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Cohen-Lenstra sums over local rings

par Christian Wittmann

Résumé. On étudie des séries de la forme
∑
M

|AutR(M)|−1|M |−u,

où R est un anneau commutatif local et u est un entier non-negatif,
la sommation s’étendant sur tous les R-modules finis, à isomor-
phisme prés. Ce problème est motivé par les heuristiques de Cohen
et Lenstra sur les groupes des classes des corps de nombres, où de
telles sommes apparaissent. Si R a des propriétés additionelles,
on reliera les sommes ci-dessus à une limite de fonctions zêta des
modules libres Rn, ces fonctions zêta comptant les sous-R-modules
d’indice fini dans Rn. En particulier on montrera que cela est le
cas pour l’anneau de groupe Zp[Cpk ] d’un groupe cyclique d’ordre
pk sur les entiers p-adiques. Par conséquant on pourra prouver
une conjecture de [5], affirmant que la somme ci-dessus correspon-
dante à R = Zp[Cpk ] et u = 0 converge. En outre on considère
des sommes raffinées, où M parcourt tous les modules satisfaisant
des conditions cohomologiques additionelles.

Abstract. We study series of the form
∑
M

|AutR(M)|−1|M |−u,

where R is a commutative local ring, u is a non-negative inte-
ger, and the summation extends over all finite R-modules M , up
to isomorphism. This problem is motivated by Cohen-Lenstra
heuristics on class groups of number fields, where sums of this kind
occur. If R has additional properties, we will relate the above sum
to a limit of zeta functions of the free modules Rn, where these
zeta functions count R-submodules of finite index in Rn. In par-
ticular we will show that this is the case for the group ring Zp[Cpk ]
of a cyclic group of order pk over the p-adic integers. Thereby we
are able to prove a conjecture from [5], stating that the above
sum corresponding to R = Zp[Cpk ] and u = 0 converges. More-
over we consider refined sums, where M runs through all modules
satisfying additional cohomological conditions.

Manuscrit reçu le 18 juin 2003.
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1. Introduction

A starting point for the problem investigated in this article is the fol-
lowing remarkable identity, published by Hall in 1938 [6]. If p is a prime
number, then ∑

G

|Aut(G)|−1 =
∑
G

|G|−1,

where G runs through all finite abelian p-groups, up to isomorphism. Here
we will consider a more general problem. Put

S(R;u) =
∑
M

|AutR(M)|−1|M |−u,

where R is a commutative ring, u is a non-negative integer, and the sum
extends over all finite R-modules, up to isomorphism. By AutR(M) we
denote the group of R-automorphisms of M . Sums of this kind occur in
Cohen-Lenstra heuristics on class groups of number fields (cf. [2], [3]), so
we call S(R;u) a Cohen-Lenstra sum.

We want to evaluate these series in certain cases. While in [2], [3] R is a
maximal order of a finite dimensional semi-simple algebra over Q, we will
assume that R is a local ring. We will mainly focus on the case R = Zp[Cpk ],
the group ring of a cyclic group of p-power order over the p-adic integers,
which is a non-maximal order in the Qp-algebra Qp[Cpk ].

In particular we are able to prove a conjecture of Greither stated in [5]:

S(Zp[Cpk ]; 0) =
∑
M

|AutZp[C
pk ](M)|−1 =

 ∞∏
j=1

1
1− p−j

k+1

.

This fills a gap concerning the sums S(Zp[∆]; 0) for an arbitrary p-group
∆, for Greither showed in [5] that S(Zp[∆]; 0) diverges if ∆ is non-cyclic.

The outline of the paper is as follows. In section 2 we introduce the basic
notions concerning Cohen-Lenstra sums over arbitrary local rings, and we
will relate these sums to limits of zeta functions. If V is an R-module, the
zeta function of V is defined as the series

ζV (s) =
∑
U⊆V

[V : U ]−s ∈ R ∪ {∞},

where s ∈ R and ζV (s) = ∞ iff the series diverges. The summation extends
over all R-submodules U of V such that the index [V : U ] is finite. The main
theorem of that section is 2.6, which states that under certain conditions the
Cohen-Lenstra sum S(R;u) can be computed if one has enough information
on the zeta functions of Rn, viz

S(R;u) = lim
n→∞

ζRn(n+ u). (1)
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In section 3 we derive some results on the zeta function of V at s = n,
where V is a Zp[Cpk ]-module such that pZp[Cpk ]n ⊆ V ⊆ Zp[Cpk ]n. The
main ingredient will be a “recursion formula” from [14] for these zeta func-
tions. These results will be applied in section 4 in order to prove Greither’s
conjecture.

In section 5 we discuss refinements of Cohen-Lenstra sums with respect
to the ring Zp[Cp], where the summation extends only over those modules
M having prescribed Tate cohomology groups Ĥ i(Cp,M). This has some
applications, e.g. in [5], where the case of cohomologically trivial modules
is treated, and in [15], where sums of this kind occur as well, when studying
the distribution of p-class groups of cyclic number fields of degree p.

We will use the following notations in the sequel. N is the set of non-
negative integers, R+ the set of non-negative real numbers, p denotes a
prime number, q = p−1, and Zp is the ring of p-adic integers. We remark
that the completion Zp could be replaced by Z(p), the localization of Z at
p, throughout. If m ∈ N ∪ {∞}, then

(q)m :=
m∏
j=1

(1− qj);

note that the product converges for m = ∞ because of 0 < q < 1. If
l,m ∈ N, we let

[
m
l

]
p

denote the number of l-dimensional subspaces of an
m-dimensional vector space over the finite field Fp. It is well-known that[m

l

]
p

=
(pm − 1)(pm − p) . . . (pm − pl−1)

(pl − 1)(pl − p) . . . (pl − pl−1)
= pl(m−l)

(q)m
(q)l(q)m−l

.

