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Abstract. In this paper we classify all exponential Lie groups which are
locally isomorphic to SU(p, q) .

1. Introduction

A Lie group G is called exponential if its exponential function is surjective, and it
is called weakly exponential if it has dense exponential image [1]. A Lie algebra g is
exponential, respectively, weakly exponential if there is an exponential, respectively,
weakly exponential Lie group G with Lie algebra isomorphic to g , and completely
exponential, respectively, completely weakly exponential if the simply connected Lie
group G with Lie algebra g is exponential, respectively, weakly exponential.

There is no practical criterion for exponentiality in the general case, though
we have criteria for some classes of Lie groups.

Theorem 1.1. ([6]) Let G be a connected real semisimple Lie group with Lie
algebra g. The following conditions are equivalent:

(1) G is exponential;

(2) For each nilpotent X ∈ g, the centralizer Z(X,G) is weakly exponential.

Thus, the exponentiality question of semisimple Lie groups is reduced to
the weak exponentiality question of some set of their subgroups. For weak expo-
nentiality there are the following theorems.

Theorem 1.2. (A.Borel, published in [3]) A connected Lie group is weakly
exponential if and only if all Cartan subgroups are connected.

Theorem 1.3. ([3]) All connected solvable Lie groups are weakly exponential.
The underlying real Lie group of any complex connecteld Lie group is weakly
exponential.
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Theorem 1.4. ([3]) Let N be a connected normal Lie subgroup of a Lie group
G. Then the following conditions are equivalent:

(1) G is weakly exponential;

(2) N and G/N are weakly exponential.

Hence, the determination of weakly exponential Lie groups is reduced to the
case of semisimple Lie groups. In [4], Neeb gives a list of all weakly exponential and
completely weakly exponential simple real Lie algebras. In particular, he proves
the following statement:

Theorem 1.5. ([4]) The algebra su(p, q) is weakly exponential for all p and q ,
and is completely weakly exponential if p > q .

In [2], D– oković and Nguyêñ give a list of all weakly exponential and expo-
nential simple linear real Lie groups. In particular, they prove

Theorem 1.6. ([2]) The group G = SU(p, q)/Zr, p > q , is exponential iff every
odd prime divisor of |Z(G)| = p+q

r
is greater than p+q

p−q . The group SU(p, p)/Zr is
exponential iff r = 2p.

In [7], Wüstner considers the question of exponentiality of simply connected
simple real Lie groups. In particular, he proves that the universal covering group
of SU(p, 1) is exponential iff p > 3. In this paper we give a criterion for a Lie
group that is locally isomorphic to SU(p, q) to be exponential (Theorem 3.5). For
example, for the covering groups of SU(p, q) we prove the following

Theorem 1.7. 1) Let numbers p, q be such that the group SU(p, q) is expo-
nential, and let G be an s-fold covering group of SU(p, q). Then the following
conditions are equivalent:

(i) G is exponential;

(ii) GCD(s, p, q) = 1 and GCD(s, q−j(p−q)) = 1 for j = 0, 1, . . . , [ q
p−q ].

2) The universal covering of SU(p, q) is not exponential if p ≥ q > 1.

2. Nilpotent elements and their centralizers

Let G be a Lie group locally isomorphic to SU(p, q), p > q > 1. Set

GCD(p, q) = d, p = p′d, q = q′d, n = p+ q, n′ = p′ + q′.

For an arbitrary Lie group H we denote by H̃ the simply connected Lie group
locally isomorphic to H . Also we denote the commutator subgroup of H by
(H,H).

