Journal of Lie Theory
Volume 15 (2005) 183-195
©2005 Heldermann Verlag

On the Riemann-Lie Algebras and
Riemann-Poisson Lie Groups

Mohamed Boucetta*

Communicated by J. Hilgert

Abstract. A Riemann-Lie algebra is a Lie algebra G such that its dual
G* carries a Riemannian metric compatible (in the sense introduced by the
author in C. R. Acad. Sci. Paris, t. 333, Série I, (2001) 763-768) with the
canonical linear Poisson structure of G*. The notion of Riemann-Lie algebra
has its origins in the study, by the author, of Riemann-Poisson manifolds
(see Differential Geometry and its Applications, Vol. 20, Issue 3(2004),
279-291).

In this paper, we show that, for a Lie group G, its Lie algebra G car-
ries a structure of Riemann-Lie algebra iff G carries a flat left-invariant
Riemannian metric. We use this characterization to construct examples of
Riemann-Poisson Lie groups (a Riemann-Poisson Lie group is a Poisson Lie
group endowed with a left-invariant Riemannian metric compatible with the
Poisson structure).

1. Introduction

Riemann-Lie algebras first arose in the study by the author of Riemann-Poisson
manifolds (see [2]). A Riemann-Poisson manifold is a Poisson manifold (P, 7) en-
dowed with a Riemannian metric (,) such that the couple (7, (,)) is compatible
in the sense introduced by the author in [1]. The notion of Riemann-Lie alge-
bra appeared when we looked for the Riemannian metrics compatible with the
canonical Poisson structure on the dual of a Lie algebra. We pointed out (see [2])
that the dual space G* of a Lie algebra G carries a Riemannian metric compatible
with the linear Poisson structure iff the Lie algebra G carries a structure which
we called Riemann-Lie algebra. Moreover, the isotropy Lie algebra at a point on
a Riemann-Poisson manifold is a Riemann-Lie algebra. In particular, the dual
Lie algebra of a Riemann-Poisson Lie group is a Riemann-Lie algebra (a Riemann-
Poisson Lie group is a Poisson Lie group endowed with a left-invariant Riemannian
metric compatible with the Poisson structure). In this paper, we will show that
a Lie algebra G carries a structure of Riemann-Lie algebra iff G is a semi-direct

* Recherche menée dans le cadre du Programme Thématique d’Appui & la Recherche
Scientifique PROTARS III.

ISSN 0949-5932 / $2.50 © Heldermann Verlag



184 BOUCETTA

product of two abelian Lie algebras. Hence, according to a well-known result of
Milnor [5], we deduce that, for a Lie group G, its Lie algebra carries a structure
of Riemann-Lie algebra iff G carries a flat left-invariant Riemannian metric. We
apply this geometrical characterization to construct examples of Riemann-Poisson
Lie groups. In particular, we give many examples of bialgebras (G, [, |,G*, [, |*)
such that both (G,[, ]) and (G*,[, |*) are Riemann-Lie algebras.

2. Definitions and main results

Notations. Let G be a connected Lie group and (G, [, ]) its Lie algebra. For any
u € G, we denote by u' (resp. u”) the left-invariant (resp. right-invariant) vector
field of G' corresponding to u. We denote by 6 the right-invariant Maurer-Cartan

form on G given by
Ou") =—u, weqg. (1)

Let (;) be a scalar product on G i.e. a bilinear, symmetric, non-degenerate
and positive definite form on G.

