get [x,y] =¢’. Hence B(J) is division graded. u

Remark 6.5. In a similar way, one can show that
B~ (J) is division graded <= J is division graded,

but this does not imply that J is division graded. For example, J~ = R & Rw
with w? = —1 is a division algebra over R, which is C, but J = R ® Rw
with w? = 1 is not even simple. Thus if one considers the division property of
the coordinate algebras J for division B;-graded Lie algebras, our B(J) seems
more natural.

However, for the case of Lie G-tori and Clifford G-tori defined in the
next section, we have

B~ (J) is a Lie G-torus <= J is a Clifford G-torus
<~ PB(J) is a Lie G-torus
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since there is no homogeneous element z +w € J with 2z £ 0 and w # 0. So
the choice of either B~ (7) or B(J) does not effect the division property of 7.

Now we show the existence of a division G-graded Jordan algebra in
Theorem 6.4 for any root system R(S,L)p, extended by G for [ > 3. By
Theorem 3.4, S is a full reflection space of G and L is a subgroup of G such
that

2SCL and S+LCS

(see Example 3.5(1)). We choose a collection of coset representatives {u;}ier in
G/L so that

G=|] (u+L).

teT

By the second inclusion, S is a union of cosets of G/L containing L, say

S = |_| (Ut+L) with UO:O.
teIu{0}CT

Also, by the first inclusion, we have
l; »==2u; € L forall i eIU{0}.

Let

zz@ Z

be a division L-graded commutative associative algebra over F',i.e., a commuta-
tive associative L-graded algebra so that all nonzero homogeneous elements are
invertible. So in particular supp Z = L. Let K = Z, which is a field extension
of F'. For each i € I U {0},

(i) let (Wi, i, 2;) be a triple consisting of a vector space W; over K, a
symmetric anisotropic bilinear form ¢; of W;, i.e., ¢;(w,w) # 0 for all
0#weW,;,and 0# z; € Z;, with zp = 1.

(ii) assume that W; # 0 if i # 0,

(iii) assume that (o does not represent 1 (so K & W, is a Jordan division
algebra).
We denote the family of triples by Wr:

Wi = {(Wi, @i, 2i) Yieru{oy-

For each i € I U {0}, we extend ¢; to Z @k W, as a Z-bilinear map, denoted
fi, as follows:

fiz@w, 2 @w') = 22"¢;(w,w') 2

for 2,2’ € Z, w,w’ € W;. Obviously f; is symmetric and the image is Zz; for

each i € I L {0}. Let
f= GB fi

icI1u{0}
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be the symmetric bilinear form over Z on
W= P (ZaxW).
1€IU{0}
We claim that the Jordan algebra
J=ZaW

of f is a division G-graded Jordan algebra over F' for some (G-grading. First
we put
Wy:=0 and ¢, =0 forteT\ (IU{0}).
For g € GG, there exist unique u; € G and [ € L such that ¢ = u; +1. We set
Z Qg (KeW,y) ift=0,
jg = jut+l = { .
Z Qg Wy otherwise.
Since Z @ Wy = @i, (21 @ W) and
Z® (2o W) =Z0k (KeW) =P (Ziok (KaW))
lel

(identifying Z with Z ®x K ), we get

j:2@< & (Z®KWZ-)> :(Z@(Z®KWO))@(@ Z®KWZ->

ieTL{0} iel
= <@ (Zl RK (K@Wo)))@( @ (Zl ®KW1')) :@ jg
IEL (i,)eIxL 9€G
as K-vector spaces. Let g =1+4wu, ¢ =U'+upy € G (I,I' € L), z € Z and
ZeZy. Ift=1t =0, then for a,b € K and z,y € Wy,
(z®@(a+2)) (2 ®@(b+y) =22 @ (ab+ po(z,y) + br + ay) € Tyig-
If t=0 and t' #0, then for a € K, z € Wy and y € Wy,
(- (a+2)) (' ©9) = a2/ @y € Tyry
since WoWy = 0. Finally, if ¢t # 0 and ¢’ # 0, then for x € W, and y € Wy,
)22 @1 ift=t el
(Z@%)(Z’@y)Z{SOt( y) t . .
0 otherwise (since W,Wy = 0),

