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Fundamental units in a family of cubic fields

par VEIKKO ENNOLA

RESUME. Soit O 'ordre maximal du corps cubique engendré par
une racine € de I'equation 2% + (¢ — 1)a2? —fx —1 =0, ou { € Z,
¢ > 3. Nous prouvons que €, —1 forment un systeme fondamental
d’unités dans O, si [O : Z[e]] < £/3.

ABSTRACT. Let O be the maximal order of the cubic field gen-
erated by a zero € of 23 + ({ — 1)2? —lx — 1 for £ € Z, £ > 3.
We prove that €, — 1 is a fundamental pair of units for O, if

(0 Z[e]] < ¢/3.

1. Introduction

Many computational methods in number theory depend on the knowl-
edge of the unit group of an order in an algebraic number field. Especially,
several parametrized families of cubic orders with a given fundamental pair
of units are known (see, e.g., [3] and papers cited there). However, it
seems that the results mostly suffer from the incompleteness that either
it is not known whether the units also form a fundamental pair of units
for the maximal order of the field (cf. the corrigendum to [4]), or this is
achieved by imposing a further restrictive condition. E.g., in the case of a
non-Galois cubic field this means in practice that the discriminant of the
defining polynomial is assumed to be square-free.

In an earlier paper [2] we gathered together basic arithmetic facts and
further results and conjectures about the two families of cubic fields con-
taining exceptional units, the main emphasis laying on the non-abelian
family. This is the set F = {F}}, where

Fy=Q(e), Irr(e,Q) = folx) =2+ —1)2®> —lx—1, £>3.

For each ¢, we fix € somehow among its conjugates in order to get a unique
field Fy. Here ¢ > 3 is a natural limitation to avoid duplication and to
exclude from the family three fields one of which is cyclic and the other
two are not totally real.

E. Thomas [5] proved that ¢, — 1 is a fundamental pair of units for the
order Zle], and in [2, Conjecture 4.1] we conjectured that the same is true
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for the maximal order O = OF,. Using the Voronoi algorithm in the cases
when the discriminant D = D(f;) of the polynomial fy(z) is divisible by
the square of a prime p # 7, we were able to show that the conjecture is
true for 3 < ¢ < 500.

The main problem in this context is whether a unit of the form £%(e —1)°
is a non-trivial pth power in Fy. For (a,b) = (2,1) or (1,2) we showed in [2]
that it is not so if p = 5, and claimed that the same holds for any prime p.
We have been able to prove this by means of a very tedious computation, the
details of which are uninteresting. As suggested in [2], the crucial question
here is a successful choice of the approximation polynomial q. The following
construction seems to work in all cases: Suppose that n? = €%(s— 1)b, where
n € Fy, p is an odd prime, and a and b are coprime positive integers less
than p. Put § =1, if a is even and b is odd, and § = —1 otherwise. Take

q = 6Te(n™""") + Te(y*) + Tr(n"),
where Tr denotes the trace from Fy to Q. This choice is different from the
one in [2], but so far it has worked well in each case investigated.
Let j denote the index [O : Z[e]]. Our purpose is to prove the following

result which shows that the conjecture is true if j is not too large:

Theorem. If j =[O : Z[e]] < ¢/3, then €, — 1 is a fundamental pair of
units for the maximal order O of the field Fj.

Using Maple we have computed the prime factorization of D and have
verified that, for 3 < ¢ < 10000, D has a squared factor k? with k > ¢/3
only in a few cases, and that in these cases k =0 mod 7, D 0 mod 73, so
that (see Lemma 1) j is a divisor of k£/7. One can then check that j < ¢/3.
Therefore, €, — 1 is a fundamental pair of units for O if 3 < ¢ < 10000.

2. Basic lemmas

These lemmas are contained in [2], but in order to make the proof of the
theorem self-contained, we repeat their proofs shortly here. Note that j? is
a divisor of D, in fact, D/j2 is the discriminant of the field F;. By p™ || c
we mean that p™ | ¢, p™*! tc.

