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Abstract. A Riemann-Lie algebra is a Lie algebra G such that its dual
G∗ carries a Riemannian metric compatible (in the sense introduced by the
author in C. R. Acad. Sci. Paris, t. 333, Série I, (2001) 763–768) with the
canonical linear Poisson structure of G∗ . The notion of Riemann-Lie algebra
has its origins in the study, by the author, of Riemann-Poisson manifolds
(see Differential Geometry and its Applications, Vol. 20, Issue 3(2004),
279–291).
In this paper, we show that, for a Lie group G , its Lie algebra G car-
ries a structure of Riemann-Lie algebra iff G carries a flat left-invariant
Riemannian metric. We use this characterization to construct examples of
Riemann-Poisson Lie groups (a Riemann-Poisson Lie group is a Poisson Lie
group endowed with a left-invariant Riemannian metric compatible with the
Poisson structure).

1. Introduction

Riemann-Lie algebras first arose in the study by the author of Riemann-Poisson
manifolds (see [2]). A Riemann-Poisson manifold is a Poisson manifold (P, π) en-
dowed with a Riemannian metric 〈, 〉 such that the couple (π, 〈, 〉) is compatible
in the sense introduced by the author in [1]. The notion of Riemann-Lie alge-
bra appeared when we looked for the Riemannian metrics compatible with the
canonical Poisson structure on the dual of a Lie algebra. We pointed out (see [2])
that the dual space G∗ of a Lie algebra G carries a Riemannian metric compatible
with the linear Poisson structure iff the Lie algebra G carries a structure which
we called Riemann-Lie algebra. Moreover, the isotropy Lie algebra at a point on
a Riemann-Poisson manifold is a Riemann-Lie algebra. In particular, the dual
Lie algebra of a Riemann-Poisson Lie group is a Riemann-Lie algebra (a Riemann-
Poisson Lie group is a Poisson Lie group endowed with a left-invariant Riemannian
metric compatible with the Poisson structure). In this paper, we will show that
a Lie algebra G carries a structure of Riemann-Lie algebra iff G is a semi-direct
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product of two abelian Lie algebras. Hence, according to a well-known result of
Milnor [5], we deduce that, for a Lie group G , its Lie algebra carries a structure
of Riemann-Lie algebra iff G carries a flat left-invariant Riemannian metric. We
apply this geometrical characterization to construct examples of Riemann-Poisson
Lie groups. In particular, we give many examples of bialgebras (G, [ , ],G∗, [ , ]∗)
such that both (G, [ , ]) and (G∗, [ , ]∗) are Riemann-Lie algebras.

2. Definitions and main results

Notations. Let G be a connected Lie group and (G, [ , ]) its Lie algebra. For any
u ∈ G , we denote by ul (resp. ur ) the left-invariant (resp. right-invariant) vector
field of G corresponding to u . We denote by θ the right-invariant Maurer-Cartan
form on G given by

θ(ur) = −u, u ∈ G. (1)

Let 〈; 〉 be a scalar product on G i.e. a bilinear, symmetric, non-degenerate
and positive definite form on G .

Let us enumerate some mathematical objets which are naturally associated
with 〈, 〉 :

1. an isomorphism # : G∗ −→ G ;

2. a scalar product 〈, 〉∗ on the dual space G∗ by

〈α, β〉∗ = 〈#(α), #(β)〉 α, β ∈ G∗; (2)

3. a left-invariant Riemannian metric 〈, 〉l on G by

〈ul, vl〉l = 〈u, v〉 u, v ∈ G; (3)

4. a left-invariant contravariant Riemannian metric 〈, 〉∗l on G by

〈α, β〉∗lg = 〈T ∗
e Lg(α), T ∗

e Lg(β)〉∗ (4)

where α, β ∈ Ω1(G) and Lg is the left translation of G by g .

The infinitesimal Levi-Civita connection associated with (G, [ , ], 〈, 〉) is the
bilinear map A : G × G −→ G given by

2〈Auv, w〉 = 〈[u, v], w〉+ 〈[w, u], v〉+ 〈[w, v], u〉, u, v, w ∈ G. (5)

Note that A is the unique bilinear map from G × G to G which verifies:

1. Auv − Avu = [u, v] ;

2. for any u ∈ G , Au : G −→ G is skew-adjoint i.e.

〈Auv, w〉+ 〈v, Auw〉 = 0, v, w ∈ G.