Let us enumerate some mathematical objets which are naturally associated
with (,):

1. an isomorphism # : G* — G,

2. a scalar product (,)* on the dual space G* by

(0, 0)" = (#(a), #(8)) @, B€G (2)
3. a left-invariant Riemannian metric (,)* on G by
(W' o) = (uv)  wveG; (3)

4. a left-invariant contravariant Riemannian metric (,)* on G by

(, B)y = (T Ly(a), T; Ly(8))* (4)
where «, 8 € Q'(G) and L, is the left translation of G by g.
The infinitesimal Levi-Civita connection associated with (G, [, |, (,)) is the

bilinear map A : G x G — G given by
2(Av,w) = ([u,v],w) + ((w,u],v) + ((w,v],u), w,v,weQG. (5)

Note that A is the unique bilinear map from G x G to G which verifies:
1. Ao — Ayu = [u,v];
2. forany ue G, A, : G — G is skew-adjoint i.e.

(A, w) + (v, Ayw) =0, v,weQG.

The terminology used here is motivated by the fact that the Levi-Civita connection
V associated with (G, (,)!) is given by

Vv = (A0) u,v € G. (6)

We will introduce now a Lie subalgebra of G which will play a crucial role in this
paper.
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For any uw € G, we denote by ad, : G — G the endomorphism given by
ad,(v) = [u,v], and by ad!, : G — G its adjoint given by

{ad!,(v),w) = (v, ad,(w)) v,w e G.

The space
Sy ={u € G;ad, + adl, = 0} (7)

is obviously a subalgebra of G. We call Sy the orthogonal subalgebra associated

with (G, [, 1,(,))-

Remark 2.1.  The scalar product (,) is bi-invariant if and only if G = S(,. In
this case G is the product of an abelian Lie algebra and a semi-simple and compact
Lie algebra (see [5]). The general case where (,) is not positive definite has been
studied by A. Medina and P. Revoy in [4] and they called a Lie algebra G with an
inner product (,) such that G = Sy an orthogonal Lie algebra which justifies the
terminology used here.

Let (G,[, ],(,)) be a Lie algebra endowed with a scalar product.
The triple (G, [, ],(,)) is called a Riemann-Lie algebra if

[Ayv, w] + [u, Ayv] =0 (8)

for all u,v,w € G and where A is the infinitesimal Levi-Civita connection associ-
ated to (G, [, ],(,)).

From the relation A,v — A,u = [u,v] and the Jacobi identity, we deduce
that (8) is equivalent to

[u, [v,w]] = [Ayv, w] + [v, A, w] 9)

for any u,v,w € G. We refer the reader to [2] for the origins of this definition.

Briefly, if (G,[ , ],(,)) is a Lie algebra endowed with a scalar product.
The scalar product (,) defines naturally a contravariant Riemannian metric on
the Poisson manifold G* which we denote also by (,). If we denote by ! the
canonical Poisson tensor on G*, (G*, 7!, (,)) is a Riemann-Poisson manifold iff the
triple (G, [, |,(,)) is a Riemann-Lie algebra.

Characterization of Riemann-Lie algebras. With the notations and
the definitions above, we can state now the main result of this paper.

Theorem 2.2.  Let G be a Lie group, (G,[, ]) its Lie algebra and (,) a scalar
product on G. Then, the following assertions are equivalent:

1) (G,[, ],(,)) is a Riemann-Lie algebra.

2) (G*, 7!, (,)) is a Riemann-Poisson manifold (7' is the canonical Poisson
tensor on G* and (,) is considered as a contravariant metric on G*).

3) The 2-form df € Q*(G,G) is parallel with respect the Levi-Civita con-
nection V i.e. Vdf = 0.

4) (G, ()Y is a flat Riemannian manifold.

5) The orthogonal subalgebra Siy of (G,[, |,(,)) is abelian and G split as
an orthogonal direct sum Sy ® U where U is a commutative ideal.
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The equivalence “1) < 2)” of this theorem was proven in [2] and the
equivalence “4) < 5)” was proven by Milnor in [5]. We will prove the equivalence
“1) & 3)” and the equivalence “1) < 5)”.