For each nilpotent X ∈ su(p, q) there exists a linear representation

R : sl(2,R)→ su(p, q) such that X = R(e), where e =

(
0 1
0 0

)
. Therefore, the

nilpotent elements in the algebra su(p, q) are parametrized by the pairs (R, η),
where R is a (p + q)-dimension representation of the algebra sl(2,R) and η
is an R-invariant Hermitian form of signature (p, q) (if p = q then the class
of nilpotent elements corresponding to (R, η) is equal to the class of nilpotent
elements corresponding to (R,−η)).
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Consider an irreducible linear representation R : sl(2,R)→ gl(V ), dimV =
n . There exists a nondegenerate R-invariant Hermitian form ηn in V , which is
unique up to multiplication by a nonzero real number. In a basis of eigenvectors
of some semisimple element in sl(2,R) it is represented by matrix:



0 0 . . . 0 1
0 0 1 0
... 0

...

0
...

1 0 . . . . . . 0

 ,

the signature of the form being ([n−1
2

] + 1, [n
2
]).

Let R =
∑m
i=1 kiRi , where Ri : sl(2,R) → gl(Vi) are non-isomorphic

irreducible representations, dimVi = ni . We may assume that V =
⊕m

i=1Vi ⊗ Cki ,
where sl(2,R) acts on Cki trivially. Any R-invariant Hermitian form on the space
V is represented as η =

⊕m
i=1ηni⊗fi , where ηni is an Ri -invariant Hermitian form,

fi is a Hermitian form on Cki . Let fi be of signature (k+
i , k

−
i ), i = 1, . . . ,m .

A signed Y oung diagram is the Young diagram in which every box is
labelled with plus or minus so that signs alternate along the rows. We identify
two signed Young diagrams iff they can be obtained from each other by permuting
rows of equal length. Assume p and q be the number of pluses and minuses in the
signed Young diagram J . Then the pair (p, q) is called the signature of J.

Let us consider the signed Young diagram J which consists of
∑m
i=1 ki rows,

with ki rows of length ni , of which k+
i rows begin with plus and k−i rows begin

with minus. This diagram coresponds to the pair (R, η). The signature of the
form η is equal to the signature of Young diagram J . Therefore, the classes of
nilpotent elements in the algebra su(p, q) are parametrized by the signed Young
diagrams of signature (p, q) (if p = q we also can exchange all signs and their
opposites).

Let X be a nilpotent element in su(p, q) and J be a corresponding signed
Young diagram. Consider the centralizer Z(X,G) of X in a Lie group G locally
isomorphic to SU(p, q). By Theorem 1.4, the weak exponentiality of the centralizer
Z(X,G) is equivalent to the weak exponentiality of its maximal reductive subgroup
S(X,G) which is equal to the centralizer of the subalgebra R(sl(2,R)) ⊂ su(p, q).

We denote the space of linear operators on the space of dimention n by
L(n,C). Let us consider the centralizer S = Z(sl(2,R),L(n,C)). By Schur’s
lemma, it consists of the elements

⊕m
i=1 Eni⊗Ai , where En is the identity operator,

Ai ∈ L(ki,C). Thus,

S(X, SU(p, q)) = SU(p, q) ∩ S =
= {(A1, . . . , Am) ∈ U(k+

1 , k
−
1 )× . . .× U(k+

m, k
−
m) :

∏m
i=1(detAi)

ni = 1},

Lie(S(X,G)) = s(X) = su(p, q) ∩ S =
= {(A1, . . . , Am) ∈ u(k+

1 , k
−
1 )⊕ . . .⊕ u(k+

m, k
−
m) :

∑m
i=1 nitrAi = 0}

The following statement is proven by D– oković and Nguyêñ in [2]. We give
a new proof.
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Proposition 2.1. A Lie group locally isomorphic to SU(p, p) is exponential iff
it is isomorphic to PSU(p, p).

Proof. Consider the signed Young diagram J that consists of one row of length
2p . Let X be a nilpotent element corresponding to J . Then s(X) = {0} and for a
Lie group G locally isomorphic to SU(p, p) the group S(X,G) is a finite subgroup
containing Z(G). Thus, the group S(X,G) is connected only if Z(G) = {e} , i.e.
if G is isomorphic to the corresponding adjoint group. And by Theorem 1.6, the
group PSU(p, p) is exponential for all p .