This paper is part of my doctoral thesis. I am indebted to my advisor
Prof. Cornelius Greither for many fruitful discussions and various helpful
suggestions.

2. Cohen-Lenstra sums and zeta functions

Let R be a commutative ring.

Definition 2.1. Let u ∈ N. The Cohen-Lenstra sum of R with respect to
u is defined as

S(R;u) :=
∑
M

|AutR(M)|−1|M |−u ∈ R+ ∪ {∞},

where the sum extends over all finite R-modules, up to isomorphism. In
the sequel, all sums over finite R-modules are understood to extend over
modules up to isomorphism, without further mention. We denote by ν(M)
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the minimal number of generators of the finite R-module M , and we put

Sn(R;u) :=
∑

M
ν(M)=n

|AutR(M)|−1|M |−u,

S≤n(R;u) :=
∑

M
ν(M)≤n

|AutR(M)|−1|M |−u.

The following notations will be useful.

Notations. If A,B are R-modules, we let

Homsur
R (A,B) := {ψ ∈ HomR(A,B) | ψ surjective}.

If M is a finite R-module with ν(M) ≤ n, there is a positive integer n such
that M is of the form M ∼= Rn/U for some R-submodule U of finite index
in Rn. We set

λRn (M) := |{U ⊆ Rn | Rn/U ∼= M}|

and

sRn (M) := |Homsur
R (Rn,M)|.

The following lemma, and also Lemma 2.4, are well-known (cf. [2, Prop.
3.1]). However, we give the simple arguments for the reader’s convenience.

Lemma 2.2. λRn (M) = sRn (M)|AutR(M)|−1 for any finite R-module M .

Proof. Each U ⊆ Rn satisfying Rn/U ∼= M has the form U = ker(ψ)
for some surjective ψ ∈ HomR(Rn,M). On the other hand, if ψ1, ψ2 ∈
Homsur

R (Rn,M), then

ker(ψ1) = ker(ψ2) ⇐⇒ ψ1 = ρ ◦ ψ2

for some ρ ∈ AutR(M), and this proves the lemma. �

Lemma 2.3. S≤n(R;u) =
∑
U⊆Rn

sRn (Rn/U)−1[Rn : U ]−u, where the sums

extends over all R-submodules U of finite index in Rn.

Proof. Let M be a finite R-module with ν(M) ≤ n. Then M = Rn/U
for some U ⊆ Rn, and there are λRn (M) = λRn (Rn/U) possible U ′ with
M ∼= Rn/U ′. Hence the preceding lemma implies

S≤n(R;u) =
∑
U⊆Rn

|AutR(Rn/U)|−1λRn (Rn/U)−1|Rn/U |−u

=
∑
U⊆Rn

sRn (Rn/U)−1[Rn : U ]−u.

�
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Note that the equality in Lemma 2.3 in an equality in R+ ∪ {∞} (as are
all equalities dealing with Cohen-Lenstra sums in this article).

From now on we assume that R is a local ring with maximal ideal J and
residue class field Fp. We set

q = p−1.

The restriction to prime fields is not essential. We could just as well suppose
that the residue class field of R is an arbitrary finite field Fpα . Then all
results of this article are still valid if we accordingly set q = p−α.

For local rings the calculation of sRn (M) is not difficult. Suppose that M
is an R-module with ν(M) ≤ n. Then

ν(M) = dimR/J(M/JM) ∈ {0, . . . , n}
by Nakayama’s Lemma.

Lemma 2.4. sRn (M) = |M |n (q)n
(q)n−r

, where r := ν(M).

Proof. The following equivalence holds for ψ ∈ HomR(Rn,M), by Naka-
yama’s Lemma:

ψ surjective ⇐⇒ ψ : (R/J)n →M/JM surjective,

where ψ is induced by reduction mod J . Thus

sRn (M) =
∣∣Homsur

Fp
(Fnp ,Frp)

∣∣ ∣∣{ψ ∈ HomR(Rn,M) | ψ = 0}
∣∣

= (pn − 1) . . . (pn − pr−1)|JM |n

= prn
(q)n

(q)n−r

(
|M |

|M/JM |

)n
= |M |n (q)n

(q)n−r
.

�

Theorem 2.5. a) Sn(R;u) =
qn(n+u)

(q)n
ζJn(n+ u).

b) S(R;u) =
∞∑
n=0

qn(n+u)

(q)n
ζJn(n+ u).

Proof. It suffices to prove a). If M ∼= Rn/U for some U ⊆ Rn, then

ν(M) = dim(M/JM) = dim(Rn/(U + Jn)). (2)

Therefore ν(M) = n if and only if U ⊆ Jn. In an analogous manner as in
the proof of Lemma 2.3 we infer

Sn(R;u) =
∑
U⊆Jn

sRn (Rn/U)−1[Rn : U ]−u,
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and using the preceding lemma we get

Sn(R;u) =
1

(q)n

∑
U⊆Jn

[Rn : U ]−(n+u) =
qn(n+u)

(q)n
ζJn(n+ u).

�

Examples. a) R := Fp.
Then J = 0 and

S(Fp;u) =
∞∑
n=0

qn(n+u)

(q)n
.

In particular, if u = 0 or u = 1 the identities of Rogers-Ramanujan
(cf. [7, Th. 362, 363]) imply

S(Fp; 0) =
∞∏
m=0

1
(1− q5m+1)(1− q5m+4)

S(Fp; 1) =
∞∏
m=0

1
(1− q5m+2)(1− q5m+3)

.

b) Let R be a discrete valuation ring with residue class field Fp.
Then J ∼= R, and it is well-known that

ζRn(s) =
n−1∏
j=0

(1− pj−s)−1

(cf. [1, §1]), whence

S(R;u) =
∞∑
n=0

qn(n+u)(q)u
(q)n(q)n+u

=
(q)u
(q)∞

.