The equivalence “1) < 3)” is a direct consequence of the following formula
which it is easy to verify:

Vo (u', vt wh), = Ady ([u, [v, w]] — [Ayv, w] — [v, Aw]),  w,v,w € G, g€ G.
(10)
If G is compact and connected, the condition Vdf = 0 implies that df is
harmonic and, according to the Hodge Theorem must vanishes since it is exact.
Now, the vanishing of df is equivalent to G' being abelian and hence we get the
following lemma which will be used in the proof of the equivalence “1) < 5)” in
Section 3.

Lemma 2.3.  Let G be a compact, connected and non abelian Lie group. Then
the Lie algebra of G does not admit any structure of Riemann-Lie algebra.

A proof of the equivalence “1) < 5)” will be given in Section 3.

Examples of Riemann-Poisson Lie groups. This subsection is devoted
to the construction, using Theorem 2.2, of some examples of Riemann-Poisson Lie
groups. A Riemann-Poisson Lie group is a Poisson Lie group with a left-invariant
Riemannian metric compatible with the Poisson structure (see [2]).

We refer the reader to [6] for background material on Poisson Lie groups.

Let G be a Poisson Lie group with Lie algebra G and 7 the Poisson tensor
on (. Pulling m back to the identity element e of G by left translations, we get
amap 7, : G — G A G defined by m(g) = (L,~1).m(g) where (L), denotes the
tangent map of the left translation of G by g. Let

demt:G—GNANG
be the intrinsic derivative of 7 at e given by
v— Lxm(e),

where X can be any vector field on G with X (e) = v.
The dual map of d.m

[, ]e:G"NG" — G

is exactly the Lie bracket on G* obtained by linearizing the Poisson structure at
e. The Lie algebra (G*,[, |c) is called the dual Lie algebra associated with the
Poisson Lie group (G, 7).

We consider now a scalar product (,)* on G*. We denote by (,)* the
left-invariant contravariant Riemannian metric on G given by (4).

We have shown (cf. [2] Lemma 5.1) that (G, , (,)*) is a Riemann-Poisson
Lie group iff, for any «, 3,7 € G* and for any g € G,

[Ad; (A2 + ady, gy )7) - Ady(B)]e + [Ady(e), Ady (A3 + ads 7)) = 0, (11)
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where A* : G* x G* — G* is the infinitesimal Levi-Civita connection associated to
(G* [, Je, (,)*) and where m;(g) also denotes the linear map from G* to G induced
by m(g9) € GAG.

This complicated equation can be simplified enormously in the case where
the Poisson tensor arises from a solution of the classical Yang-Baxter equation.
However, we need to work more in order to give this simplification.

Let G be a Lie group and let » € GAG. We will also denote by r : G* — G
the linear map induced by 7. Define a bivector m on G by

T(g) = (Lg)sr — (Ry)sr g €G.

(G,7) is a Poisson Lie group if and only if the element [r,r] € G A G A G defined
by
[ r](ev, B,7) = al[r(B), r(M]) + B(r(7), r(@)]) +y([r(a), r(B)])  (12)

is ad-invariant. In particular, when r satisfies the Yang-Baxter equation
[r,r] =0, (Y — B)

it defines a Poisson Lie group structure on G and, in this case, the bracket of the
dual Lie algebra G* is given by

[Oé,ﬁ]e = ad:(ﬁ)a — ad:(a)ﬁ, Oé,ﬁ - g* (13)

We will denote by [ ], this bracket.

We will give now another description of the solutions of the Yang-Baxter
equation which will be useful latter.

We observe that to give r € G AG is equivalent to give a vectorial subspace
S, C G and a non-degenerate 2-form w, € A%S*.

Indeed, for € G A G, we put S, = Imr and w,(u,v) = r(r~H(u),r *(v))
where u,v € S, and r~!(u) is any antecedent of u by r.

Conversely, let (S,w) be a vectorial subspace of G with a non-degenerate
2-form. The 2-form w defines an isomorphism w® : S — S* by w’(u) = w(u,.),
we denote by # : S* — S its inverse and we put

r=#o1i"

where * : G* — 5* is the dual of the inclusion 7: S — G.
With this observation in mind, the following proposition gives another
description of the solutions of the Yang-Baxter equation.

