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Strongly modular lattices with long shadow

par Gabriele NEBE

Résumé. Cet article donne une classification des réseaux forte-
ment modulaires dont la longueur de l’ombre prend les deux plus
grandes valeurs possibles.

Abstract. This article classifies the strongly modular lattices
with longest and second longest possible shadow.

1. Introduction

To an integral lattice L in the euclidean space (Rn, (, )), one associates
the set of characteristic vectors v ∈ Rn with (v, x) ≡ (x, x) mod 2Z for all
x ∈ L. They form a coset modulo 2L∗, where

L∗ = {v ∈ Rn | (v, x) ∈ Z ∀x ∈ L}

is the dual lattice of L. Recall that L is called integral, if L ⊂ L∗ and
unimodular, if L = L∗. For a unimodular lattice, the square length of
a characteristic vector is congruent to n modulo 8 and there is always a
characteristic vector of square length ≤ n. In [1] Elkies characterized the
standard lattice Zn as the unique unimodular lattice of dimension n, for
which all characteristic vectors have square length ≥ n. [2] gives the short
list of unimodular lattices L with min(L) ≥ 2 such that all characteristic
vectors of L have length ≥ n − 8. The largest dimension n is 23 and in
dimension 23 this lattice is the shorter Leech lattice O23 of minimum 3.
In this paper, these theorems are generalized to certain strongly modular
lattices. Following [7] and [8], an integral lattice L is called N -modular, if
L is isometric to its rescaled dual lattice

√
NL∗. A N -modular lattice L

is called strongly N -modular, if L is isometric to all rescaled partial dual
lattices

√
mL∗,m, for all exact divisors m of N , where

L∗,m := L∗ ∩ 1
m

L.

The simplest strongly N -modular lattice is

CN :=⊥d|N
√

dZ
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of dimension σ0(N) :=
∑

d|N 1 the number of divisors of N . The lattice
CN plays the role of Z = C1 for square free N > 1.

With the help of modular forms Quebbemann [8] shows that for

N ∈ L := {1, 2, 3, 5, 6, 7, 11, 14, 15, 23}
(which is the set of all positive integers N such that the sum of divisors

σ1(N) :=
∑
d|N

d

divides 24), the minimum of an even strongly N -modular lattice L of di-
mension n satisfies

min(L) ≤ 2 + 2
⌊ n σ1(N)
24 σ0(N)

⌋
.

Strongly modular lattices meeting this bound are called extremal. Whereas
Quebbemann restricts to even lattices, [9] shows that the same bound also
holds for odd strongly modular lattices, where there is one exceptional
dimension n = σ0(N)( 24

σ1(N) − 1), where the bound on the minimum is 3

(and not 2). In this dimension, there is a unique lattice S(N) of minimum
3. For N = 1, this is again the shorter Leech lattice O23. The main tool to
get the bound for odd lattices is the shadow

S(L) :=
{v

2
| v is a characteristic vector of L

}
.

If L is even, then S(L) = L∗ and if L is odd, S(L) = L∗
0 − L∗, where

L0 := {v ∈ L | (v, v) ∈ 2Z}
is the even sublattice of L.

For N ∈ L let

s(N) :=
24

σ1(N)
.

The main result of this paper is Theorem 3. It is shown that for a strongly
N -modular lattice L that is rationally equivalent to Ck

N , the minimum

min0(S(L)) := min{(v, v) | v ∈ S(L)}
equals

M (N)(m, k) :=

{
1
N (k σ1(N)

4 − 2m) if N is odd
1
N (k σ1(N/2)

2 −m) if N is even

for some m ∈ Z≥0. If min0(S(L)) = M (N)(0, k), then L ∼= Ck
N . For

the next smaller possible minimum min0(S(L)) = M (N)(1, k) one gets that
L ∼= C l

N ⊥ L′, where min(L′) > 1 and dim(L′) ≤ σ0(N)(s(N)−1) for odd N
resp. dim(L′) ≤ σ0(N)s(N) for even N . The lattices L′ of maximal possible
dimensions have minimum 3 and are uniquely determined: L′ = S(N), if N
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is odd and L′ = O(N) (the “odd analogue” of the unique extremal strongly
N -modular lattice of dimension σ0(N)s(N)) if N is even (see [9, Table 1]).