This result is also proved in [2, Cor. 6.7].

By Theorem 2.5 we are able to compute Cohen-Lenstra sums in some
cases, provided we know the zeta functions of Jn for n ∈ N. As we will see
in the next section, it may be difficult to calculate ζJn(n + u), whereas it
is much easier to determine the values ζRn(n+ u). In these situations the
following theorem is useful.

Theorem 2.6. Let u ∈ N, and recall that R is a local ring. Then:
a) S(R;u) converges ⇐⇒ The sequence (ζRn(n+ u))n∈N is bounded.
b) If the sequence (ζRn(n+ u− 1))n∈N is bounded, then

S(R;u) = lim
n→∞

ζRn(n+ u).
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Proof. a) The assertion follows from

ζRn(n+ u) =
n∑
r=0

∑
U⊆Rn

ν(Rn/U)=r

[Rn : U ]−(n+u)

≤
n∑
r=0

(q)n−r
(q)n

∑
U⊆Rn

ν(Rn/U)=r

[Rn : U ]−(n+u)

= S≤n(R;u) by 2.3, 2.4

≤ 1
(q)n

n∑
r=0

∑
U⊆Rn

ν(Rn/U)=r

[Rn : U ]−(n+u)

=
1

(q)n
ζRn(n+ u),

and the convergence of the sequence
(

1
(q)n

)
n∈N

.

b) We define the following abbreviation:

γu(r, n) :=
∑

U⊆Rn

ν(Rn/U)=r

[Rn : U ]−(n+u). (3)

We have to prove that the sequence

(S≤n(R;u)− ζRn(n+ u))n∈N =

(
n∑
r=0

(
(q)n−r
(q)n

− 1
)
γu(r, n)

)
n∈N

tends to zero. It is easy to see that

1− (q)n
(q)n−r

≤ qn−r+1 + qn−r+2 + · · ·+ qn ≤ qn−r+1

1− q
.

Hence
n∑
r=0

(
(q)n−r
(q)n

− 1
)
γu(r, n) =

n∑
r=0

(q)n−r
(q)n

(
1− (q)n

(q)n−r

)
γu(r, n)

≤ qn+1

(q)n(1− q)

n∑
r=0

prγu(r, n).

Now the claim follows if we can prove:(
n∑
r=0

prγu(r, n)

)
n∈N

is a bounded sequence. (4)
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Since ν(Rn/U) = dim(Rn/(U + Jn)) we get
n∑
r=0

prγu(r, n) =
∑
U⊆Rn

[Rn : U + Jn][Rn : U ]−(n+u) ≤ ζRn(n+ u− 1),

and (4) follows from the assumption. �

Sometimes it may be desirable to sum only over modules in certain iso-
morphism classes instead of computing the entire Cohen-Lenstra sum as in
Definition 2.1. We will make use of this generalization in section 5. The
following corollary is immediate.

Corollary 2.7. Let M be a set of non-isomorphic finite R-modules. If the
sequence (ζRn(n+ u− 1))n∈N is bounded, then∑

M∈M
|AutR(M)|−1|M |−u = lim

n→∞

∑
M∈M

∑
U⊆Rn

Rn/U∼=M

[Rn : U ]−(n+u).

3. The zeta function of a submodule of Zp[Cpk ]n at s = n

For k ∈ N put Rk := Zp[Cpk ], where Cpk is the multiplicative cyclic
group of order pk. Our goal in the next section will be to compute the
Cohen-Lenstra sum S(Rk;u) for u ∈ N, along the lines of Theorem 2.6. We
therefore have to study the zeta function of Rnk at s = n, as well as the zeta
function of certain submodules of Rnk at s = n, as we will see in section 4.

To this end we will use the main theorem of [14]. Let σ be a generator
of Cpk , and set

φk = σp
k−1(p−1) + σp

k−1(p−2) + · · ·+ σp
k−1

+ 1 ∈ Rk.
We assume k > 0 and let

f : Rnk → Rnk−1

be the canonical surjection, induced by the surjective homomorphism
Zp[Cpk ] → Zp[Cpk−1 ], mapping σ to a fixed generator of Cpk−1 .

Theorem 3.1. Let V ⊆ Rnk be an Rk-submodule of finite index in Rnk .
Then the following formula holds for s ∈ R with s > n− 1:

ζV (s) =
n−1∏
j=0

(1− pj−s)−1
∑
N⊆V ◦

p(np
k−1−eV ◦ (N))(n−s) [N + f(V ) : N ]−s, (5)

where V ◦ is given by pV ◦ = f(V ∩ φkR
n
k ) and eV ◦(N) = dimFp(N +

pV ◦/pV ◦).

This is proved in [14, Th. 3.8, 3.9]. Note that f maps φkRnk onto pRnk−1,
hence f(V ∩φkRnk ) ⊆ pRnk−1. The fact that the zeta function of V is defined
for all s ∈ R with s > n− 1 is a consequence of Solomon’s First Conjecture
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proved in [1], and also follows in a more elementary way from the results
in [14, Sec. 5].

If we consider formula (5) with s = n, it becomes much nicer:

ζV (n) =
1

(q)n

∑
N⊆V ◦

[N + f(V ) : N ]−n, (6)

where again V ⊆ Rnk is a submodule of finite index.

Theorem 3.2. The zeta function of Rnk at s = n equals ζRn
k
(n) =

1
(q)k+1

n

.