We assume that p > q for the rest of the paper.

A Lie subalgebra k of g is called compactly embedded if exp ad k is compact
in Aut(g).

Lemma 2.2. ([7]) Let H be a connected Lie group. If H ′ is a covering group
of H and ϕ is the corresponding covering map, then H ′ is connected iff Kerϕ ⊆
expH′k, where k is a maximal abelian compactly embedded subalgebra in h.

This lemma holds for any maximal abelian compactly embedded subalge-
bras, because all of them are conjugated.

Let us prove the following simple lemma:

Lemma 2.3. The group U(p, q) is weakly exponential for any p and q .

Proof. The center Z(U(p, q)) is connected and hence is weakly exponential.
The group U(p, q)/Z(U(p, q)) ∼= PSU(p, q) is weakly exponential by Theorem 1.5.
Thus, by Theorem 1.4, the group U(p, q) is weakly exponential.

Let us notice the simple corollary from this lemma: the group
∏m
i=1 Ui(pi, qi)

and its quotients by connected central subgroups are weakly exponential.

Theorem 2.4. Let G be a Lie group locally isomorphic to SU(p, q) and for
each nilpotent element X ∈ su(p, q) the group S(X,G) is connected. Then G is
exponential.

Proof. We denote the identity component of S(X, SU(p, q)) by S(X). First
assume that k+

i 6= k−i for any i = 1, . . . ,m . Then the universal covering of S(X)
is isomorphic to the group Rm−1×SU(k+

1 , k
−
1 )× . . .×SU(k+

m, k
−
m), which is weakly

exponential by Theorem 1.5. Therefore, the group S(X,G) is weakly exponential
if it is connected.

Now assume that k+
1 = k−1 , . . . , k

+
s = k−s and k+

i 6= k−i for s < i ≤ m .
One can notice that in this case m > 1. For each i = 1, . . . , s in the Young
diagram JX corresponding to X there are ki rows of the same length, half of
them begins with plus, another half begins with minus. Consider the diagram
which is obtained from JX by joining all such rows in one (we can do this because
the number minuses in such rows equals the number of pluses). We denote the
corresponding nilpotent element by Y . The group S(Y,G) is connected by the
condition of the theorem. Let us consider the cover of the group S(Y,PSU(p, q))
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by the group S(Y,G). By Lemma 2.2 the kernel of the covering map is contained
in exp h , where h is the compactly embedded subalgebra consisting of all diagonal
matrices in s(Y ). Notice that this subalgebra consists of matrices which are scalar
on the subspace corresponding to the first

∑s
i=1 ki rows of the Young diagram

corresponding to X . This subalgebra is contained in a maximal abelian compactly
embedded subalgebra of s(X). Let us consider the subalgebra s1(X) of elements
from s(X) which are scalar on the subspace corresponding to the sum of the
first s unitary subalgebras. The subalgebra h is contained in it. Consider the
corresponding subgroup S ′1 of PSU(p, q). It is connected; thus the subgroup S1

of G which is the inverse image of S ′1 , is connected. Its universal covering group
is isomorphic to the direct product of some components, isomorphic to R , and
some components, isomorphic to S̃U(k+

i , k
−
i ), k+

i 6= k−i . Hence, this group is
weakly exponential. The quotient of S(X,G) by this group is isomorphic to the
quotient of U(k+

1 , k
−
1 )× . . .× U(k+

s , k
−
s ) by the subgroup of scalar matrices. This

group is weakly exponential hence, by Theorem 1.4, the group S(X,G) is weakly
exponential. Therefore, G is exponential.

3. Criterion of connectivity of S(X,G)

We denote by ϕ : S̃U(p, q) → SU(p, q) the covering map. The center of SU(p, q)
is isomorphic to Zn = 〈y〉 , where y = exp2πi

n
E . The center of S̃U(p, q) is

isomorphic to Zd × Z ([5]), moreover we may assume that Kerϕ = 〈(1, n′)〉 . Let
ν : Z(S̃U(p, q))→ Z be the projection.