The main tool to prove this theorem are the formulas for the theta series
of a strongly N -modular lattice L and of its shadow S(L) developed in [9].
Therefore we briefly repeat these formulas in the next section.

2. Theta series

For a subset S ⊂ Rn, which is a finite union of cosets of an integral
lattice we put its theta series

ΘS(z) :=
∑
v∈S

q(v,v), q = exp(πiz).

The theta series of strongly N -modular lattices are modular forms for a
certain discrete subgroup ΓN of SL2(R) (see [9]). Fix N ∈ L and put

g
(N)
1 (z) := ΘCN

(z) = 1 + 2q + 2ev(N)q2 + . . .

where

ev(N) :=
{

1 if N is even
0 if N is odd .

Let η be the Dedekind eta-function

η(z) := q
1
12

∞∏
m=1

(1− q2m), q = exp(πiz).

and put

η(N)(z) :=
∏
d|N

η(dz).

If N is odd define

g
(N)
2 (z) :=

(η(N)(z/2)η(N)(2z)
η(N)(z)2

)s(N)

and if N is even then

g
(N)
2 (z) :=

(η(N/2)(z/2)η(N/2)(4z)
η(N/2)(z)η(N/2)(2z)

)s(N)
.

Then g
(N)
2 generates the field of modular functions of ΓN . It is a power

series in q starting with

g
(N)
2 (z) = q − s(N)q2 + . . . .
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Theorem 1. ([9, Theorem 9, Corollary 3]) Let N ∈ L and L be a strongly
N -modular lattice that is rational equivalent to Ck

N . Define lN := 1
8σ1(N),

if N is odd and lN := 1
6σ1(N), if N is even. Then

ΘL(z) = g
(N)
1 (z)k

bklN c∑
i=0

cig
(N)
2 (z)i

for ci ∈ R. The theta series of the rescaled shadow S :=
√

NS(L) of L is

ΘS(z) = s
(N)
1 (z)k

bklN c∑
i=0

cis
(N)
2 (z)i

where s
(N)
1 and s

(N)
2 are the corresponding “shadows” of g

(N)
1 and g

(N)
2 .

For odd N

s
(N)
1 (z) = 2σ0(N) η

(N)(2z)2

η(N)(z)
and

s
(N)
2 (z) = −2−s(N)σ0(N)/2

( η(N)(z)
η(N)(2z)

)s(N)

For N = 2 one has

s
(2)
1 (z) =

2η(z)5η(4z)2

η(z/2)2η(2z)3

and

s
(2)
2 (z) = − 1

16

(η(z/2)η(2z)2

η(z)2η(4z)

)8

which yields s
(N)
1 and s

(N)
2 for N = 6, 14 as

s
(N)
1 = s

(2)
1 (z)s(2)

1

(N

2
z
)

and

s
(N)
2 = (s(2)

2 (z)s(2)
2

(N

2
z
)
)s(N)/s(2).

If N is odd, then s
(N)
1 starts with qσ1(N)/4 and s

(N)
2 starts with q−2. If N

is even, then s
(N)
1 starts with qσ1(N

2
)/2 and s

(N)
2 starts with q−1.

3. Strongly modular lattices with long shadow.

Proposition 2. Let N ∈ N be square free and let L be a strongly N -
modular lattice. If L contains a vector of length 1, then L has an orthogonal
summand CN .
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Proof. Since L is an integral lattice that contains a vector of length 1, the
unimodular lattice Z is an orthogonal summand of L. Hence L = Z ⊥ L′.
If d is a divisor of N , then

L ∼=
√

dL∗,d =
√

dZ ⊥
√

d(L′)∗,d

by assumption. Hence L contains an orthogonal summand
√

dZ for all
divisors d of N and therefore CN is an orthogonal summand of L. �

Theorem 3. (see [2] for N = 1) Let N ∈ L and L be a strongly N -modular
lattice that is rational equivalent to Ck

N . Let M (N)(m, k) be as defined in
the introduction.