Proposition 2.4. Let r € GAG and (S,,w,) its associated subspace. The
following assertions are equivalent:

1) [r,r] =0.

2) r([a, B)r) = [r(a), r(B)]. ([, ] is the bracket given by (13)).

3) S, is a subalgebra of G and

dw,(u, v, w) := w,(u, [v,w]) + w, (v, [w, u]) + w.(w, [u,v]) =0

for any u,v,w € S,.
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Proof.  The proposition follows from the following formulas:

V(e flr) = [r(@), r(B)]) = =[rrl(, B,7), . fB,v€G” (14)

and, if S is a subalgebra,
[r,r)(e, B,7) = —dw,(r(), 7(B), (7). (15) m

This proposition shows that to give a solution of the Yang-Baxter equation
is equivalent to give a symplectic subalgebra of G. We recall that a symplectic
algebra (see [3]) is a Lie algebra S endowed with a non-degenerate 2-form w such
that dw = 0.

Remark 2.5. Let G be a Lie group, G its Lie algebra and S an even dimen-
sional abelian subalgebra of G. Any non-degenerate 2-form w on S verifies the
assertion 3) in Proposition 2.1 and hence (S,w) defines a solution of the Yang-
Baxter equation and then a structure of Poisson Lie group on G.

The following proposition will be crucial in the simplification of the equation

(11).

Proposition 2.6.  Let (G,[ , ],(,)) be a Lie algebra endowed with a scalar
product, v € GAG a solution of (Y — B) and (S,,w,) its associated symplectic Lie
algebra. Then, S, C Sy iff the infinitesimal Levi-Civita connection A* associated
with (G*, [, |r, (,)*) is given by

ALB = —ad; )P, a,feqgr. (16)

Moreover, if S, C Sy, the curvature of A* wanishes and hence
(G* [, | (,)") is a Riemann-Lie algebra.

Proof. A* is the unique bilinear map from G* x G* to G* such that:
1) ALB — Aja = [, B, for any o, 3 € G*;
2) the endomorphism A} : G* — G* is skew-adjoint with respect to (,)*.
The bilinear map (o, ) — —ady 3 verifies 1) obviously and verifies 2) iff
S, C S<,>.
It A%B = —ady [, the curvature of A* is given by

R, B)y = Ajy 5,7 — (AZAEV - AEAZV) = ady((a,4,) @) @)Y =0

from Proposition 2.4 2). We conclude by Theorem 2.2. [

Proposition 2.7.  Let (G,[, |,(,)) be a Lie algebra with a scalar product. Let
r € GAG be a solution of (Y — B) such that S, is a subalgebra of the orthogonal
subalgebra S(y. Then S, is abelian.
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Proof. S, is unimodular and symplectic and then solvable (see [3]). Also S,
carries a bi-invariant scalar product so S, must be abelian (see [5]). n

We can now simplify the equation (11) and give the construction of Riemann-
Poisson Lie groups announced before.

Let G be a Lie group, (G,[, |) its Lie algebra and (,) a scalar product
on G. We assume that the orthogonal subalgebra S, contains an abelian even
dimensional subalgebra S endowed with a non-degenerate 2-form w.

Asin Remark 2.5, (S,w) defines a solution r of (Y — B) and then a Poisson
Lie tensor m on G. It is easy to see that, for any g € G,

m(g) =1 — Ad,(r).
This implies that (11) can be rewritten
[Ad; (A + adyyy)  Ady(B)], + [Ady(a), Ad; (A + adi5)7)], =
[Ady (g, (y(0)7) s Ady(B)], + [Ad; (@), Ady (adisg, )57 ) -
Now, since S C Sy, we have by Proposition 2.6
A:;’y + ad:(a)v =0
for any «,v € G*. On other hand, it is easy to get the formula
Adyad; ) 8] = adedgflr)(Ad;a)(Ad;ﬂ), geG,a,pfeqgr.
Finally, (G,7,(,)*) is a Riemann-Poisson Lie group iff

[ad:(a)v’ ﬁ]T + [O./, adi(ﬂ)’y]r =0, a, 3,7 €G".