The terminology used here is motivated by the fact that the Levi-Civita connection
∇ associated with (G, 〈, 〉l) is given by

∇ulvl = (Auv)l u, v ∈ G. (6)

We will introduce now a Lie subalgebra of G which will play a crucial role in this
paper.
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For any u ∈ G , we denote by adu : G −→ G the endomorphism given by
adu(v) = [u, v] , and by adt

u : G −→ G its adjoint given by

〈adt
u(v), w〉 = 〈v, adu(w)〉 v, w ∈ G.

The space
S〈,〉 = {u ∈ G; adu + adt

u = 0} (7)

is obviously a subalgebra of G . We call S〈,〉 the orthogonal subalgebra associated
with (G, [ , ], 〈, 〉).

Remark 2.1. The scalar product 〈, 〉 is bi-invariant if and only if G = S〈,〉 . In
this case G is the product of an abelian Lie algebra and a semi-simple and compact
Lie algebra (see [5]). The general case where 〈, 〉 is not positive definite has been
studied by A. Medina and P. Revoy in [4] and they called a Lie algebra G with an
inner product 〈, 〉 such that G = S〈,〉 an orthogonal Lie algebra which justifies the
terminology used here.

Let (G, [ , ], 〈, 〉) be a Lie algebra endowed with a scalar product.

The triple (G, [ , ], 〈, 〉) is called a Riemann-Lie algebra if

[Auv, w] + [u, Awv] = 0 (8)

for all u, v, w ∈ G and where A is the infinitesimal Levi-Civita connection associ-
ated to (G, [ , ], 〈, 〉).

From the relation Auv − Avu = [u, v] and the Jacobi identity, we deduce
that (8) is equivalent to

[u, [v, w]] = [Auv, w] + [v, Auw] (9)

for any u, v, w ∈ G . We refer the reader to [2] for the origins of this definition.

Briefly, if (G, [ , ], 〈, 〉) is a Lie algebra endowed with a scalar product.
The scalar product 〈, 〉 defines naturally a contravariant Riemannian metric on
the Poisson manifold G∗ which we denote also by 〈, 〉 . If we denote by πl the
canonical Poisson tensor on G∗ , (G∗, πl, 〈, 〉) is a Riemann-Poisson manifold iff the
triple (G, [ , ], 〈, 〉) is a Riemann-Lie algebra.

Characterization of Riemann-Lie algebras. With the notations and
the definitions above, we can state now the main result of this paper.

Theorem 2.2. Let G be a Lie group, (G, [ , ]) its Lie algebra and 〈, 〉 a scalar
product on G . Then, the following assertions are equivalent:

1) (G, [ , ], 〈, 〉) is a Riemann-Lie algebra.

2) (G∗, πl, 〈, 〉) is a Riemann-Poisson manifold (πl is the canonical Poisson
tensor on G∗ and 〈, 〉 is considered as a contravariant metric on G∗ ).

3) The 2-form dθ ∈ Ω2(G,G) is parallel with respect the Levi-Civita con-
nection ∇ i.e. ∇dθ = 0.

4) (G, 〈, 〉l) is a flat Riemannian manifold.

5) The orthogonal subalgebra S〈,〉 of (G, [ , ], 〈, 〉) is abelian and G split as
an orthogonal direct sum S〈,〉 ⊕ U where U is a commutative ideal.
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The equivalence “1) ⇔ 2)” of this theorem was proven in [2] and the
equivalence “4) ⇔ 5)” was proven by Milnor in [5]. We will prove the equivalence
“1) ⇔ 3)” and the equivalence “1) ⇔ 5)”.

The equivalence “1) ⇔ 3)” is a direct consequence of the following formula
which it is easy to verify:

∇dθ(ul, vl, wl)g = Adg ([u, [v, w]]− [Auv, w]− [v, Auw]) , u, v, w ∈ G, g ∈ G.
(10)

If G is compact and connected, the condition ∇dθ = 0 implies that dθ is
harmonic and, according to the Hodge Theorem must vanishes since it is exact.
Now, the vanishing of dθ is equivalent to G being abelian and hence we get the
following lemma which will be used in the proof of the equivalence “1) ⇔ 5)” in
Section 3.

Lemma 2.3. Let G be a compact, connected and non abelian Lie group. Then
the Lie algebra of G does not admit any structure of Riemann-Lie algebra.

A proof of the equivalence “1) ⇔ 5)” will be given in Section 3.