Lemma 1. (i) If ¢ # 2 mod 7, then 71 D.
(i) If ¢ =2 mod 7, but £ # 23 mod 49, then 7 || D, 71 j.
(iii) If ¢ =23 mod 49, then 73 || D, 7' | j.

Proof. The polynomial discriminant D has the expression
(1) D=0 +603+70%—60—31=(+30-1)>-32.
Note that every prime divisor of D is = +1 mod 8.
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It is easy to see that (i) holds, e.g., by direct computation. Suppose
therefore, that £ =2 mod 7. Substituting £ = 2+ 7n in (1) we get

D =49((2n+1)? + 14(n* +n)) mod 7%
Hence 73 || D only for n = 3 mod 7, i.e., £ = 23 mod 49, and otherwise

72| D.
For ¢ # 23 mod 49,

fo(x+2) =2+ (L +5)2> + (30 +8)z+20+3

is an Eisenstein polynomial modulo 7, so that 7 is fully ramified in Fy, and
(ii) follows.

For £ = 23 mod 49, (iii) is a consequence of (¢ — 2)?/7 € O. This fact
can be seen in many ways, the most straightforward but perhaps not the
cleverest method being to compute the minimal polynomial. O

Lemma 2. The ring O has a Z-basis of the form 1,e,a, where a = (u +
ve +¢2)/j, and the integers u,v are determined by 0 < u,v < j and

(2) 28u=—203 -9 — 116+ 11, 28v =3+ 2 +9¢—30 mod (7,5)].

Proof. We shall use a theorem of Voronoi [1, p. 111, Theorem I]. Put a =
2(02+0+1),b=(?>—{¢—9. Since the resultant of a and b with respect to
¢ equals 336 and b is odd, the ged (a,b) is a divisor of 21.

Firstly, we must show that the simultaneous congruences

fe(@)=0 mod k*, f)(z)=0 modk*, if/(z)=0 modk
do not have a common solution for any k£ > 1. Suppose the contrary. It
follows from the identities
(3) 9fe(z) — (B + £~ 1) fy(z) = —az +b,
—12f)(z) + f/ (z)* = 2a,
that k2 | (a,b), a contradiction.
Hence O has an integral basis of the required form, where u and v have

to be determined. Put j' = j/(7,7), so that 74 j'. By Voronoi’s theorem
we have

(4) u=t’+{U—-1)t—0 v=t+,—1 mod j,
where t is a solution of the congruences

(5) fe(t)=0 mod 57, fi(t)=0 mod j'.
Further useful identities are

(6) a® fy(b/a) = —9D,

(7) a(303 + 1007 — 220 — 41) + 392 = (6/ — 10)D.
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It follows from (7) that (a,j’) = 1, and then from the equations (3), (6)
that ¢ = b/a is a solution of (5). Substituting ¢ = b/a in (4) and using
(7) to remove the denominators, we obtain after a short computation the
congruences (2) modulo j'.

Suppose finally that 7 | j, i.e., £ = 23 mod 49. In this case

fe(2)=0 mod 7, f)(2)=0 mod 7,

so that Voronoi’s theorem implies © = 4, v = 3 mod 7. This is in accor-
dance with (2) modulo 49. O

3. Proof of the theorem

For the basic facts concerning Voronoi’s algorithm in totally real cubic
fields, see [1], Chapter IV. For any number 9 € Fy, let 9,19,9" (or 9, i =
0,1,2) be the conjugates, and let 9 = (99,79, 9") be the corresponding vector
in R3. We choose the order of the conjugates so that

(8) l<e<l+0l, —tl<d<0, —t<d <—t+072

Let A = {99 € O} be the lattice in R3 corresponding to O. The theorem
is an immediate consequence of the following

Lemma 3. Suppose that j < ¢/3. Let & and 7 be the relative minima of A
adjacent to 1 on the positive x- and y-axis, respectively. Then

§:<€_1)_17 77:5_1-

Proof. We apply the result of Lemma 2. Since € — 1 is a unit, it is clear
that (¢ — 1)~ is a relative minimum of A. It follows from (8) that

e/ =17 <1, € -1 <1,
so that & must satisfy the conditions
(9) €l <le—175 J¢l<1, € <L
Since £ € O, there are integers z,y, z such that
(10) z+ye® 4200 =¢0  (i=0,1,2).