Proof. We proceed by induction on k. If k = 0 the result follows from the
well-known formula

ζZn
p
(s) =

n−1∏
j=0

(1− pj−s)−1, (7)

cf. [14, Th. 3.9]. If k > 0 then obviously (Rnk )
◦ = Rnk−1, and (6) yields

ζRn
k
(n) =

1
(q)n

∑
N⊆Rn

k−1

[Rnk−1 : N ]−n =
1

(q)n
ζRn

k−1
(n),

whence the claim follows. �

Using the concept of a Möbius function, we can find a more appropriate
expression for (6). Thus let again V ⊆ Rnk be a submodule of finite index,
and let µ be the Möbius function (cf. [11]) of the lattice of submodules of
V ◦ having finite index in V ◦.

Lemma 3.3.

ζV (n) =
1

(q)n

∑
f(V )⊆Y⊆V ◦

 ∑
Y⊆W⊆V ◦

µ(Y ,W )[W : Y ]−n

 ζY (n),

where f(V ) and V ◦ are defined as in Theorem 3.1.

Proof. We have

ζV (n) =
1

(q)n

∑
f(V )⊆W⊆V ◦

η(W ),

where for f(V ) ⊆ Y ⊆ V ◦ we set

η(Y ) :=
∑
N⊆Y

N+f(V )=Y

[Y : N ]−n.

One easily verifies that∑
f(V )⊆Y⊆W

[W : Y ]−nη(Y ) = ζW (n)
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(this is analogous to the proof of Theorem 4.5 in [14]). Applying the Möbius
inversion formula [11, Sec. 3, Prop. 2] yields

ζV (n) =
1

(q)n

∑
f(V )⊆W⊆V ◦

∑
f(V )⊆Y⊆W

µ(Y ,W )[W : Y ]−nζY (n),

and the formula stated above follows. �

For the rest of this section, we let R = Rk and R = Rk−1. Let J, J the
maximal ideals of R,R respectively. We will use the above lemma to derive
a formula for ζV (n), where V is an R-module such that Jn ⊆ V ⊆ Rn.

Lemma 3.4. Let Jn ⊆ V ⊆ Rn be a submodule. Then J
n ⊆ f(V ) ⊆ R

n,
and

ζV (n) =
∑

f2(V )⊆Y⊆Rn

1
(q)j(Y )

ζY (n), (8)

where j(Y ) := dimFp(Y /J
n).

Proof. Clearly f(Jn) = J
n, so Jn ⊆ f(V ) ⊆ R

n. Since φk ∈ J we have

pV ◦ = f(V ∩ φkRn) ⊇ f(Jn ∩ φkRn) = f(φkRn) = pR
n
,

thus V ◦ = R
n. The preceding lemma implies

ζV (n) =
1

(q)n

∑
f(V )⊆Y⊆Rn

 ∑
Y⊆W⊆Rn

µ(Y ,W )[W : Y ]−n

 ζY (n). (9)

Fix a submodule Y such that Jn ⊆ Y ⊆ R
n, and put j := j(Y ). Then the

lattice of R-submodules of Rn containing Y is isomorphic to the lattice of
Fp-subspaces of Fn−jp . Consequently∑

Y⊆W⊆Rn

µ(Y ,W )[W : Y ]−n =
∑

U⊆Fn−j
p

µ̃(0, U)|U |−n,

where µ̃ is the Möbius function of the lattice of subspaces of Fn−jp . Since

µ̃(0, U) = (−1)dim(U)p(
dim(U)

2 )

([11, Sec. 5, Ex. 2]) and since there are
[
n−j
l

]
p

Fp-subspaces of Fn−jp of

dimension l, the above sum can be written as
n−j∑
l=0

[
n− j

l

]
p

(−1)lp(
l
2)p−ln =

n−j−1∏
i=0

(1− pi−n) =
(q)n
(q)j

,

where the equality of the sum and the product follows from [8, III.8.5].
Putting together this result with (9) proves the lemma. �
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Using an inductive argument, the lemma shows in particular that the
value ζV (n) only depends on the Fp-dimension of V/Jn, i.e.

ζV (n) = ζV ′(n) if dimFp(V/J
n) = dimFp(V

′/Jn).

Notation. Let 0 ≤ m ≤ n. We define

cnk(m) := ζV (n) for any Jn ⊆ V ⊆ Rn with dimFp(V/J
n) = m. (10)

If k = 0 we have V ∼= Znp , hence by (7)

cn0 (m) =
1

(q)n
∀ 0 ≤ m ≤ n. (11)

If k > 0 the equality [V : Jn] = [f(V ) : Jn], together with the preceding
lemma, implies

cnk(m) =
n∑

j=m

[
n−m

j −m

]
p

cnk−1(j)
(q)j

, (12)

and this recursion formula allows the explicit computation of ζV (n). For
example, if k = 1, i.e. R = Zp[Cp] and J = rad(R), we get

ζJn(n) = cn1 (0) =
1

(q)n

n∑
j=0

[
n

j

]
p

1
(q)j

.

4. Cohen-Lenstra sums over Zp[Cpk ]

In this section we want to evaluate the Cohen-Lenstra sums S(Zp[Cpk ];u),
where u ∈ N and Cpk is the multiplicative cyclic group of order pk. We put

R = Zp[Cpk ].

By Theorem 3.2 the sequence (ζRn(n))n∈N is convergent, and thus

S(R;u) = lim
n→∞

ζRn(n+ u) ∈ R+ ∀ u ≥ 1

according to Theorem 2.6. Note that the explicit formulas in [14] for ζRn(s)
in the cases k = 1, 2 are useful for approximating the value of S(R;u).