Examples of Riemann-Poisson Lie groups. This subsection is devoted
to the construction, using Theorem 2.2, of some examples of Riemann-Poisson Lie
groups. A Riemann-Poisson Lie group is a Poisson Lie group with a left-invariant
Riemannian metric compatible with the Poisson structure (see [2]).

We refer the reader to [6] for background material on Poisson Lie groups.

Let G be a Poisson Lie group with Lie algebra G and π the Poisson tensor
on G . Pulling π back to the identity element e of G by left translations, we get
a map πl : G −→ G ∧ G defined by πl(g) = (Lg−1)∗π(g) where (Lg)∗ denotes the
tangent map of the left translation of G by g . Let

deπ : G −→ G ∧ G

be the intrinsic derivative of π at e given by

v 7→ LXπ(e),

where X can be any vector field on G with X(e) = v.

The dual map of deπ

[ , ]e : G∗ ∧ G∗ −→ G∗

is exactly the Lie bracket on G∗ obtained by linearizing the Poisson structure at
e . The Lie algebra (G∗, [ , ]e) is called the dual Lie algebra associated with the
Poisson Lie group (G, π).

We consider now a scalar product 〈, 〉∗ on G∗ . We denote by 〈, 〉∗l the
left-invariant contravariant Riemannian metric on G given by (4).

We have shown (cf. [2] Lemma 5.1) that (G, π, 〈, 〉∗l) is a Riemann-Poisson
Lie group iff, for any α, β, γ ∈ G∗ and for any g ∈ G ,

[Ad∗g
(
A∗

αγ + ad∗πl(g)(α)γ
)
, Ad∗g(β)]e + [Ad∗g(α), Ad∗g

(
A∗

βγ + ad∗πl(g)(β)γ
)
]e = 0, (11)
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where A∗ : G∗×G∗ −→ G∗ is the infinitesimal Levi-Civita connection associated to
(G∗, [ , ]e, 〈, 〉∗) and where πl(g) also denotes the linear map from G∗ to G induced
by πl(g) ∈ G ∧ G .

This complicated equation can be simplified enormously in the case where
the Poisson tensor arises from a solution of the classical Yang-Baxter equation.
However, we need to work more in order to give this simplification.

Let G be a Lie group and let r ∈ G∧G . We will also denote by r : G∗ −→ G
the linear map induced by r . Define a bivector π on G by

π(g) = (Lg)∗r − (Rg)∗r g ∈ G.

(G, π) is a Poisson Lie group if and only if the element [r, r] ∈ G ∧ G ∧ G defined
by

[r, r](α, β, γ) = α([r(β), r(γ)]) + β([r(γ), r(α)]) + γ([r(α), r(β)]) (12)

is ad-invariant. In particular, when r satisfies the Yang-Baxter equation

[r, r] = 0, (Y −B)

it defines a Poisson Lie group structure on G and, in this case, the bracket of the
dual Lie algebra G∗ is given by

[α, β]e = ad∗r(β)α− ad∗r(α)β, α, β ∈ G∗. (13)

We will denote by [ ]r this bracket.

We will give now another description of the solutions of the Yang-Baxter
equation which will be useful latter.

We observe that to give r ∈ G ∧G is equivalent to give a vectorial subspace
Sr ⊂ G and a non-degenerate 2-form ωr ∈ ∧2S∗

r .

Indeed, for r ∈ G ∧ G , we put Sr = Im r and ωr(u, v) = r(r−1(u), r−1(v))
where u, v ∈ Sr and r−1(u) is any antecedent of u by r .

Conversely, let (S, ω) be a vectorial subspace of G with a non-degenerate
2-form. The 2-form ω defines an isomorphism ωb : S −→ S∗ by ωb(u) = ω(u, .),
we denote by # : S∗ −→ S its inverse and we put

r = # ◦ i∗

where i∗ : G∗ −→ S∗ is the dual of the inclusion i : S ↪→ G .

With this observation in mind, the following proposition gives another
description of the solutions of the Yang-Baxter equation.

Proposition 2.4. Let r ∈ G ∧ G and (Sr, ωr) its associated subspace. The
following assertions are equivalent:

1) [r, r] = 0.

2) r([α, β]r) = [r(α), r(β)]. ([ , ]r is the bracket given by (13)).