Consider (10) as a system of linear equations in the unknowns z,y, z. The
determinant of the system is —v/D/j. Here the square root is positive, and
to get the correct sign we use (8). It follows that

(11) VDz/j = (£ ")+ (" — )¢ + (e — )¢

Changing the sign of &, if necessary, we may assume that z > 0.
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From (1) we have VD > £2 + 3¢ — 2, so that (11), (9) and (8) imply
(P +30-2)z/j< (e —")(e—1)+e—e"+e—¢
=l—1+3c+e(l+e) —£")
<*+3(+6.

Since j < ¢/3, it follows that z < j.
Subtract the equations (10) with ¢ = 1,2. Substituting the expressions
of o/ and o” we obtain after a short computation

(12) jy—(f—’u)z:(5_1)24_]'(&'/_5//)/(51_6//).
The absolute value of the right-hand side is less than
jle—1+2/( —£").

We shall show that this expression is less than 3j/¢ < 1, so that the final
result will be

(13) Jjy={—v)z.
For that purpose it is enough to show that
(14) (143071 —e) (e —&") > 2.

The following improved bound for ¢ is valid: € < r, where
r=1+0"1—207% + 4073,
To see this, check that fy(1) < 0, fo(r) > 0. We then have
(14307 =) =) > (1 +307 —r) (70— 072,

which is easily seen to be > 2 if £ > 4. For £ = 3 one can simply compute
the approximate values of ,&’,&” and check that (14) holds even then.
We have thus proved (13). We contend that (j,¢ — v) = 1 which implies

(15) yZK_U7 Z:j,

because z < j, v < j < ¢/3, and the possibility z = y = 0 is absurd.

Suppose that £ — v and j are both divisible by a prime p. If p = 7,
then Lemma 1 gives ¢ = 23 mod 49, but then v =/ =2 mod 7 leads to a
contradiction with (2). Hence p # 7. From (2) we have h(f) = 0 mod p,
where

h(f) = 03 + % — 190 — 30.
On the other hand
(3240 —T)h(€) — (3¢ — 14)D = 112(¢ — 2),

so that £ =2 mod p and h(f) = h(2) = —56 mod p, which is impossible.

Hence (15) is true, whence £ = x+u+{e+e? = x+u+(—1)~1. Looking
at (8), one can see that the two last conditions (9) are only satisfied for
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x+4u = 0 or 1. However, the first condition (9) does not hold for z +u = 1.

It follows that & = (¢ — 1)~!, and the first part of the lemma is proved.

1

The proof that n = 7" is very much the same. The number 7 satisfies

the conditions

(16) <1, 1<l <L
Again there are integers x,y, z such that
(17) z+ye® 4+ 209 =@ (1=0,1,2).

We may assume that z > 0, and we can prove that z < j as before. Sub-
tracting the equations (17) with ¢ = 0,2 we obtain the following analogue
of (12):

(18) jy_(K—U—1)2:5/Z_|_j(77_17”)/(6_61/).
In order to achieve the result
(19) jy={l—-v—1)z

we have to show that the absolute value of the right-hand side of (18) is
less than 1. This is true if we can show that

(20) (e—MB 1 4+¢) > 2.

But (20) follows easily from (8). Hence (19) holds.

Suppose now that j and £—v—1 are both divisible by a prime p. If p =7,
then ¢ =23 mod 49 and v =/¢—1 =1 mod 7, which contradicts (2). Thus
p # 7. Since v = {—1 mod p, it follows from (2) that h(¢)+28 =0 mod p.
On the other hand,

(203 +90% + 110 — 11)(h(€) + 28) — (20> — ¢ — 26)D = —784,
which is impossible. As before, we now have
y=~L—-—v—-1 z=yj,

so that n = x +u+ £+ e~!. However, the first and third condition (16) are
only satisfied for  + u + ¢ = 0. This completes the proof. O
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