(i) min0(S(L)) = M (N)(m, k) for some m ∈ Z≥0.
(ii) If min0(S(L)) = M (N)(0, k) then L ∼= Ck

N .
(iii) If min0(S(L)) = M (N)(m, k) then L ∼= Ca

N ⊥ L′, where L′ is a
strongly N -modular lattice rational equivalent to Ck−a

N with
min(L′) ≥ 2 and min0(S(L′)) = M (N)(m, k − a).

(iv) If min0(S(L)) = M (N)(m, 1) and min(L) ≥ 2, then the number of
vectors of length 2 in L is

2k(s(N) + ev(N)− (k + 1)).

In particular k ≤ kmax(N) with

kmax(N) = s(N)− 1 + ev(N)

and if k = kmax(N), then min(L) ≥ 3.

Proof. (i) Follows immediately from Theorem 1.
(ii) In this case the theta series of L is gk

1 . In particular L contains 2k
vectors of norm 1. Applying Proposition 2 one finds that L ∼= CN .
(iii) Follows from Proposition 2 and Theorem 1.
(iv) Since min(L) > 1, ΘL = gk

1 − 2kgk
1g2. Explicit calculations give the

number of norm-2-vectors in L. �

The following table gives the maximal dimension nmax(N) =
σ0(N)kmax(N) of a lattice in Theorem 3 (iv).

N 1 2 3 5 6 7 11 14 15 23
σ1(N) 1 3 4 6 12 8 12 24 24 24

kmax(N) 23 8 5 3 2 2 1 1 0 0
nmax(N) 23 16 10 6 8 4 2 4 0 0

The lattices L with min0(S(L)) = M (N)(1, k) are listed in an appendix.
These are only finitely many since k is bounded by kmax. In general it is
an open problem whether for all m, there are only finitely many strongly
N -modular lattices L rational equivalent to Ck

N for some k and of minimum
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min(L) > 1 such that min0(S(L)) = M (N)(m, k). For N = 1, Gaulter [3]
proved that k ≤ 2907 for m = 2 and k ≤ 8388630 for m = 3.

Theorem 4. (cf. [2] for N = 1) Let N ∈ L be odd and k ∈ N such that
8

σ1(N)
≤ k ≤ kmax(N) =

24
σ1(N)

− 1.

Then there is a unique strongly N -modular lattice L := Lk(N) that is ratio-
nal equivalent to Ck

N such that min(L) > 1 and min0(S(L)) = M (N)(1, k),
except for N = 1, where there is no such lattice in dimension 9, 10,
11, 13 and there are two lattices in dimension 18 and 20 (see [2]). If
k = kmax(N), then L is the shorter lattice L = S(N) described in [9, Table
1] and min(L) = 3.

Proof. For N = 15 and N = 23 there is nothing to show since kmax(N) = 0.
The case N = 1 is already shown in [2]. It remains to consider N ∈
{3, 5, 7, 11}. Since N is a prime, there are only 2 genera of strongly modular
lattices, one consisting of even lattices and one of odd lattices. With a short
MAGMA program using Kneser’s neighboring method, one obtains a list of
all lattices in the relevant genus. In all cases there is a unique lattice with
the right number of vectors of length 2. Gram matrices of these lattices are
given in the appendix. �

Remark 5. For N = 1 and dimension n = 9, 10, 11 the theta series of the
hypothetical shadow has non integral resp. odd coefficients, so there is no
lattice Ln(1).

Theorem 6. Let N ∈ L be even and k ∈ N such that
2

σ1(N/2)
≤ k ≤ kmax(N) =

24
σ1(N)

.

If (k, N) 6= (3, 2) then there are strongly N -modular lattices L := Lk(N)
that are rational equivalent to Ck

N such that min(L) > 1 and min0(S(L)) =
M (N)(1, k). If k = kmax(N), then Lk(N) is unique. It is the odd lattice
L = O(N) described in [9, Table 1] and min(L) = 3.

Remark 7. For N = 2 and k = 3 the corresponding shadow modular form
has non integral coefficients, so there is no lattice L3(2).