3) Sr is a subalgebra of G and

δωr(u, v, w) := ωr(u, [v, w]) + ωr(v, [w, u]) + ωr(w, [u, v]) = 0

for any u, v, w ∈ Sr .
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Proof. The proposition follows from the following formulas:

γ(r([α, β]r)− [r(α), r(β)]) = −[r, r](α, β, γ), α, β, γ ∈ G∗ (14)

and, if S is a subalgebra,

[r, r](α, β, γ) = −δωr(r(α), r(β), r(γ)). (15)

This proposition shows that to give a solution of the Yang-Baxter equation
is equivalent to give a symplectic subalgebra of G . We recall that a symplectic
algebra (see [3]) is a Lie algebra S endowed with a non-degenerate 2-form ω such
that δω = 0.

Remark 2.5. Let G be a Lie group, G its Lie algebra and S an even dimen-
sional abelian subalgebra of G . Any non-degenerate 2-form ω on S verifies the
assertion 3) in Proposition 2.1 and hence (S, ω) defines a solution of the Yang-
Baxter equation and then a structure of Poisson Lie group on G .

The following proposition will be crucial in the simplification of the equation
(11).

Proposition 2.6. Let (G, [ , ], 〈, 〉) be a Lie algebra endowed with a scalar
product, r ∈ G∧G a solution of (Y −B) and (Sr, ωr) its associated symplectic Lie
algebra. Then, Sr ⊂ S〈,〉 iff the infinitesimal Levi-Civita connection A∗ associated
with (G∗, [ , ]r, 〈, 〉∗) is given by

A∗
αβ = −ad∗r(α)β, α, β ∈ G∗. (16)

Moreover, if Sr ⊂ S〈,〉 , the curvature of A∗ vanishes and hence
(G∗, [ , ]r, 〈, 〉∗) is a Riemann-Lie algebra.

Proof. A∗ is the unique bilinear map from G∗ × G∗ to G∗ such that:

1) A∗
αβ − A∗

βα = [α, β]r for any α, β ∈ G∗ ;
2) the endomorphism A∗

α : G∗ −→ G∗ is skew-adjoint with respect to 〈, 〉∗.
The bilinear map (α, β) 7→ −ad∗r(α)β verifies 1) obviously and verifies 2) iff

Sr ⊂ S〈,〉 .

If A∗
αβ = −ad∗r(α)β , the curvature of A∗ is given by

R(α, β)γ = A∗
[α,β]rγ −

(
A∗

αA∗
βγ − A∗

βA∗
αγ

)
= ad∗r([α,β]r)−[r(α),r(β)]γ = 0

from Proposition 2.4 2). We conclude by Theorem 2.2.

Proposition 2.7. Let (G, [ , ], 〈, 〉) be a Lie algebra with a scalar product. Let
r ∈ G ∧ G be a solution of (Y −B) such that Sr is a subalgebra of the orthogonal
subalgebra S〈,〉 . Then Sr is abelian.
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Proof. Sr is unimodular and symplectic and then solvable (see [3]). Also Sr

carries a bi-invariant scalar product so Sr must be abelian (see [5]).

We can now simplify the equation (11) and give the construction of Riemann-
Poisson Lie groups announced before.

Let G be a Lie group, (G, [ , ]) its Lie algebra and 〈, 〉 a scalar product
on G . We assume that the orthogonal subalgebra S〈,〉 contains an abelian even
dimensional subalgebra S endowed with a non-degenerate 2-form ω .

As in Remark 2.5, (S, ω) defines a solution r of (Y −B) and then a Poisson
Lie tensor π on G . It is easy to see that, for any g ∈ G ,

πl(g) = r − Adg(r).

This implies that (11) can be rewritten

[Ad∗g
(
A∗

αγ + ad∗r(α)γ
)
, Ad∗g(β)]r + [Ad∗g(α), Ad∗g

(
A∗

βγ + ad∗r(β)γ
)
]r =

[Ad∗g
(
ad∗Adg(r)(α)γ

)
, Ad∗g(β)]r + [Ad∗g(α), Ad∗g

(
ad∗Adg(r)(β)γ

)
]r.

Now, since S ⊂ S〈,〉 , we have by Proposition 2.6

A∗
αγ + ad∗r(α)γ = 0

for any α, γ ∈ G∗ . On other hand, it is easy to get the formula

Ad∗g[ad∗r(α)β] = ad∗(Adg−1r)(Ad∗gα)(Ad∗gβ), g ∈ G, α, β ∈ G∗.

Finally, (G, π, 〈, 〉∗l) is a Riemann-Poisson Lie group iff

[ad∗r(α)γ, β]r + [α, ad∗r(β)γ]r = 0, α, β, γ ∈ G∗.