*

But, also since A%y +ady )y = 0, this condition is equivalent to (G*,[ ], (,)*) is
a Riemann-Lie algebra which is true by Proposition 2.6. So, we have shown:

Theorem 2.8.  Let G be a Lie group, (G,[, ]) its Lie algebra and (,) a scalar
product on G. Let S be an even dimensional abelian subalgebra of the orthogonal
subalgebra S() and w a non-degenerate 2-form on S. Then, the solution of the
Yang-Baxter equation associated with (S,w) defines a structure of Poisson Lie
group (G,7) and (G,7,(,)*) is a Riemann-Poisson Lie group.

Let us enumerate some important cases where this theorem can be used.

1) Let G be a compact Lie group and G its Lie algebra. For any bi-
invariant scalar product (,) on the Lie algebra G, Sy = G. By Theorem 2.8, we
can associate to any even dimensional abelian subalgebra of G a Riemann-Poisson
Lie group structure on G.

2) Let (G,[, |,(,)) be a Riemann-Lie algebra. By Theorem 2.2, the
orthogonal subalgebra S, is abelian and any even dimensional subalgebra of S,
gives rise to a structure of a Riemann-Poisson Lie group on any Lie group whose
the Lie algebra is G. Moreover, we get a structure of bialgebra (G, [, ],G% [, |)
where both G and G* are Riemann-Lie algebras.

Finally, we observe that the Riemann-Lie groups constructed above inherit
the properties of Riemann-Poisson manifolds (see [2]). Namely, the symplectic
leaves of these Poisson Lie groups are Kahlerian and their Poisson structures are
unimodular.
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3. Proof of the equivalence “1) < 5)” in Theorem 2.2

In this section we will give a proof of the equivalence “1) < 5)” in Theorem 2.2.
The proof is a sequence of lemmas. Namely, we will show that, for a Riemann-Lie
algebra (G,[, |,(,)), the orthogonal subalgebra S, is abelian. Moreover, S, is
the (,)-orthogonal of the ideal [G,G]. This result will be the key of the proof.

We begin by a characterization of Riemann-Lie subalgebras.

Proposition 3.1.  Let (G,[, |,(,)) be a Riemann-Lie algebra and H a subal-
gebra of G. For any u,v € H, we put Ay,v = A%v + Alv, where A%v € H and
Alv € H+. Then, (H,[, ],(,)) is a Riemann-Lie algebra if and only if, for any
u,v,w € H, [Alv,w] + [v, Alw] € H*.

Proof. = We have, from (9), that for any u,v,w € H
[, [v,w]] = [AQv, w] + [v, Agw] + [Ayv, w] + v, Ayw].

Now A°: 'H x H — 'H is the infinitesimal Levi-Civita connection associated with
the restriction of (,) to H and the proposition follows. n

We will introduce now some objects which will be useful latter.
Let (G,[, ],(,)) a Lie algebra endowed with a scalar product.
From (5), we deduce that the infinitesimal Levi-Civita connection A asso-
ciated to (,) is given by
1 1 " '
A = i[u, v] — 5 (aduv + advu) u,v €G. (17)
On other hand, the orthogonal with respect to (,) of the ideal [G,J] is
given by
[G,G]" = () kerad,. (18)

ueg
Let us introduce, for any u € G, the endomorphism

D, =ad, — A,. (19)
We have, by a straightforward calculation, the relations
1 1 . .
D,(v) = i[u, v + 3 (aduv + advu) )
1 1
t _ 1 Lot
D! (v) = Q[U,U] +3 (aduv advu> :
From these relations, we remark that, for any u,v € G, D!, (v) = —D!(u) and then
Vu € G, D! (u)=0. (20)

We remark also that
D!=D, & YveG adu=0.