Let us consider the representation space of SU(p, q) as V = V+ ⊕ V− , where
V+ (respectively V− ) is the maximal subspace of V , on which the Hermitian
form is positively (negatively) definite. Assume K = {(A,B) ∈ U(p) × U(q) :
detA × detB = 1} ⊂ SU(p, q). The group K is a maximal compact subgroup of
SU(p, q) and it is isomorphic to the almost direct product of SU(p) × SU(q) and
circumference. It is well-known that the fundamental group of any Lie group is
isomorphic to the fundamental group of its maximal compact subgroups. Thus,
π1(SU(p, q)) ∼= π1(K). The commutator subgroup (K,K) ∼= SU(p) × SU(q) is
simply connected and the quotient K/(K,K) is isomorphic to the circumference.
Therefore π1(K) ∼= π1(K/(K,K)) ∼= Z .

Lemma 3.1. Let γ(t) = expSU(p,q)(2πi ξ(t)), where ξ(t) =
= t diag(α1, . . . , αp, β1, . . . , βq), 0 ≤ t ≤ 1, αi, βi ∈ Z. Then γ ⊂ SU(p, q) is
homotopic to the loop γ0

r , where γ0 is the generator of π1(SU(p, q)) and r =∑p
i=1 αi = −∑q

j=1 βj .

Proof. If
∑p
i=1 αi = 0 then ξ(t) ∈ Lie((K,K)) for any t ∈ [0, 1]. The group

(K,K) is simply connected, hence the loop γ is trivial.

Now let
∑p
i=1 αi 6= 0. The isomorphism π1(K) ∼= π1(K/(K,K)) is gener-

ated by the projection of K on K/(K,K). Thus, r is equal to the number of
intersections of γ and (K,K). For any point γ(t) of this intersection t

∑p
i=1 αi is

an integer. Hence, r =
∑p
i=1 αi = −∑q

j=1 βj .
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Lemma 3.2. Let ξ = diag(α1, . . . , αp, β1, . . . , βq) ∈ su(p, q), αi, βi ∈ Q be such
that the curve γ(t) = exp

S̃U(p,q)
2πitξ, 0 6 t 6 1 connects the identity element of

the group with an element z ∈ Z(S̃U(p, q)). Then ν(z) = n′
∑p
i=1 αi .

Proof. Notice that if ϕ(z) = ya then αi = a
n

+ zi, βj = a
n

+ z′j, zi, z
′
j ∈ Z

for any i = 1, . . . , p, j = 1, . . . , q and thus, exp
S̃U(p,q)

(2πinξ) = e . Consider a

loop γ1 = ϕ(γn(t)) = expSU(p,q)(2πitnξ). By Lemma 3.1, we have ϕ(γ1) = γr0 ,
where r = n

∑p
i=1 αi = −n∑q

i=1 βi . Thus, γn(1) = z̃r , where z̃ is the generator of
Kerϕ , ν(z̃) = n′ . Therefore ν(z) = ν(γ(1)) = 1

n
ν(γn(1)) = 1

n
rν(z̃) = n′

∑p
i=1 αi =

−n′∑q
i=1 βi .

This lemma implies that if z ∈ Z(S̃U(p, q)) is such that ϕ(z) = ya and
ν(z) = b then b+ q′a ≡ 0 (modn′). Indeed, z is equal to

exp
S̃U(p,q)

(2πi(diag(z1, . . . , zp, z
′
1, . . . , z

′
q) +

a

n
E)),

where zi, z
′
j ∈ Z . By Lemma 3.2, ν(z) = −n′∑q

i=1 βi = −n′qa
n
− n′

∑q
i=1 z

′
i =

−q′a − n′
∑q
i=1 z

′
i . Hence, b + aq′ = n′x , where x =

∑q
i=1 z

′
i ∈ Z . Moreover,

for any a, b that satisfy this condition there exists a z ∈ Z(S̃U(p, q)) such that
ν(z) = b, ϕ(z) = ya .