But, also since A∗
αγ + ad∗r(α)γ = 0, this condition is equivalent to (G∗, [ ]r, 〈, 〉∗) is

a Riemann-Lie algebra which is true by Proposition 2.6. So, we have shown:

Theorem 2.8. Let G be a Lie group, (G, [ , ]) its Lie algebra and 〈, 〉 a scalar
product on G . Let S be an even dimensional abelian subalgebra of the orthogonal
subalgebra S〈,〉 and ω a non-degenerate 2-form on S . Then, the solution of the
Yang-Baxter equation associated with (S, ω) defines a structure of Poisson Lie
group (G, π) and (G, π, 〈, 〉∗l) is a Riemann-Poisson Lie group.

Let us enumerate some important cases where this theorem can be used.

1) Let G be a compact Lie group and G its Lie algebra. For any bi-
invariant scalar product 〈, 〉 on the Lie algebra G , S〈,〉 = G . By Theorem 2.8, we
can associate to any even dimensional abelian subalgebra of G a Riemann-Poisson
Lie group structure on G .

2) Let (G, [ , ], 〈, 〉) be a Riemann-Lie algebra. By Theorem 2.2, the
orthogonal subalgebra S〈,〉 is abelian and any even dimensional subalgebra of S〈,〉
gives rise to a structure of a Riemann-Poisson Lie group on any Lie group whose
the Lie algebra is G . Moreover, we get a structure of bialgebra (G, [ , ],G∗, [ , ]r)
where both G and G∗ are Riemann-Lie algebras.

Finally, we observe that the Riemann-Lie groups constructed above inherit
the properties of Riemann-Poisson manifolds (see [2]). Namely, the symplectic
leaves of these Poisson Lie groups are Kählerian and their Poisson structures are
unimodular.
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3. Proof of the equivalence “1) ⇔ 5)” in Theorem 2.2

In this section we will give a proof of the equivalence “1) ⇔ 5)” in Theorem 2.2.
The proof is a sequence of lemmas. Namely, we will show that, for a Riemann-Lie
algebra (G, [ , ], 〈, 〉), the orthogonal subalgebra S〈,〉 is abelian. Moreover, S〈,〉 is
the 〈, 〉-orthogonal of the ideal [G,G] . This result will be the key of the proof.

We begin by a characterization of Riemann-Lie subalgebras.

Proposition 3.1. Let (G, [ , ], 〈, 〉) be a Riemann-Lie algebra and H a subal-
gebra of G . For any u, v ∈ H , we put Auv = A0

uv + A1
uv , where A0

uv ∈ H and
A1

uv ∈ H⊥ . Then, (H, [ , ], 〈, 〉) is a Riemann-Lie algebra if and only if, for any
u, v, w ∈ H , [A1

uv, w] + [v, A1
uw] ∈ H⊥.

Proof. We have, from (9), that for any u, v, w ∈ H

[u, [v, w]] = [A0
uv, w] + [v, A0

uw] + [A1
uv, w] + [v, A1

uw].

Now A0 : H×H −→ H is the infinitesimal Levi-Civita connection associated with
the restriction of 〈, 〉 to H and the proposition follows.

We will introduce now some objects which will be useful latter.

Let (G, [ , ], 〈, 〉) a Lie algebra endowed with a scalar product.

From (5), we deduce that the infinitesimal Levi-Civita connection A asso-
ciated to 〈, 〉 is given by

Auv =
1

2
[u, v]− 1

2

(
adt

uv + adt
vu

)
u, v ∈ G. (17)

On other hand, the orthogonal with respect to 〈, 〉 of the ideal [G,G] is
given by

[G,G]⊥ =
⋂
u∈G

ker adt
u. (18)

Let us introduce, for any u ∈ G , the endomorphism

Du = adu − Au. (19)

We have, by a straightforward calculation, the relations

Du(v) =
1

2
[u, v] +

1

2

(
adt

uv + adt
vu

)
,

Dt
u(v) =

1

2
[u, v] +

1

2

(
adt

uv − adt
vu

)
.

From these relations, we remark that, for any u, v ∈ G , Dt
u(v) = −Dt

v(u) and then

∀u ∈ G, Dt
u(u) = 0. (20)

We remark also that

Dt
u = Du ⇔ ∀v ∈ G, adt

vu = 0.