So, by (18), we get
6,91 ={ue g:D, =D.}. (21)

Now, we prove a sequence of results which will give a proof of the equivalence
“l) < 5)” in Theorem 2.2.
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Proposition 3.2.  Let (G,[, |,{,)) be a Riemann-Lie algebra. Then Z(G)*
(Z(G) is the center of G) is an ideal of G which contains the ideal [G,G|. In
particular,

G=2(G)®Z(G)".
Proof. For any u € Z(G) and v € G, from (17) and the fact that A, is
skew-adjoint, A,v = —Sadiu € Z(G)*. By (8), for any w € G
[Ayv,w] = [Ayv,u] =0,

so A,v € Z(G) and then A,v = —iadiu = 0 which shows that u € [G,G]*. So
Z(G) C [G,G]* and the proposition follows. ]

From this proposition and the fact that for a nilpotent Lie algebra G
Z(G)N |G, G| # {0}, we get the following lemma.

Lemma 3.3. A nilpotent Lie algebra G carries a structure of Riemann-Lie
algebra if and only if G is abelian.

We can now get the following crucial result.

Lemma 3.4.  Let (G,[, ],(,)) be a Riemann-Lie algebra. Then the orthogonal
Lie subalgebra Sy is abelian.

Proof. By (17), A,v = %[u,v] for any u,v € S(). So, by Proposition 3.1, S
is a Riemann-subalgebra. By (9), we have, for any u,v,w € S,

1 1 1
[uv [U7w“ = [Auvw w] + [U7 Auw] = 5[[“? U]7w] + 5[”7 [u7w]] = 5[% ['Uv w]]
and then [S(),[S(y, S]] =0 ie. Sy is a nilpotent Lie algebra and then abelian
by Lemma 3.3. [ |

Lemma 3.5.  Let (G,[, |,(,)) be a Riemann-Lie algebra. Then
G, G]" ={uecg;D, =0}

Proof.  Firstly, we notice that, by (21), [G,G]* D {u € G; D, = 0}. On other
hand, remark that the relation (8) can be rewritten

[Du(v), w] + [v, Du(w)] = 0

for any u,v,w € G. So, we can deduce immediately that [ker D,, ImD,] =0 for
any u € G.

Now we observe that, for any u € [G,G]*, the endomorphism D, is auto-
adjoint and then diagonalizeable on R. Let u € [G,G]*, A € R be an eigenvalue
of D, and v € G an eigenvector associated with A. We have

(Dy(v), ) = Mo, v) 2 — (A, ) L (o, u],0) L 0.

So A =0 and we obtain that D, vanishes identically. Hence the lemma follows.
The equality («) is a consequence of the definition of D, , and the equality
(B) follows from the definition of A. We observe that v € ImD, and u € ker D,
since D, (u) = D%(u) =0 (see (20)) and the equality () follows from the remark
above. [
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Lemma 3.6.  Let (G,[, ],(,)) be a Riemann-Lie algebra. Then
Sy =19.91

Proof. From Lemma 3.5, for any u € [G,G|*, A, = ad, and then ad, is skew-
adjoint. So [G,G]*+ C S¢y. To prove the second inclusion, we need to work harder
than the first one.

Firstly, remark that one can suppose that Z(G) = {0}. Indeed, G = Z(G)®
Z(G)*+ (see Proposition 3.2), Z(G)* is a Riemann-Lie algebra (see Proposition
3.1), [G.G] = [Z(G)*, Z(G)*] and Sy = Z(G) ® S7, where S, is the orthogonal
subalgebra associated to (Z(G)4, (,)).