which is in Jy44 . Therefore, we obtain J,Jy C Jy44g for all ¢g,¢" € G.
Since supp J = S which generates G, J is a G-graded algebra over K. Any
0#£az®ue Jyforae K,leL, z€ Z and u € K ® W, has the inverse
a lz7'®@u™! since K@®Wj is a Jordan division algebra. (Note that dimy Z; = 1
forall [ € L.) Also, forany 0 # az®x € Jjyu,, 1t €1, a€ K, l €L, z € Z
and x € W;, we have (az ® 2)? = a?p;(x,1)2%2; ® 1, which is invertible since
@; is anisotropic. Hence az ® x is invertible. So we have shown that

J=J(S,L,K,Z,Wr)

is a division G-graded Jordan algebra over K, and hence over F'. Thus:
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Theorem 6.6. For any root system R(S,L)p, extended by G for | > 3,
there exists a division G-graded Jordan algebra J = J(S,L,K,Z,W;) of a
symmetric bilinear form over an L-graded commutative associative algebra Z
with suppJ =S and supp Z2 = L.

Conversely, for any division G-graded Jordan algebra J = Z W =
Bgea (24 &Wy) of a symmetric bilinear form over a commutative associative
algebra Z, the pair of S := suppJ and L := supp Z satisfies the conditions of
a root system R(S,L)p, extended by G for 1 > 2, and J is graded isomorphic
to some J(S,L,K,Z,Wr).
Proof. We only need to show the second statement. Note first that L =
supp Z is a subgroup of G since Z is associative, and that S = supp J is a full
reflection space of G (see [NY, 2.3(b)]). Also, for g € S and 0 # w € W,, we
have 0 # w? € WW, = f(W,, W,) € 22, and so 2g € L. Hence 25 C L, and
so L 4+ 2S5 C L. Moreover, since W is a graded Z-module, we have L+ S C S'.
Thus the pair of S and L satisfies the conditions of a root system extended by
G of type B; (1> 2).

Let S’ := supp W, which is a union of cosets of G/L. So, letting ug = 0,

S = |_| (uz + L)
iel

for some index set I which may contain 0. Let K := Zp which is a field extension
of F', I :=1\{0}, W;=W,, and Wy =01if 0 ¢ I. Then

W= w.= 2w..= @ 2w

ses’ iel ieITu{o}

Let f be the symmetric bilinear form of the Jordan algebra 7, and let

fi = f lwixw,

for all i € T U {0}. For 0 # w; € W,,, we have 0 # w? € Zy,,, and so
li :=2u; € L forall i € I. We fix 0 # 2; € Z;, forall i € I. Also, let l[j =0
and zp = 1. Then, since

fz(W27Wz) C Zl.; = KZi,
one can define symmetric bilinear forms ¢; on W; over K as
filw,w'") = @i(w,w')z;

for w,w’ € W; and all i € I LU{0}. Thus we get a family of triples of K-
vector spaces W;, symmetric anisotropic bilinear forms ¢; and nonzero z; € Zj,
indexed by i € I U{0}, satisfying (i), (ii) and (iii) above.

Let u; # u;j. If u; +u; + L = L, then u; +u; —2u; + L = L, and so
u; + L = uj + L, which contradicts the fact that {u;};.; is a collection of coset
representatives of S’ in G/L. Hence w; +u; + L # L. So we have

Win C f(WZ‘,Wj) C jui+'l//j NZ=0
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for all 4 € I L/ {0}. Hence we have

f= @ &

icI1u{0}

Finally, ZW; is a free Z-module with rankz ZW,; = dimg W;, and so one can
easily show that there is a natural Z-module isomorphism

ZW, 2 ZQr W;

via zx < z®@ax for z € Z and x € W,;. Identifying them, we get J =
j<SaL7K7WI)~ |

Combining Theorem 6.4 with Theorem 6.6, we get the complete classifi-
cation of division (B;, G)-graded Lie algebra for [ > 3, up to central extensions.