Set D(X,G) = S(X,G)0 ∩ Z(G) for a Lie group G locally isomorphic
to SU(p, q) and a nilpotent element X ∈ su(p, q). Let ψ : S̃U(p, q) → G
be the covering map, Kerψ = D . Then D(X,G) = ψ(D(X, S̃U(p, q))). The
center Z(G) is contained in S(X,G), and the connectivity of S(X,G) implies
that Z(G) = D(X,G). The latter equation is equivalent to the condition D ·
D(X, S̃U(p, q)) = Z(S̃U(p, q)). This condition is sufficient for connectivity be-
cause the group PSU(p, q) is exponential and hence the group S(X,PSU(p, q)) is
connected.

A row of a signed Young diagram is called good if it is of odd length and
begins with plus. If a row is bad , i.e. is of even length or begins with minus,
then the number of pluses in it is less than or equal to the number of minuses.
Thus, if the signature of a Young diagram is (p, q), p > q , then it contains at
least one good row. A Young diagram J and a corresponding nilpotent element
X are called good if all rows of J are good. Notice that a good Young diagram
consists of (p−q) rows. Moreover, if a nilpotent element X is good then all fi are
positively definite, and thus, the algebra s(X), which is isomorphic to the quotient
of
⊕m

i=1 u(fi) by the subalgebra of the scalar matrices, is compact and the identity
component S(X,G)0 is compact for any G .

Let us consider a bad signed Young diagram J and its longest bad row.
We can obtain a new diagram J ′ by joining this row with the longest good one.
Let X (respectively X ′ ) be the nilpotent element corresponding to the diagram J
(respectively J ′ ). Then S(X ′, G) is contained in S(X,G) as the set of operators,
which are scalar on the subspaces corresponding to the joined rows.

One can see that after several such operations each signed Young diagram
becomes good. Moreover, the intersection of the reductive part of the correspond-
ing centralizer with the center of the group after each operation is contained in
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D(X,G). Thus, the condition of connectivity for all centralizers of nilpotent ele-
ments of su(p, q) is equivalent to this condition for all centralizers of good nilpo-
tents of su(p, q). We assume that the nilpotent X is good for the rest of the
paper.

For each j = 0, . . . , [ q
p−q ] we consider the element

zj = exp
S̃U(p,q)

2πi(−2j+1
n
E + diag(j + 1, 0, . . . , 0, j)) ∈ Z(S̃U(p, q)).

By Lemma 3.2, ν(zj) = q′ − j(p′ − q′), ϕ(zj) = y−2j−1 .

Lemma 3.3. Let X ∈ su(p, q) be a nilpotent element such that the length of
the shortest row in the corresponding Young diagram J is equal to 2j + 1. Then
zj ∈ D(X, S̃U(p, q)).

Proof. Notice that j 6 q
p−q because the number of minuses in each row is

greater or equals j . We choose the shortest row in J and consider the element
ξ = −1−2j

n
E + ξ′ = diag(α1, . . . , αp, β1, . . . , βq) ∈ s(X), where ξ′ is the diagonal

matrix, which acts identically on the subspace Vi corresponding to this row and
trivially on the orthogonal supplement. The dimension of the space V+ ∩ Vi is
equal to j + 1, therefore n′

∑p
i=1 αi = n′(−1−2j

n
p + j + 1) = q′ − j(p′ − q′). So,

ν(exp
S̃U(p,q)

2πξ) = ν(zj) and φ(zj) = φ(exp
S̃U(p,q)

2πξ), hence zj = exp
S̃U(p,q)

2πξ .

It follows, that the lemma is true.