It remains to determine

S(R; 0) =
∑
M

|AutR(M)|−1.

Since the zeta function ζRn(s) is not defined for s = n − 1, Theorem 2.6
is not applicable. So first of all it is interesting to investigate whether
S(R; 0) converges to real number. This question was asked by Greither in
[5], and he conjectured that S(R; 0) converges to (q)−(k+1)

∞ . We will prove
this conjecture in Corollary 4.3 below.
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Theorem 4.1. Let R = Zp[Cpk ]. Then

S(R; 0) = lim
n→∞

ζRn(n).

Proof. Let γ0(r, n) be defined as in (3). Following the steps in the proof of
Theorem 2.6, it remains to show the assertion (4):(

n∑
r=0

prγ0(r, n)

)
n∈N

is a bounded sequence.

One has

γ0(r, n) =
∑

U⊆Rn

dim(Rn/(U+Jn))=r

[Rn : U ]−n

≤ qrn
∑

Jn⊆V⊆Rn

dim(Rn/V )=r

ζV (n).

In the preceding section we saw that ζV (n) only depends on dim(V/Jn) =
n− r, so using the notation introduced in (10) we get

γ0(r, n) ≤ qrn
[n
r

]
p
cnk(n− r) ≤ qr

2

(q)r
cnk(n− r).

The next lemma shows that there exists a constant A > 0, independent of
r and n, such that

n∑
r=0

prγ0(r, n) ≤
n∑
r=0

pr
qr

2

(q)r
·A · pr(r+2)/2 ≤ A

(q)∞

∞∑
r=0

q(r
2−4r)/2,

whence the theorem is proved. �

Lemma 4.2. For all k ∈ N there exists a constant A > 0, independent of
n and 0 ≤ r ≤ n, such that the values cnk(n− r) defined in (10) satisfy the
inequality

cnk(n− r) ≤ A · pr(r+2)/2.

Proof. We proceed by induction on k. If k = 0 we can simply set A := (q)−1
∞

by (11). Let k > 0, and let A′ > 0 be a constant satisfying

cnk−1(n− l) ≤ A′ · pl(l+2)/2
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for all n and all 0 ≤ l ≤ n. For n ∈ N and 0 ≤ r ≤ n, the recursion formula
(12) implies

cnk(n− r) =
n∑

j=n−r

[
r

j − (n− r)

]
p

cnk−1(j)
(q)j

≤ A′

(q)n

r∑
i=0

[r
i

]
p
p(r−i)(r−i+2)/2

≤ A′

(q)n(q)r

r∑
i=0

pi(r−i)p(r−i)(r−i+2)/2

=
A′

(q)n(q)r
pr(r+2)/2

r∑
i=0

p−i(i+2)/2.

Therefore we can put

A :=
A′

(q)2∞

∞∑
i=0

qi(i+2)/2.

�

We remark that Corollary 2.7 holds for R = Zp[Cpk ] and u = 0 as well:
If M is a set of non-isomorphic finite R-modules, then∑

M∈M
|AutR(M)|−1 = lim

n→∞

∑
M∈M

∑
U⊆Rn

Rn/U∼=M

[Rn : U ]−n.

Now Greither’s conjecture (cf. [5]) is a direct consequence of Theorem
4.1 and 3.2.

Corollary 4.3. The Cohen-Lenstra sum S(Zp[Cpk ]; 0) converges to a real

number. More precisely: S(Zp[Cpk ]; 0) =
1

(q)k+1
∞

.

5. Cohen-Lenstra sums over Zp[Cp] with prescribed cohomology
groups

In this section we will consider some “refinements” of Cohen-Lenstra
sums over the ring Zp[Cp]. To be more precise, we will restrict the summa-
tion to those finite modules M having prescribed Tate cohomology groups
Ĥ i(Cp,M). Sums of this kind may be important for applications; e.g. in
[5] ∑

M

|AutZp[∆](M)|−1

is computed, where ∆ is a finite abelian p-group, and the summation ex-
tends over all cohomologically trivial Zp[∆]-modules.
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We use the following notations in this section. Let R = Zp[Cp], let σ be
a generator of the cyclic group Cp, and put φ = 1+σ+ · · ·+σp−1 ∈ R and
I = (σ − 1)R (which is the augmentation ideal of R).

We need some basic notions of Tate cohomology of finite groups (cf.
[12]). If M is a finite R-module, the Tate cohomology groups satisfy

Ĥ i(Cp,M) ∼= Ĥ i+2(Cp,M) ∀ i ∈ Z,

for Cp is cyclic. Hence we can restrict to

Ĥ0(Cp,M) = MCp/φM and Ĥ1(Cp,M) ∼= Ĥ−1(Cp,M) = φM/IM ;

here MCp is the submodule of elements fixed by Cp, and φM is the kernel
of the action of φ on M . Since M is finite, its Herbrand quotient is equal
to 1, i.e. |Ĥ0(Cp,M)| = |Ĥ1(Cp,M)|. Since all cohomology groups are
annihilated by |Cp|, we infer that there exists h ∈ N such that

Ĥ0(Cp,M) ∼= Ĥ1(Cp,M) ∼= (Z/pZ)h.

This number h describes completely all Tate cohomology groups Ĥ i(Cp,M).
We will use the following abbreviation:

Ĥ i(M) := Ĥ i(Cp,M)

for i = 0, 1.
Now let G be a finite abelian p-group and h, u ∈ N. The goal of this

section is the computation of∑
φM∼=G

|Ĥ1(M)|=ph

|AutR(M)|−1|M |−u,

where of course the summation extends over all finite modules M as in-
dicated, up to isomorphism. Note that φM is an (R/I)-module, and
R/I ∼= Zp.