Remark 8. All odd lattices Lk(N) in Theorem 6 lie in the genus of Ck
N .

4. Appendix: The lattices Lk(N).

The lattices Lk(1):
The lattices Lk(1) are already listed in [2]. They are uniquely determined

by their root-sublattices Rk and given in the following table:
k 8 12 14 15 16 17 18 19 20 21 22 23

Rk E8 D12 E2
7 A15 D2

8 A11E6 D3
6, A2

9 A2
7D5 D5

4, A4
5 A7

3 A22
1 0



Strongly modular lattices with long shadow 193

The lattices Lk(N) for N > 1 odd:

L2(3):
(

2 1
1 2

)
⊥

(
2 1
1 2

)
∼= A2 ⊥ A2.

Automorphism group: D12 o C2.

L3(3):


2 1 1 1 1 1
1 2 1 1 1 1
1 1 2 1 1 1
1 1 1 3 0 0
1 1 1 0 3 0
1 1 1 0 0 3

 .

Automorphism group: order 1152.

L4(3):



2 0 0 0 -1 -1 0 1
0 2 0 0 1 1 1 0
0 0 2 0 0 -1 -1 -1
0 0 0 2 -1 0 -1 -1
-1 1 0 -1 3 1 1 0
-1 1 -1 0 1 3 1 0
0 1 -1 -1 1 1 3 1
1 0 -1 -1 0 0 1 3


.

Automorphism group: order 6144.

L5(3):



3 -1 -1 -1 0 -1 -1 -1 1 0
-1 3 1 -1 -1 1 -1 1 1 0
-1 1 3 1 1 1 -1 1 0 -1
-1 -1 1 3 1 0 1 1 -1 -1
0 -1 1 1 3 1 0 -1 -1 0
-1 1 1 0 1 3 -1 0 -1 -1
-1 -1 -1 1 0 -1 3 0 -1 1
-1 1 1 1 -1 0 0 3 1 0
1 1 0 -1 -1 -1 -1 1 3 1
0 0 -1 -1 0 -1 1 0 1 3


.

Automorphism group: ±U4(2).2 of order 103680.

L2(5):
(

3 1
1 2

)
⊥

(
3 1
1 2

)
.

Automorphism group: (±C2) o C2 of order 32.

L3(5):


3 -1 1 -1 1 0
-1 3 -1 0 1 1
1 -1 3 1 0 1
-1 0 1 3 -1 1
1 1 0 -1 3 1
0 1 1 1 1 3

 .

Automorphism group: ±S5 of order 240.
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L1(7):
(

2 1
1 4

)
.

Automorphism group: ±C2.

L2(7):


3 -1 1 0
-1 3 0 1
1 0 3 1
0 1 1 3

 .

Automorphism group: order 16.

L1(11):
(

2 1
1 6

)
.

Automorphism group: ±C2.

The lattices Lk(N) for N even:
For N = 2 there is only one genus of odd lattices to be considered. Also

for N = 14 there is only one odd genus for each k, since 2 is a square modulo
7. For N = 6, there are 2 such genera, since L := (

√
2Z)2 ⊥ (

√
3Z)2 is not

in the genus of C6. The genus of L contains no strongly modular lattices.
The genus of L ⊥ C6 contains 3 lattices with minimum 3, none of which is
strongly modular.

L2(2) : L2(2) = D4 with automorphism group W (F4) of order 1152.

L4(2) :



2 0 0 0 0 -1 -1 1
0 2 0 0 0 1 1 -1
0 0 2 -1 1 1 1 -1
0 0 -1 2 -1 -1 0 1
0 0 1 -1 2 1 0 -1
-1 1 1 -1 1 3 2 -2
-1 1 1 0 0 2 3 -1
1 -1 -1 1 -1 -2 -1 3


.

The root sublattice is D4 ⊥ A4
1 and

the automorphism group of L4(2) is
W (F4)× (C4

2 : D8) of order 147456.