Now let us consider the Young diagram Jj consisting of p− q − 1 rows of
length 2j + 1 and one row of length 2nj + 1, where nj = q − j(p − q) + j . We
denote by Xj the corresponding nilpotent element. We will prove that the group

D(Xj, S̃U(p, q)) is generated by zj .

Let p′ − q′ = 1 and j = q′ . Then the diagram Jj consists of p− q rows of
equal length and s(Xj) ∼= su(p−q), the group S(Xj, SU(p, q)) is simply connected.

Hence S(Xj, S̃U(p, q))0 ∩Kerϕ = {e} (otherwise the image of the continuous curve
connecting e with z ∈ Kerϕ would be a nontrivial loop in S(Xj, SU(p, q))).

For any z ∈ Z(S̃U(p, q)) there is a power s such that zs ∈ Kerϕ , therefore
D(Xj, S̃U(p, q)) ⊆ Zd . The group Zd ⊆ Z(SU(p, q)) is generated by the element

y−1−2j = ϕ(zj). Hence, D(Xj, S̃U(p, q)) coincides with Zd ⊆ Z(S̃U(p, q)) and is
generated by zj .

Now assume either p′ − q′ 6= 1 or p′ − q′ = 1 but j 6= q′ . Then nj > j and

s(Xj) ∼= {(λ,A) ∈ R× u(p− q − 1) : (2nj + 1)iλ+ (2j + 1)trA = 0},

S(Xj, SU(p, q)) ∼= {(µ,A) ∈ T× U(p− q − 1) : µ2nj+1det2j+1A = 1}.

We denote u = GCD(2nj + 1, 2j + 1) and consider the identity component

S(Xj, SU(p, q))0 ∼= {(µ,A) ∈ T× U(p− q − 1) : µ
2nj+1

u det
2j+1
u A = 1} = S.

The commutator subgroup S ′ = {(1, A) : detA = 1} ∼= SU(p − q − 1) is
simply connected and the quotient S/S ′ is isomorphic to the circumference. We
denote by χ the embedding of S in the group SU(p, q): χ(µ,A) = E2nj+1 ⊗ µ ⊕
E2j+1 ⊗A . Notice that χ(µ,A)|V − = Enj ⊗ µ⊕Ej ⊗A , hence det(χ(µ,A))|V − =
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µnjdetjA . The image χ(S) is contained in the maximal compact subgroup K of
SU(p, q), so we have an homomorphism of quotients θ : S/S ′ → K/K ′ and hence
the embedding of fundamental groups θ′ : π1(S)→ π1(K). The index of the image
of this embedding in the group π1(K) is equal to the number of elements in the
kernel of the map θ . The latter is equal to the number of contiguous classes of S
by S ′ contained in K ′ , and it is equal to |χ−1(χ(S) ∩K ′)/S ′| . Then

χ−1(χ(S) ∩K ′) = {(µ,A) ∈ S : µnjdetjA = 1, µ
2nj+1

u det
2j+1
u A = 1} =

= {(µ,A) ∈ S : µdetA = 1, µ
nj−j
u = 1}.

Thus, [π1(K) : θ′(π1(S))] = nj−j
u

.

Lemma 3.4. If p′ − q′ 6= 1 or j 6= q′ , then D(Xj, S̃U(p, q)) ∩ Zd = {e}.

Proof. Assume that there is Y = k
n
E + χ(diag(λ1, . . . λp−q)), λi ∈ Z, 0 ≤ k <

n , such that exp
S̃U(p,q)

2πitY = z ∈ Zd . By Lemma 3.2, this is equivalent to the
system: {

kp′ + n′(nj + 1)λ1 + n′(j + 1)
∑p−q
i=2 λi = 0,

kq′ + n′njλ1 + n′j
∑p−q
i=2 λi = 0.

By excluding all variables but the first one we get

nλ1 = −k

Since k < n , this system has no solution in integer numbers.