Theorem 6.7. Let L be a centreless division (Bj,G)-graded Lie algebra
for 1 > 3 with root system R(S,L)p,. Then L = B(J) for some J =
J(S,L,K,Z,Wy). Conversely, for 1 > 2, B(J) is a centreless division (B, G)-
graded Lie algebra for any J = J(S,L, K, Z,Wy). n

7. Lie G-tori of type B

We now specialize Theorem 6.7 to the case of Lie G-tori. Also, we show that
there is a one-to-one correspondence between centreless Lie G-tori of type B; and
root systems extended by G of type B; for [ > 3 if the base field is algebraically
closed and G is free.

A division G-graded Jordan algebra J = Z&W = Qe (Z,8W,) of a
symmetric bilinear form is called a Clifford G -torus over F if dimp(Z,6W,) <1
for all ¢ € G (1-dimensionality).

For any root system R(S,L)p, extended by G for [ > 3, we construct
such a Clifford G-torus J = Z & W with suppJ = S and suppZ = L.
Although the construction is just a special case of division G-graded Jordan
algebras in §6, they can be described in a simpler way. As in §6, we choose a
collection of coset representatives {u;}ier in G/L so that

G = |_| (Ut + L),
teT
S = |_| (ug + L) with ug =0
teIu{0}CT
and
l; :=2u; € L forall ieIU{0}.
Let

zz@ Z

leL



Y OSHII 391

be a commutative associative L-torus over F', i.e., a division L-graded commu-
tative associative algebra with dimp Z; < 1 for all [ € L. So supp Z = L and
dimp Z;, =1 for all [ € L. Let W be a free Z-module with basis {w;};c; and
choose 0 # z; € Z;,. Define a symmetric bilinear form f on W over Z as

f(wi, wj) = 5i,jzi-

We claim that the Jordan algebra J := Z & W over Z determined by the
symmetric bilinear form f is a Clifford G-torus. In fact we put

wo:=1 and w;:=0 forteT)\ (IU{0}).

For g € GG, there exist unique u; € G and [ € L such that g = u; +1[, and so we
set

jg = jut—H = Zjwy.

Then
J=2aW= B zw-=F I

(t,1)ETXL geG

as F-vector spaces. Let g =1+4w, ¢ =U'4+up € G (I,I' € L), z € Z, and
Z S Zl/ . Then
5t’t/ZZ/Zt if t,t/ el

zz'wpwy  otherwise.

() = {

Since z; € Z;, = Z2¢, we obtain JyJy C Jy4q forall g,¢" € G. Since supp J =
S which generates G, J is a G-graded algebra. For any 0 # 2wy € Jj44,, We
have (zw;)? = 2%2;, which is invertible. Hence zw; is invertible. Thus we have

shown that
j = \7(57 La Za {Zi}i€l>

is a Clifford G-torus.

Conversely, let J = Z&W = @ycq (Z4  W,) be a Clifford G-torus.
Let L =suppZ, S =suppJ and S’ = suppW. Then, by the same reason as
in §6, the pair of S and L satisfies the conditions of a root system extended by
G of type B; for [ > 3 (so [ > 2), and we have

S:LuS’:Ll_l(U (uH—L))

el

for some 0 # u; € S’ indexed by some set I. Now Z = @, Z;, which is a
commutative associative L-torus. Let 0 # w; € W,,, for all i € I. Then {w;}ier
is a Z-basis of W so that

W=EP W. = 2W., =P 2w

seS’ el el

Let I, := 2u; € L and z; = w? € Z;, for all ¢ € I. Then by the
same argument as in §6, we get f(w;,w;) = 0;;2; for all ¢,5 € I, and so