The value of this sum will be stated in Theorem 5.6. A first step in the
computation consists in relating this sum over finite modules M to a limit
for n → ∞ of a sum over submodules U ⊆ Rn (a kind of “partial zeta
function”), similar to the case of the full Cohen-Lenstra sum in section 2.

We denote by ε : Rn → Znp the augmentation map with kernel In, in-
duced by R→ Zp,

∑p−1
i=0 aiσ

i 7→
∑p−1

i=0 ai, and by ν := ν(G) = dimFp(G/pG)
the rank of the finite abelian p-group G. We further recall that all sub-
modules of Rn are understood to have finite index in Rn.
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Lemma 5.1. Let G be a finite abelian p-group, and h, u ∈ N. Then for all
N ⊆ Rn there is N ⊆ Znp such that pN = ε(N ∩ φRn), and∑

φM∼=G

|Ĥ1(M)|=ph

|AutR(M)|−1|M |−u = lim
n→∞

∑
N⊆Rn

Zn
p /N∼=G

[N :ε(N)]=ph

[Rn : N ]−(n+u).

Proof. The existence of N is clear. Multiplication by φ on M induces
a surjection ψ : M/IM → φM with Ĥ1(M) = ker(ψ). Each M such
that φM ∼= G and |Ĥ1(M)| = ph has the form M ∼= Rn/N for some
n ≥ max{ν, h} and N ⊆ Rn. Thus

M/IM ∼= Rn/(N + In) ∼= Znp/ε(N)

and

φM ∼= (φRn +N)/N ∼= φRn/(N ∩ φRn) ∼= pZnp/ε(N ∩ φRn) ∼= Znp/N.

We therefore have a commutative diagram

M/IM
∼=−−−−→ Znp/ε(N)

ψ

y ycan

φM −−−−→∼= Znp/N

hence
Ĥ1(M) = ker(ψ) ∼= N/ε(N).

Now the lemma follows from Theorem 4.1, or more precisely from its gen-
eralization stated at the end of the preceding section. �

We now have to determine all N ⊆ Rn such that Znp/N ∼= G and
[N : ε(N)] = ph. In order to achieve this, we will use Morita’s Theo-
rem (cf. [9, Sec. 3.12]) and translate all submodules of Rn to left ideals
of the matrix ring Mn(R). The main property of Morita’s Theorem that
we will be using in the sequel is the following: There is an isomorphism
between the lattice of R-submodules U of finite index in Rn and the lattice
of left ideals I ⊆ Mn(R) of finite index. Moreover, if U and I correspond
to each other, then one easily verifies that

[Mn(R) : I] = [Rn : U ]n.

In a similar way, submodules of Znp correspond to left ideals of Mn(Zp).
Let n ≥ max{ν, h}. Then G is a quotient of Znp , and we let G′ be the

corresponding quotient of Mn(Zp) via Morita’s Theorem, so in particular

|G′| = |G|n.
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Now it is easy to see from the above lemma that our sum is equal to the
limit for n→∞ of

xn :=
∑

N′⊆Mn(R)

Mn(Zp)/N′∼=G′

[N′:ε(N′)]=pnh

[Mn(R) : N ′]−(1+u/n),

where as always all ideals are of finite index, and N ′ is the left ideal of
Mn(Zp) satisfying pN ′ = ε(N ′ ∩ φMn(R)). Here we denote the augmenta-
tion map Mn(R) → Mn(Zp) by ε as well.

Thus we have to count left ideals of Mn(R). This can be done by using
an idea that goes back to Reiner (cf. [10]), also applied in [14, Sec. 3].
The crucial point is that R = Zp[Cp] is a fibre product of the two discrete
valuation rings S = Zp[ω], where ω is a primitive p-th root of unity, and
Zp. This leads to a fibre product representation for Mn(R), viz there is a
fibre product diagram with surjective maps

Mn(R)
f1−−−−→ Mn(S)

ε

y yg1
Mn(Zp) −−−−→

g2
Mn(Fp)

with f1 induced by R → R/(φ) ∼= S, g1 induced by S → S/(1 − ω) ∼= Fp,
and g2 is reduction mod p. Equivalently, there is an isomorphism

Mn(R) ∼= {(x, y) ∈ Mn(S)×Mn(Zp) | g1(x) = g2(y)}.

Now we can use Reiner’s method, and represent the left ideals of Mn(R)
in terms of the left ideals of Mn(S) and Mn(Zp) (both of which are principal
ideal rings). If N ′ ⊆ Mn(R) is a left ideal (of finite index), then there is
an α ∈ Mn(S) with det(α) 6= 0 such that f1(N ′) = Mn(S)α. Choose
β ∈ Mn(Zp) such that g1(α) = g2(β). Then

N ′ = Mn(R)(α, β) + (0, pN ′), (13)

where N ′ ⊆ Mn(Zp) is the left ideal (of finite index) satisfying pN ′ =
ε(N ′ ∩ φMn(R)) = {x ∈ Mn(Zp) | (0, x) ∈ N ′}, and β ∈ N ′.

Conversely, if α ∈ Mn(S) with det(α) 6= 0 and a left ideal N ′ ⊆ Mn(Zp)
of finite index are given, then α and N ′ give rise to a left ideal N ′ ⊆ Mn(R)
as in (13) if and only if g1(α) ∈ g2(N ′). In this case, the number of left
ideals of Mn(R) belonging to α and N ′ is equal to the number of β ∈ N ′

distinct mod pN ′ such that g1(α) = g2(β).