The simple corollary of this lemma is that D(Xj, S̃U(p, q)) has only one

generator z . Since [Z(S̃U(p, q)) : D(X, S̃U(p, q))] =
= [Z(SU(p, q)) : D(X, SU(p, q))] · [Kerϕ : Kerϕ ∩D(X, S̃U(p, q))] =
= [Z(SU(p, q)) : D(X, SU(p, q))] · [π1(SU(p, q)) : θ′(π1(S0))] = unj−j

u
= q− j(p− q)

we have ν(z) = (q − j(p − q))/d = q′ − j(p′ − q′) = ν(zj). By Lemma 3.3

zj ∈ D(Xj, S̃U(p, q)), therefore zjz
−1 ∈ D(Xj, S̃U(p, q)), but ν(zjz

−1) = ν(zj) −
ν(z) = 0. Hence, by Lemma 3.4 z = zj .

Thus, the exponentiality of G ∼= S̃U(p, q)/D implies that D · 〈zj〉 =

Z(S̃U(p, q)), j = 0, . . . , [ q
p−q ] . Moreover, this condition is sufficient because

for each nilpotent element X there exists one of the elements zj in the group

D(X, S̃U(p, q)).

Before we can prove our main theorem, let us consider nontrivial subgroups
in Zd×Z . For any subgroup D we can choose two generators x1 and x2 , x1 6= x2 ,
such that x1 ∈ Zd . In particular, if D ∩ Zd = e we will assume x1 = (0, 0), if
D ⊆ Zd we will assume x2 = (0, 0).

Theorem 3.5. 1) A Lie group G locally isomorphic to SU(p, p) is exponential
iff G = PSU(p, p).

2) Let p 6= q and D = 〈x1, x2〉 be a nontrivial central subgroup of
S̃U(p, q), ϕ(x1) = yan

′
, a|d, ν(x2) = b, ϕ(x2) = yc, 0 6 c < an′, b + cq′ = ln′ .

The group G = S̃U(p, q)/D is exponential iff for all j = 0, . . . , [ q
p−q ] the following

conditions are fulfilled:

(i) GCD(b, q′ − j(p′ − q′)) = 1;

(ii) GCD(a, l(2j + 1)− cj) = 1.
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Proof. The first part was proven in Proposition 2.1.

Assume p 6= q . The condition D · 〈zj〉 = Z(S̃U(p, q)) is equivalent to two
following conditions:

(i’) The projection of D〈zj〉 on Z covers all elements of Z ;

(ii’) D〈zj〉 contains Zd .

The projection of D〈zj〉 on Z is generated by GCD(b, ν(zj)) = GCD(b, q′−
jn′), so the conditions (i) and (i’) are equivalent. The condition (i’) implies that the

intersection D · 〈zj〉 ∩Zd is generated by the elements x1 and x′2 = x
ν(zj)
2 z

−ν(x2)
j =

x
q′−j(p′−q′)
2 z−bj . It contains Zd iff Zd ⊂ Z(SU(p, q)) is generated by the elements

ϕ(x1) = yan
′

and ϕ(x′2) = yc(q
′−j(p′−q′))+b(2j+1) . The latter is equivalent to the

following: GCD(an′, c(q′ − j(p′ − q′)) + b(2j + 1)) ≡ n′(modn). The theorem is
proven.

Remark 3.6. Let us prove that for a Lie group isomorphic to SU(p, q)/Zr the
above criterion is equivalent to the result of Djoković and Nguyêñ (Theorem 1.6).
Set e = GCD(r, d), r1 = r

e
, d1 = d

e
. Then under the conditions of Theorem 3.5

a = d1, b = n′

r1
, and c, l are given by the equation b+ cq′ = ln′, c < n, n

r
divides c

( n
r

= n′

r1
d1 divides c , n′

r1
divides ln′ , hence n′

r1
divides b . We choose b as a minimal

number with such property, i.e. b = n′

r1
. Therefore, the index of ϕ(〈x2〉) is equal

to n
bd

= r1 , hence 〈x1〉 is the subgroup of Zd of index e . Thus, a = d
e

= d1 ).