J =J(S,L,Z,{z}icr) constructed above. Thus:
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Theorem 7.1.  For any root system R(S,L)p, extended by G for | > 3, there
exists a Clifford G -torus J = J(S, L, Z,{zi}ier)-

Conversely, for any Clifford G-torus J = Z & W, the pair of S =
supp J and L :=supp Z satisfies the conditions of a root system R(S,L)s, ex-
tended by G for 1 > 2, and J is graded isomorphic to some J (S, L, Z,{z}icr)-

]

Since 1-dimensionality of (B;, G)-graded Lie algebras reflects 1-dimen-
sionality of G-graded Jordan algebras, we obtain the following as a corollary of
Theorem 6.6:

Theorem 7.2.  Let L be a centreless Lie G -torus of type By for I > 3 with root
system R(S,L),. Then L = B(J) for some J = J(S,L,2Z,{z;}icr). Con-
versely, for | > 2, B(J) is a centreless Lie G-torus for any

j:j(vavzv{Zi}iEI)' u

Example 7.3. (1) Let FF =Q, and let G, S and L be in Example 3.5(1). Let
Z = Q(v2,V3), and W a vector space over Z with basis {w,ws}. Define a
Z-bilinear form f on W by

V2 ifi=j=1
f(wi,wj): \/§ ifi:j:2

0 otherwise.

Consider the Jordan algebra J = Z & W of f. Let ¢ = (1,0) and 2 = (0,1).
Then
\7{:‘1 = le, k7€2 = QwQ a'nd \751—|—62 = 0

determine a unique G-grading of J so that Z is L-graded. Thus J is a Clifford
G-torus with S = suppJ and L = supp Z. The Lie G-torus B(J) is a finite-
dimensional simple Lie algebra over QQ since [J is a finite-dimensional Jordan
division algebra.

(2) Any centreless Lie Q-torus £ over F of type B; for I > 3 is
untwisted, i.e., L = B(Z) = g ®p Z, where Z is a commutative associative
Q-torus over F', by the reason in Example 3.5(2).

(3) If G = Z, then for | > 2, we have R = R(Z,Z)p, or R(Z,2Z)g,
(see Example 3.5(3)). For the first case, the Clifford Z-torus J = Z can be
identified with the group algebra F[Z] or equivalently the algebra of Laurent
polynomials F[t,t71], and the centreless Lie 1-torus B(Z) is an untwisted loop
algebra g @p F[t,t71] of type Bl(l).

For the second case, the Clifford Z-torus J = J(Z,27Z, Z,{z}) is written
as J = Z® Zw, where 0 # w € J; and w? =z € Zy. Also, J is associative
since J has rank 2 over Z. We identify Z with the group algebra F[2Z], say
Z = F[27Z] = ®mez F2m. Since 27 is a free group generated by 2, we can put
z = 2. Hence J is uniquely determined by the root system R(Z,2Z)g,, and
J = F[Z] = ®mez Fm is also a group algebra, where 1 = w. Thus J can be
again identified with F[t,t7!], and the centreless Lie 1-torus B(J) is a twisted
loop algebra (g ®@r F[t*2]) @ (V ®@F tF[t*2]) of type Dl(i)l.
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In the construction of a Clifford torus J = J(S,L, Z,{z;}icr) above,
the commutative associative L-torus Z over F' is a group algebra

Z=F[L|=Ep FI
leL

if L is free. Also, if any element of F' has a square root in F', then one can make
z; = l; for all 7 € I by switching w; to

1
Vai

Thus J is uniquely determined by S and L, say J = J(S,L). If G is free, so
is L. Hence we have:

-1
w; where a; = z;l;, € F.

Theorem 7.4. If G is free and if any element of F has a square root in F,
e.g. F is an algebraically closed field, then there is a one-to-one correspondence
between the centreless Lie G -tori of type B; and the root systems extended by G
of type By for 1 > 3. [

Remark 7.5. Division (A, G)-graded Lie algebras for the other types, A =
Ay, C;, Fy, Gy or BC; (see Example 4.3(3)) are not classified yet, even in the
case G = Z".
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