So, by (18), we get
[G,G]⊥ = {u ∈ G; Dt

u = Du}. (21)

Now, we prove a sequence of results which will give a proof of the equivalence
“1) ⇔ 5)” in Theorem 2.2.
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Proposition 3.2. Let (G, [ , ], 〈, 〉) be a Riemann-Lie algebra. Then Z(G)⊥

(Z(G) is the center of G ) is an ideal of G which contains the ideal [G,G]. In
particular,

G = Z(G)⊕ Z(G)⊥.

Proof. For any u ∈ Z(G) and v ∈ G , from (17) and the fact that Au is
skew-adjoint, Auv = −1

2
adt

vu ∈ Z(G)⊥. By (8), for any w ∈ G

[Auv, w] = [Awv, u] = 0,

so Auv ∈ Z(G) and then Auv = −1
2
adt

vu = 0 which shows that u ∈ [G,G]⊥ . So
Z(G) ⊂ [G,G]⊥ and the proposition follows.

From this proposition and the fact that for a nilpotent Lie algebra G
Z(G) ∩ [G,G] 6= {0} , we get the following lemma.

Lemma 3.3. A nilpotent Lie algebra G carries a structure of Riemann-Lie
algebra if and only if G is abelian.

We can now get the following crucial result.

Lemma 3.4. Let (G, [ , ], 〈, 〉) be a Riemann-Lie algebra. Then the orthogonal
Lie subalgebra S〈,〉 is abelian.

Proof. By (17), Auv = 1
2
[u, v] for any u, v ∈ S〈,〉 . So, by Proposition 3.1, S〈,〉

is a Riemann-subalgebra. By (9), we have, for any u, v, w ∈ S〈,〉 ,

[u, [v, w]] = [Auv, w] + [v, Auw] =
1

2
[[u, v], w] +

1

2
[v, [u, w]] =

1

2
[u, [v, w]]

and then [S〈,〉, [S〈,〉, S〈,〉]] = 0 i.e. S〈,〉 is a nilpotent Lie algebra and then abelian
by Lemma 3.3.

Lemma 3.5. Let (G, [ , ], 〈, 〉) be a Riemann-Lie algebra. Then

[G,G]⊥ = {u ∈ G; Du = 0}.

Proof. Firstly, we notice that, by (21), [G,G]⊥ ⊃ {u ∈ G; Du = 0}. On other
hand, remark that the relation (8) can be rewritten

[Du(v), w] + [v, Du(w)] = 0

for any u, v, w ∈ G . So, we can deduce immediately that [ker Du, ImDu] = 0 for
any u ∈ G .

Now we observe that, for any u ∈ [G,G]⊥ , the endomorphism Du is auto-
adjoint and then diagonalizeable on R . Let u ∈ [G,G]⊥ , λ ∈ R be an eigenvalue
of Du and v ∈ G an eigenvector associated with λ . We have

〈Du(v), v〉 = λ〈v, v〉 (α)
= −〈Avu, v〉 (β)

= −〈[v, u], v〉 (γ)
= 0.

So λ = 0 and we obtain that Du vanishes identically. Hence the lemma follows.

The equality (α) is a consequence of the definition of Du , and the equality
(β) follows from the definition of A . We observe that v ∈ ImDu and u ∈ ker Du

since Du(u) = Dt
u(u) = 0 (see (20)) and the equality (γ) follows from the remark

above.
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Lemma 3.6. Let (G, [ , ], 〈, 〉) be a Riemann-Lie algebra. Then

S〈,〉 = [G,G]⊥.

Proof. From Lemma 3.5, for any u ∈ [G,G]⊥ , Au = adu and then adu is skew-
adjoint. So [G,G]⊥ ⊂ S〈,〉 . To prove the second inclusion, we need to work harder
than the first one.

Firstly, remark that one can suppose that Z(G) = {0} . Indeed, G = Z(G)⊕
Z(G)⊥ (see Proposition 3.2), Z(G)⊥ is a Riemann-Lie algebra (see Proposition
3.1), [G,G] = [Z(G)⊥, Z(G)⊥] and S〈,〉 = Z(G)⊕ S ′

〈,〉 where S ′
〈,〉 is the orthogonal

subalgebra associated to (Z(G)⊥, 〈, 〉).
We suppose now that (G, [ , ], 〈, 〉) is a Riemann-Lie algebra such that

Z(G) = {0} and we want to prove the inclusion [G,G]⊥ ⊃ S〈,〉 . Notice that it
suffices to show that, for any u ∈ S〈,〉 , Au = adu .