L5(2):



2 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1
1 1 2 1 1 1 1 1 1 1
1 1 1 2 1 0 0 0 0 0
1 1 1 1 2 1 1 1 1 1
1 1 1 0 1 3 1 1 1 1
1 1 1 0 1 1 3 1 1 1
1 1 1 0 1 1 1 3 1 1
1 1 1 0 1 1 1 1 3 1
1 1 1 0 1 1 1 1 1 3


.

The root sublattice is A5 and the
automorphism group of L5(2) is
±S6 × S6 of order 1036800.
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L6(2) : There are two such lattices:

L6a(2) :



2 0 1 1 0 0 1 1 1 1 -1 -1
0 2 0 0 -1 1 1 1 -1 1 0 -1
1 0 2 1 0 0 1 1 1 1 -1 -1
1 0 1 2 0 0 1 1 1 1 -1 -1
0 -1 0 0 2 -1 0 -1 1 -1 1 1
0 1 0 0 -1 2 0 1 -1 1 0 -1
1 1 1 1 0 0 3 1 0 1 0 -1
1 1 1 1 -1 1 1 3 0 1 -1 -1
1 -1 1 1 1 -1 0 0 3 0 0 0
1 1 1 1 -1 1 1 1 0 3 -1 -1
-1 0 -1 -1 1 0 0 -1 0 -1 3 1
-1 -1 -1 -1 1 -1 -1 -1 0 -1 1 3



,

and

L6b(2) :



2 0 0 0 0 0 1 1 -1 -1 1 1
0 2 0 0 0 0 0 0 0 0 1 1
0 0 2 0 0 0 1 -1 0 1 -1 -1
0 0 0 2 0 0 0 0 1 0 0 0
0 0 0 0 2 0 -1 1 0 -1 1 1
0 0 0 0 0 2 0 0 -1 0 1 1
1 0 1 0 -1 0 3 0 0 1 -1 -1
1 0 -1 0 1 0 0 3 -1 -2 2 2
-1 0 0 1 0 -1 0 -1 3 1 -2 -2
-1 0 1 0 -1 0 1 -2 1 3 -2 -2
1 1 -1 0 1 1 -1 2 -2 -2 4 3
1 1 -1 0 1 1 -1 2 -2 -2 3 4


with automorphism group of order 21534 resp. 2213.

L7(2):



2 0 0 0 0 1 1 1 1 1 0 0 -1 0
0 2 0 0 1 1 1 1 0 0 0 0 0 1
0 0 2 0 1 1 0 0 -1 1 1 -1 0 0
0 0 0 2 -1 0 -1 -1 0 0 -1 -1 1 0
0 1 1 -1 3 1 1 1 0 1 1 0 0 1
1 1 1 0 1 3 1 1 0 1 1 0 -1 0
1 1 0 -1 1 1 3 2 0 0 0 0 -1 1
1 1 0 -1 1 1 2 3 1 1 1 1 -1 0
1 0 -1 0 0 0 0 1 3 0 0 1 0 0
1 0 1 0 1 1 0 1 0 3 1 0 0 0
0 0 1 -1 1 1 0 1 0 1 3 0 -1 -1
0 0 -1 -1 0 0 0 1 1 0 0 3 -1 -1
-1 0 0 1 0 -1 -1 -1 0 0 -1 -1 3 1
0 1 0 0 1 0 1 0 0 0 -1 -1 1 3



.

Automorphism group of order 2752512.

L8(2): L8(2) is the odd version of the Barnes–Wall lattice BW16 (see [6]).
It is unique by [9, Theorem 8].
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L1(6):


2 -1 -1 0
-1 3 0 -1
-1 0 3 -1
0 -1 -1 4

 .

Automorphism group C4
2 .

L2(6):



3 1 0 0 0 1 0 -1
1 3 0 0 -1 0 -1 0
0 0 3 1 0 -1 0 -1
0 0 1 3 1 0 -1 0
0 -1 0 1 3 1 0 0
1 0 -1 0 1 3 0 0
0 -1 0 -1 0 0 3 -1
-1 0 -1 0 0 0 -1 3


.

Automorphism group SL2(3).22 of order 96.

L1(14): Gram matrix
(

3 1
1 5

)
⊥

(
3 1
1 5

)
.

Automorphism group D8.
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