Let the condition (i) of Theorem 3.5 fail to be true for some j < q
p−q and

k be a prime divisor of GCD(b, q′ − j(p′ − q′)). Since GCD(n′, p′ − q′) = 1 and
n′ = br1 , the equation n′ = (2j + 1)(p′ − q′) + 2(q′ − j(p′ − q′)) implies that k
divides 2j + 1, hence k is an odd divisor of n which is lower than n

p−q . Since
n
r

= bd1 and k divides b , k divides n
r

, therefore the condition of Theorem 1.6 fails
to be true.

Let the condition (ii) fail to be true for some j < q
p−q and k be a prime

divisor of GCD(d1, l(2j+ 1)− cj). We denote with s1 and s2 the maximal powers
of k which divides b and d1 respectively, s2 > 0. Since GCD(d1, r1) = 1 and
b = n′

r1
, the maximal power of k which divides n′ is equal to s1 . Since n

r
= n′

r1
d1

divides c , ks1+s2 divides c and the equation b = ln′ − cq′ implies that k does not
divide l . But k divides l(2j + 1) − cj , hence k is an odd divisor of n

r
, which is

lower than n
p−q . Thus, the condition of Theorem 1.6 fails to be true.

Now let the condition of Theorem 1.6 fail to be true, k be an odd prime
divisor of n

r
= n′

r1
d1, k < n

p−q . Consider the condition of Theorem 3.5 for j =
k−1

2
. If k does not divide d1 then k divides b = n′

r1
= 1

d1

n
r

. The equation
n′ = k(p′−q′)+2(q′−j(p′−q′)) implies that k divides q′−j(p′−q′), therefore the
condition (i) of Theorem 3.5 fails to b true. Now let k divide d1 . Since n

r
divides

c , k is a divisor of GCD(d1, l(2j + 1) − cj), hence the condition (ii) of Theorem
3.5 fails to be true.

Proof of Theorem 1.7. a) If a Lie group G is an s-fold covering group of
SU(p, q) then under the conditions of Theorem 3.5 the group D is generated by z̃s ,
where z̃ is the generator of Kerϕ , thus a = d, c = 0, b = sn′ . Therefore, the group
G is exponential iff the conditions GCD(sn′, q′−j(p′−q′)) = 1, GCD(s(2j+1), d) =
1 are true for all j = 0, . . . , [ q

p−q ] . Since q′ − j(p′ − q′) = (2j + 1)q′ − jn′ , the first
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condition is equivalent to the following two conditions: GCD(n′, 2j + 1) = 1 and
GCD(s, q′−j(p′−q′)) = 1. The second condition is equivalent to the following two
conditions: GCD(s, d) = GCD(s, p, q) = 1 and GCD(2j + 1, d) = 1. All of these
conditions are equivalent to the following three conditions: GCD(n, 2j + 1) = 1,
GCD(s, q − j(p − q)) = 1 and GCD(s, p, q) = 1. By Theorem 1.6, the group
SU(p, q) is exponential iff every odd prime divisor of p + q is greater than p+q

p−q .

This condition is equivalent to the following: GCD(p + q, 2j + 1) = 1 for all
j = 0, . . . , [ q

p−q ] . It follows that the theorem is true.

b) By Lemma 3.4, for the exponentiality of the group S̃U(p, q) we need the
condition GCD(p, q) = 1. Consider the element X0 . We have D(X0, S̃U(p, q)) =
〈z0〉 , where ν(z0) = q′ = q . Therefore ν(D(X0, S̃U(p, q))) = 〈ν(z0)〉 6= Z ,
and D(X0, S̃U(p, q)) 6= Z(S̃U(p, q)). Hence, the group S(X0, S̃U(p, q)) is not
connected, so it is not weakly exponential.
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