Notation. We denote by R a system of representatives of the generators
of all left ideals of finite index in Mn(S). If α ∈ R and N ′ ⊆ Mn(Zp)
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is a left ideal with g1(α) ∈ g2(N ′) we denote by θ(α) the number of left
Mn(R)-ideals of the form

N ′ := Mn(R)(α, β) + (0, pN ′)

satisfying [N ′ : Mn(Zp)β + pN ′] = pnh. Note that the latter is one of the
conditions required in the summation for xn, since ε(N ′) = Mn(Zp)β+pN ′.
We will see below in Lemma 5.3 that the value θ(α) does not depend on the
particular N ′, which justifies the notation.

It is shown in [14, Lemma 3.4] that

[Mn(R) : N ′] = [Mn(S) : Mn(S)α][Mn(Zp) : N ′]

for N ′ as in (13). Together with the above discussion, this equality yields
the following formula for xn:

xn =
∑

N′⊆Mn(Zp)

Mn(Zp)/N′∼=G′

∑
α∈R

α∈g−1
1 (g2(N′))

θ(α)
(
[Mn(S) : Mn(S)α][Mn(Zp) : N ′]

)−(1+u/n)
,

hence xn = ynzn with

yn :=
∑

N′⊆Mn(Zp)

Mn(Zp)/N′∼=G′

|G′|−(1+u/n),

zn :=
∑
α∈R

g1(α)∈g2(N′)

θ(α) [Mn(S) : Mn(S)α]−(1+u/n),

where in the last sum N ′ ⊆ Mn(Zp) is an arbitrary left ideal with
Mn(Zp)/N ′ ∼= G′.

Lemma 5.2. lim
n→∞

yn = |Aut(G)|−1|G|−u.

Proof. We translate everything back to submodules of Znp using Morita’s
Theorem. Since |G′| = |G|n we get

yn = |G|−(n+u) · |{N ⊆ Znp | Znp/N ∼= G}|,

and by Lemma 2.2, 2.4 we infer

yn = |G|−(n+u)|G|n (q)n
(q)n−ν

|Aut(G)|−1,

which proves the claim. �

The calculation of limn→∞ zn is more complicated. We start by com-
puting θ(α), and we recall that ν denotes the rank of the abelian p-group
G.
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Lemma 5.3. Let N ′ ⊆ Mn(Zp) be a left ideal such that Mn(Zp)/N ′ ∼= G′.
Furthermore let α ∈ R with g1(α) ∈ g2(N ′), and put r := rk(g1(α)). Then
θ(α) equals θr, the number of all ξ ∈ Mn(Fp) lying in

1
. . . 0r×(n−ν−r) Fr×νp

1

0(n−r)×r 0(n−r)×(n−ν−r) F(n−r)×ν
p


and whose bottom right ((n − r) × ν)-submatrix has rank n − h − r. In
particular we have

n− ν − h ≤ r ≤ min{n− ν, n− h}.

Proof. Fix α and N ′ ⊆ Mn(Zp) as above. The number of left Mn(R)-ideals
of the form (13) equals the number of β ∈ N ′ with g1(α) = g2(β) which are
distinct mod pN ′. Thus, by definition of θ(α),

θ(α) = |{β ∈ N ′ mod pN ′ | g1(α) = g2(β), [N ′ : Mn(Zp)β + pN ′] = pnh}|.

Choose ρ ∈ Mn(Zp) with Mn(Zp)ρ = N ′. There is an isomorphism

G′/pG′ ∼= Mn(Fp)/g2(N ′) = Mn(Fp)/Mn(Fp)g2(ρ),
whence rk(g2(ρ)) = n − ν. Now θ(α) equals the number of all β′ ∈
Mn(Zp) mod pMn(Zp) such that

g1(α) = g2(β′)g2(ρ) and [Mn(Zp)β′ + pMn(Zp) : pMn(Zp)] = pn(n−h).

We assume without loss of generality that

g2(ρ) =


1

. . .
1

0
. . .

0


with n− ν 1’s on the main diagonal. Then

g1(α) ∈
(
Fn×(n−ν)
p

∣∣0n×ν ) ,
i.e. g1(α) = (γ1|0) for some γ1 ∈ Fn×(n−ν)

p with rk(γ1) = r. This implies

θ(α) = |{ξ = (ξ1|ξ2) ∈
(
Fn×(n−ν)
p

∣∣Fn×νp

)
| ξ1 = γ1 and rk(ξ) = n− h}|.

Obviously this number only depends on r = rk(γ1). Therefore we may
choose γ1 to be the matrix having r 1’s as its first entries of the main
diagonal, all other entries being 0. Now it is clear that θ(α) = θr.
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Since g1(α) ∈ g2(N ′) we have θr = θ(α) 6= 0, or equivalently n− ν − h ≤
r ≤ min{n− ν, n− h}. �

The following lemma, which is easy to prove (cf. [4, Th. 2]) gives a
formula for the number of matrices of given size over a finite field having
fixed rank.

Lemma 5.4. Let k,m, n ∈ N with k ≤ min{m,n}. Then

p(n+m−k)k (q)n(q)m
(q)n−k(q)m−k(q)k

equals the number of matrices in Fm×np of rank k.

Making use of this lemma, the number θr defined in Lemma 5.3 is easily
calculated:

θr = pνrp(ν+n−r−(n−h−r))(n−h−r) (q)ν(q)n−r
(q)ν−(n−h−r)(q)h(q)n−h−r

. (14)

The value zn defined above now takes the form

zn =
min{n−ν,n−h}∑
r=n−ν−h

θr
∑
α∈R

∃γ1: rk(γ1)=r
g1(α)=(γ1|0)

[Mn(S) : Mn(S)α]−(1+u/n), (15)

where again γ1 ∈ Fn×(n−ν)
p .