The proof requires some preparation. Let us introduce the subalgebra K
given by

K =
⋂

u∈S〈,〉

ker adu.

Firstly, we notice that K contains S〈,〉 because S〈,〉 is abelian (see Lemma 3.4).

On other hand, we remark that, for any u ∈ S〈,〉 , the endomorphism Au

leaves invariant K and K⊥ . Indeed, for any v ∈ K and any w ∈ S〈,〉 , we have

[w,Auv]
(α)
= [w,Avu]

(β)
= −[Awu, v]

(γ)
= 0

and then Auv ∈ K , this shows that Au leaves invariant K . Furthermore, Au

being skew-adjoint, we have Au(K
⊥) ⊂ K⊥ .

The equality (α) follows from the relation Auv = Avu + [u, v] = Auv , the
equality (β) follows from (8) and (γ) follows from the relation Awu = 1

2
[w, u] = 0.

With this observation in mind, we consider the representation ρ : S〈,〉 −→
so(K⊥) given by

ρ(u) = adu|K⊥ u ∈ S〈,〉.

It is clear that ⋂
u∈S〈,〉

ker ρ(u) = {0}. (∗)

This relation and the fact that S〈,〉 is abelian imply that dim K⊥ is even and that
there is an orthonormal basis (e1, f1, . . . , ep, fp) of K⊥ such that

∀i ∈ {1, . . . , p},∀u ∈ S〈,〉, aduei = λi(u)fi and adufi = −λi(u)ei, (∗∗)

where λi ∈ S∗
〈,〉 .

Now, for any u ∈ S〈,〉 , since Au leaves K⊥ invariant, we can write

Auei =
p∑

j=1

(〈Auei, ej〉ej + 〈Auei, fj〉fj) ,

Aufi =
p∑

j=1

(〈Aufi, ej〉ej + 〈Aufi, fj〉fj) .
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From (9), we have for any v ∈ S〈,〉 and for any i ∈ {1, . . . , p} ,

[u, [v, ei]] = [Auv, ei] + [v, Auei],

[u, [v, fi]] = [Auv, fi] + [v, Aufi].

Using the the equality Auv = 0 and (∗∗) and substituting we get

−λi(u)λi(v)ei =
p∑

j=1

λj(v)〈Auei, ej〉fj −
p∑

j=1

λj(v)〈Auei, fj〉ej,

−λi(u)λi(v)fi =
p∑

j=1

λj(v)〈Aufi, ej〉fj −
p∑

j=1

λj(v)〈Aufi, fj〉ej.

Now, it is clear from (∗) that, for any i ∈ {1, . . . , p} , there exists v ∈ S〈,〉 such
that λi(v) 6= 0. Using this fact and the relations above, we get

Auei = λi(u)fi and Aufi = −λi(u)ei.

So we have shown that, for any u ∈ S〈,〉 ,

Au|K⊥ = adu|K⊥ .

Now, for any u ∈ S〈,〉 and for any k ∈ K , adu(k) = 0. So, to complete
the proof of the lemma, we will show that, for any u ∈ S〈,〉 and for any k ∈ K ,
Auk = 0. This will be done by showing that Auk ∈ Z(G) and conclude by using
the assumption Z(G) = {0}.

Indeed, for any h ∈ K , by (8)

[Auk, h] = [Ahk, u].

Since Au(K) ⊂ K and since K is a subalgebra, [Auk, h] ∈ K . Now, K ⊂ ker adu

and adu is skew-adjoint so [Ahk, u] ∈ Imadu ⊂ K⊥ . So [Auk, h] = 0. On other
hand, for any f ∈ K⊥ , we have, also from (8),

[Auk, f ] = [Aku, f ] = [Afu, k] = 0

since Afu = [f, u] + Auf = [f, u] + [u, f ] = 0.

We deduce that Auk ∈ Z(G) and then Auk = 0. The proof of the lemma
is complete.

Lemma 3.7. Let (G, [ , ], 〈, 〉) be a Riemann-Lie algebra such that Z(G) = 0.
Then

G 6= [G,G].

Proof. Let (G, [ , ], 〈, 〉) be a Riemann-Lie algebra such that Z(G) = 0. We will
show that the assumption G = [G,G] implies that the Killing form of G is strictly
negative definite and then G is semi-simple and compact which is in contradiction
with lemma 2.3.
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Let u ∈ G fixed. Since Au is skew-adjoint, there is an orthonormal basis
(a1, b1, . . . , ar, br, c1, . . . , cl) of G and (µ1, . . . , µr) ∈ Rr such that, for any i ∈
{1, . . . , r} and any j ∈ {1, . . . , l} ,

Auai = µibi, Aubi = −µiai and Aucj = 0.