We suppose now that (G,[ , |,(,)) is a Riemann-Lie algebra such that
Z(G) = {0} and we want to prove the inclusion [G,G|* D S,. Notice that it
suffices to show that, for any v € S(y, A, = ad,.

The proof requires some preparation. Let us introduce the subalgebra K
given by

K= ﬂ ker ad,,.
uES()

Firstly, we notice that K contains Sy because S is abelian (see Lemma 3.4).

On other hand, we remark that, for any v € S, the endomorphism A,
leaves invariant K and K. Indeed, for any v € K and any w € Sy, we have

[w, Av] @ [w, Ayu] @ —[Ayu,v] o) 0

and then A,v € K, this shows that A, leaves invariant K. Furthermore, A,
being skew-adjoint, we have A,(K*) C K*.
The equality («) follows from the relation A,v = A,u + [u,v] = A,v, the

1

equality () follows from (8) and (vy) follows from the relation A,u = 3w, u] = 0.

With this observation in mind, we consider the representation p : Sy —
so(K+) given by
p(u) = ady kr u € Sy
It is clear that

N kerp(u) = {0}. (+)

u€S<’)

This relation and the fact that S, is abelian imply that dim K 1 is even and that
there is an orthonormal basis (eq, f1,...,€p, fp) of K+ such that

Vie{l,...,p},Yu e Sy, adye; = )\Z(U)fz and ad,f; = —)\i(u)ei, (%)

where ' € S7.
Now, for any u € Sy, since A, leaves K invariant, we can write

S
<
o

I
M=

((Aueis e5)e; + (Aues, fi) fi)

<.
I
—

o

g

et

I
M=

((Aufisej)e; + (Aufis f5) ) -

<.
I
—
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From (9), we have for any v € Sy and for any i € {1,...,p},

[u, [v,6]] = [Auwv, €] + v, Ayedl,
[u, [v, fill = [Aw, fi] + [v, Aufi].

Using the the equality A,v =0 and (xx) and substituting we get

NN (e = éﬂ(v)@‘luemeﬁfj—i”(v)@‘luei,fﬂep
NN, = iwv)muﬁ,e»fj—iw‘w)muﬁ,f»ej-

Now, it is clear from (x) that, for any ¢ € {1,...,p}, there exists v € S such
that A'(v) # 0. Using this fact and the relations above, we get

So we have shown that, for any u € S,
AulKi = a/dulKL .

Now, for any v € Sy and for any k € K, ad,(k) = 0. So, to complete
the proof of the lemma, we will show that, for any v € S and for any k € K,
Auk = 0. This will be done by showing that A,k € Z(G) and conclude by using
the assumption Z(G) = {0}.

Indeed, for any h € K, by (8)

[Auk, h] = [Ank, u].

Since A,(K) C K and since K is a subalgebra, [A,k, h] € K. Now, K C kerad,
and ad, is skew-adjoint so [Apk,u] € Imad, C K+ . So [A,k,h] = 0. On other
hand, for any f € K+, we have, also from (8),

[Auk, f] = [Asu, f] = [Agu, k] = 0

since Apu = [f,u] + Auf = [f,u] + [u, f] = 0.
We deduce that A,k € Z(G) and then A,k = 0. The proof of the lemma

is complete. [ |

Lemma 3.7.  Let (G,[, ],(,)) be a Riemann-Lie algebra such that Z(G) = 0.
Then

g #19.9].

Proof. Let (G,[, ],(,)) be a Riemann-Lie algebra such that Z(G) = 0. We will
show that the assumption G = [G, G] implies that the Killing form of G is strictly
negative definite and then G is semi-simple and compact which is in contradiction
with lemma 2.3.
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Let u € G fixed. Since A, is skew-adjoint, there is an orthonormal basis
(a1,b1,...,0a.,b,,01,...,¢) of G and (p1,...,u,) € R” such that, for any i €
{1,...,r} and any j € {1,...,(},

Auai = ,LLzb“ Aubz = — ;05 and Aqu =0.