Lemma 5.5. Let n− ν − h ≤ r ≤ min{n− ν, n− h}. Then∑
α∈R

∃γ1: rk(γ1)=r
g1(α)=(γ1|0)

[Mn(S) : Mn(S)α]−(1+u/n) =
[
n− ν

r

]
p

q(n+u)(n−r) (q)u
(q)n+u−r

,

where again γ1 ∈ Fn×(n−ν)
p .

Proof. By Morita’s Theorem we can retranslate the sum to a sum over S-
submodules of Sn. Thus fix an r-dimensional subspace F ⊆ Fn−νp . Then
we will see below that the sum∑

U⊆Sn

g1(U)=F⊕0ν

[Sn : U ]−(n+u)

does not depend on the particular F chosen. There are in fact
[
n−ν
r

]
p

choices for F , whence the sum to be computed equals[
n− ν

r

]
p

∑
U⊆Sn

g1(U)=F⊕0ν

[Sn : U ]−(n+u).
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Since both S and Zp are discrete valuation rings with residue field Fp, and
since g1, g2 induce isomorphisms Sn/rad(Sn) → Fnp and Znp/rad(Znp ) → Fnp
respectively, we get∑

U⊆Sn

g1(U)=F⊕0ν

[Sn : U ]−(n+u) =
∑

U⊆Zn
p

g2(U)=F⊕0ν

[Znp : U ]−(n+u) =
∑

U⊆Zn
p

U+pZn
p =V

[Znp : U ]−(n+u)

with pZnp ⊆ V ⊆ Znp such that V/pZnp = F ⊕ 0ν . By [14, Lemma 7.3] this
equals

[Znp : V ]−(n+u)
∑
U⊆V

U+pZn
p =V

[V : U ]−(n+u) = p−(n+u)(n−r)
n−1∏
j=r

(1− qn+u−j)−1

= q(n+u)(n−r) (q)u
(q)n+u−r

.

This proves the lemma. �

Now (15) implies

zn =
min{n−ν,n−h}∑
r=n−ν−h

θr

[
n− ν

r

]
p

q(n+u)(n−r) (q)u
(q)n+u−r

=
min{n−ν,n−h}∑
r=n−ν−h

pexpr
(q)ν(q)n−r(q)n−ν(q)u

(q)ν−(n−h−r)(q)h(q)n−h−r(q)r(q)n−ν−r(q)n+u−r

with

expr := −hr + (ν + h)(n− h) + r(n− ν − r)− (n+ u)(n− r)

as p-exponent. Substituting e := r − (n− ν − h) yields

zn =
min{ν,h}∑
e=0

pexp′e
(q)ν(q)ν+h−e(q)n−ν(q)u

(q)e(q)h(q)ν−e(q)n−ν−h+e(q)h−e(q)ν+h+u−e

with
exp′e := −(h2 + hu) + h(e− ν) + eν + eu− e2 − νu.

The last step consists in letting n→∞, and we get

lim
n→∞

zn =
qh(h+ν+u)+νu(q)u(q)ν

(q)h
(16)

×
min{ν,h}∑
e=0

pe(ν+h+u−e)
(q)ν+h−e

(q)e(q)ν−e(q)h−e(q)ν+h+u−e
.

Now
lim
n→∞

xn = ( lim
n→∞

yn)( lim
n→∞

zn)



Cohen-Lenstra sums over local rings 837

can be derived from Lemma 5.2 and (16). Since by definition limn→∞ xn
equals the limit occuring in Lemma 5.1, the proof of the following main
theorem of this section is complete.

Theorem 5.6. Let G be a finite abelian p-group of rank ν, and let h, u ∈ N.
Then∑

φM∼=G

|Ĥ1(M)|=ph

|AutR(M)|−1|M |−u =

qh(h+ν+u)+νu(q)u(q)ν
(q)h

κ(ν, h, u) |Aut(G)|−1|G|−u,

where

κ(ν, h, u) :=
min{ν,h}∑
e=0

pe(ν+h+u−e)
(q)ν+h−e

(q)e(q)ν−e(q)h−e(q)ν+h+u−e
.

We will conclude this section by considering this formula in the special
cases u = 0, h = 0, ν = 0 respectively.

Corollary 5.7. Let G be a finite abelian p-group of rank ν, and let h ∈ N.
Then ∑

φM∼=G

|Ĥ1(M)|=ph

|AutR(M)|−1 =
qh

2

(q)2h
|Aut(G)|−1.

Proof. We put u := 0 in the preceding theorem, and thus the sum equals

qh(h+ν)

(q)2h

min{ν,h}∑
e=0

pe(ν+h−e)
(q)ν(q)h

(q)e(q)ν−e(q)h−e

 |Aut(G)|−1. (17)

By Lemma 5.4, the e-th term of the expression in brackets equals the num-
ber of matrices in Fν×hp of rank e. Hence (17) can be written as

qh(h+ν)

(q)2h
|Fν×hp ||Aut(G)|−1 =

qh
2

(q)2h
|Aut(G)|−1.

�

Next we consider the case h = 0, i.e. the summation extends over coho-
mologically trivial modules.

Corollary 5.8. Let G be a finite abelian p-group of rank ν, and let u ∈ N.
Then ∑

φM∼=G
M cohom. trivial

|AutR(M)|−1|M |−u = qνu
(q)u(q)ν
(q)u+ν

|Aut(G)|−1|G|−u.
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Finally let G = 0.

Corollary 5.9. Let h, u ∈ N. Then∑
φM=0

|Ĥ1(M)|=ph

|AutR(M)|−1|M |−u =
∑

φM=0

|M/IM|=ph

|AutR(M)|−1|M |−u

=
qh(h+u)(q)u
(q)h(q)h+u

.
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