Moreover, µi > 0 for any i ∈ {1, . . . , r} .

By applying (9), we can deduce, for any i, j ∈ {1, . . . , r} and for any
k, h ∈ {1, . . . , l} , the relations:

[u, [ai, aj]] = µi[bi, aj] + µj[ai, bj], [u, [bi, bj]] = −µj[bi, aj]− µi[ai, bj],

[u, [ai, bj]] = −µj[ai, aj] + µi[bi, bj], [u, [bi, aj]] = −µi[ai, aj] + µj[bi, bj],

[u, [ck, aj]] = µj[ck, bj], [u, [ck, bj]] = −µj[ck, aj], [u, [ck, ch]] = 0.

From these relations we deduce

adu ◦ adu([ai, aj]) = −(µ2
i + µ2

j)[ai, aj] + 2µiµj[bi, bj],

adu ◦ adu([bi, bj]) = 2µiµj[ai, aj]− (µ2
i + µ2

j)[bi, bj],

adu ◦ adu([bi, aj]) = −(µ2
i + µ2

j)[bi, aj]− 2µiµj[ai, bj],

adu ◦ adu([ai, bj]) = −2µiµj[bi, aj]− (µ2
i + µ2

j)[ai, bj],

adu ◦ adu([ck, aj]) = −µ2
j [ck, aj],

adu ◦ adu([ck, bj]) = −µ2
j [ck, bj],

adu ◦ adu([ck, ch]) = 0.

By an obvious transformation we obtain

adu ◦ adu ([ai, aj] + [bi, bj]) = −(µi − µj)
2 ([ai, aj] + [bi, bj]) ,

adu ◦ adu ([ai, aj]− [bi, bj]) = −(µi + µj)
2 ([ai, aj]− [bi, bj]) ,

adu ◦ adu ([bi, aj] + [ai, bj]) = −(µi + µj)
2 ([bi, aj] + [ai, bj]) ,

adu ◦ adu ([bi, aj]− [ai, bj]) = −(µi − µj)
2 ([bi, aj]− [ai, bj]) ,

adu ◦ adu([ck, aj]) = −µ2
j [ck, aj],

adu ◦ adu([ck, bj]) = −µ2
j [ck, bj],

adu ◦ adu([ck, ch]) = 0.

Suppose now G = [G,G] . Then the family of vectors

{[ai, aj] + [bi, bj], [ai, aj]− [bi, bj], [bi, aj] + [ai, bj],

[bi, aj]−[ai, bj], [ck, ai], [ck, bj], [ck, ch]; i, j ∈ {1, . . . , r}, h, k ∈ {1, . . . , l}} spans
G and then adu ◦ adu is diagonalizeable and all its eigenvalues are non positive.
Now its easy to deduce that adu ◦ adu = 0 if and only if adu = 0. Since Z(G) = 0
we have shown that, for any u ∈ G \ {0} , Tr(adu ◦ adu) < 0 and then the Killing
form of G is strictly negative definite and then G is semi-simple compact. We can
conclude with Lemma 2.3.

Proof of the equivalence “1) ⇔ 5)” in Theorem 2.2.

It is an obvious and straightforward calculation to show that 5) ⇒ 1).
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Conversely, let (G, [ , ], 〈, 〉) be a Riemann-Lie algebra. By Proposition 3.2,
we can suppose that Z(G) = {0} .

We have, from Lemma 3.7 and Lemma 3.6, G 6= [G,G] which implies S〈,〉 6= 0

and G = S〈,〉
⊥
⊕ [G,G] . Moreover, [G,G] is a Riemann-Lie algebra (see Proposition

3.1) and we can repeat the argument above to deduce that eventually G is solvable
which implies that [G,G] is nilpotent and then abelian by Lemma 3.3 and the
implication follows.

Remark 3.8. The pseudo-Riemann-Lie algebras are completely different from
the Riemann-Lie algebras. Indeed, the 3-dimensional Heisenberg Lie algebra which
is nilpotent carries a Lorentzian Lie algebra structure. On other hand, the non triv-
ial 2-dimensional Lie algebra carries a Lorentzian inner product whose curvature
vanishes and does not carry any structure of a pseudo-Riemann-Lie algebra.
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