Moreover, p; >0 for any ¢ € {1,...,7}.
By applying (9), we can deduce, for any i,5 € {1,...,r} and for any
k,h € {1,...,1}, the relations:

[u, lai, a]] = pilbi, as] + pylai, o], [u, [bi, bs]] = —p(bi, aj] — pilai, byl
[, lai, b)) = —pylai, a;] + palbi, bs],  [u, [bs, a5]) = —pilai, ag] + (b, byl
[uv [ck7 aj]] = Mj[ck, bj]? [u’ [Cka bj“ = _Nj[ck> aj]: [u> [Ckn Ch“ = 0.

From these relations we deduce

ady o ady([a;, a;]) = —(ui + 13)[ai, az] + 2p11[bi, by),
ady o ady([bi,b;]) = 2pipslai, aj] — (15 + 123)[bi, by,
ady o ady([bi, a;]) = —(p + 13)[bi, a;] — 2pipi(as, byl
ady o ady([ai,b;]) = —2pip;[bs, a;] — (1 + p3)]as, by,
ad, o ad,([ex, a5]) = —pjlcx, ajl,

ad, o ad,([cg, bj]) = —,u?[ck,bj],

ad, o ady([cg,cp]) = 0.

By an obvious transformation we obtain

ad, o ady, ([a;, a;) + [bi, b)) = —(ps — 15)? ([as, a5] + [bi, b5])
ad, o ady, ([a;, a;] — [bi, bj]) = _(Mi+ﬂj)2([awaj] — [bi, bj]) ,
ad, o ady, ([bi, a;] + [ai, b)) = —(ps + 15)? ([bsy a5] + [ai, bj])
ady o ady ([b;, a;] — [a;, b, )2 ([bi; aj] = [ai, b))

I

|

=
<

ad, o ady([ck, a;
ad,, o ad,([ck, b;
ad,, o ad,([ck, cp

|

|
=
LN

S
<
S

NNl il
|
|
Y
=
~
|
=
<

Suppose now G =[G, G|. Then the family of vectors

{lai, a;] + [bi, by, [as, az] — [bi, bs], [bi, aj] + [ai, by,

i, aj|—[a;, bj], [ck, ail, [ck, bj], [ck, cnl; 4,5 € {1,...,r}, hk € {1,...,l}} spans
G and then ad, o ad, is diagonalizeable and all its eigenvalues are non positive.
Now its easy to deduce that ad, o ad, = 0 if and only if ad,, = 0. Since Z(G) =0
we have shown that, for any v € G\ {0}, Tr(ad, o ad,) < 0 and then the Killing
form of G is strictly negative definite and then G is semi-simple compact. We can
conclude with Lemma 2.3. ]

Proof of the equivalence “1) < 5)” in Theorem 2.2.
It is an obvious and straightforward calculation to show that 5) = 1).
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Conversely, let (G, [, |, (,)) be a Riemann-Lie algebra. By Proposition 3.2,
we can suppose that Z(G) = {0}.
We have, from Lemma 3.7 and Lemma 3.6, G # [G, G| which implies Sy # 0

and G = 5y GLB |G, G]. Moreover, [G,J]| is a Riemann-Lie algebra (see Proposition
3.1) and we can repeat the argument above to deduce that eventually G is solvable
which implies that [G,§] is nilpotent and then abelian by Lemma 3.3 and the
implication follows.

Remark 3.8.  The pseudo-Riemann-Lie algebras are completely different from
the Riemann-Lie algebras. Indeed, the 3-dimensional Heisenberg Lie algebra which
is nilpotent carries a Lorentzian Lie algebra structure. On other hand, the non triv-
ial 2-dimensional Lie algebra carries a Lorentzian inner product whose curvature
vanishes and does not carry any structure of a pseudo-Riemann-Lie algebra.
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