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Systems of quadratic diophantine inequalities

par Wolfgang MÜLLER

Résumé. Soient Q1, . . . , Qr des formes quadratiques avec des
coefficients réels. Nous prouvons que pour chaque ε > 0 le système
|Q1(x)| < ε, . . . , |Qr(x)| < ε des inégalités a une solution entière
non-triviale si le système Q1(x) = 0, . . . , Qr(x) = 0 a une
solution réelle non-singulière et toutes les formes

∑r
i=1 αiQi,

α = (α1, . . . , αr) ∈ Rs, α 6= 0 sont irrationnelles avec rang > 8r.

Abstract. Let Q1, . . . , Qr be quadratic forms with real coeffi-
cients. We prove that for any ε > 0 the system of inequalities
|Q1(x)| < ε, . . . , |Qr(x)| < ε has a nonzero integer solution, pro-
vided that the system Q1(x) = 0, . . . , Qr(x) = 0 has a nonsin-
gular real solution and all forms in the real pencil generated by
Q1, . . . , Qr are irrational and have rank > 8r.

1. Introduction

Let Q1, . . . , Qr be quadratic forms in s variables with real coefficients.
We ask whether the system of quadratic inequalities

|Q1(x)| < ε, . . . , |Qr(x)| < ε(1.1)

has a nonzero integer solution for every ε > 0. If some Qi is rational1 and
ε is small enough then for x ∈ Zs the inequality |Qi(x)| < ε is equivalent to
the equation Qi(x) = 0. Hence if all forms are rational then for sufficiently
small ε the system (1.1) reduces to a system of equations. In this case
W. Schmidt [10] proved the following result. Recall that the real pencil
generated by the forms Q1, . . . , Qr is defined as the set of all forms

Qα =
r∑

i=1

αiQi(1.2)

where α = (α1, . . . , αr) ∈ Rr, α 6= 0. The rational and complex pencil are
defined similarly. Suppose that Q1, . . . , Qr are rational quadratic forms.
Then the system Q1(x) = 0, . . . , Qr(x) = 0 has a nonzero integer solution
provided that

1A real quadratic form is called rational if its coefficients are up to a common real factor
rational. It is called irrational if it is not rational.



218 Wolfgang Müller

(i) the given forms have a common nonsingular real solution, and either
(iia) each form in the complex pencil has rank > 4r2 + 4r, or
(iib) each form in the rational pencil has rank > 4r3 + 4r2.

Recently, R. Dietmann [7] relaxed the conditions (iia) and (iib). He
replaced them by the weaker conditions
(iia’) each form in the complex pencil has rank > 2r2 + 3r, or
(iib’) each form in the rational pencil has rank > 2r3 if r is even and rank

> 2r3 + 2r if r is odd.
If r = 2 the existence of a nonsingular real solution of Q1(x) = 0

and Q2(x) = 0 follows if one assumes that every form in the real pencil
is indefinite (cf. Swinnerton-Dyer [11] and Cook [6]). As noted by
W. Schmidt [10] this is false for r > 2.

We want to consider systems of inequalities (1.1) without hidden equa-
lities. A natural condition is to assume that all forms in the real pencil are
irrational. Note that if Qα is rational and ε is small enough, then (1.1) and
x ∈ Zs imply Qα(x) = 0. We prove

Theorem 1.1. Let Q1, . . . , Qr be quadratic forms with real coefficients.
Then for every ε > 0 the system (1.1) has a nonzero integer solution pro-
vided that

(i) the system Q1(x) = 0, . . . , Qr(x) = 0 has a nonsingular real solution,
(ii) each form in the real pencil is irrational and has rank > 8r.

In the case r = 1 much more is known. G.A. Margulis [9] proved that
for an irrational nondegenerate form Q in s ≥ 3 variables the set {Q(x) |
x ∈ Zs} is dense in R (Oppenheim conjecture). In the case r > 1 all known
results assume that the forms Qi are diagonal2. For more information on
these results see E.D. Freeman [8] and J. Brüdern, R.J. Cook [4].

In 1999 V. Bentkus and F. Götze [2] gave a completely different proof
of the Oppenheim conjecture for s > 8. We use a multidimensional variant
of their method to count weighted solutions of the system (1.1). To do this
we introduce for an integer parameter N ≥ 1 the weighted exponential sum

SN (α) =
∑
x∈Zs

wN (x)e(Qα(x)) (α ∈ Rr) .(1.3)

Here Qα is defined by (1.2), e(x) = exp(2πix) as usual , and

wN (x) =
∑

n1+n2+n3+n4=x

pN (n1)pN (n2)pN (n3)pN (n4)(1.4)

2Note added in proof: Recently, A. Gorodnik studied systems of nondiagonal forms. In

his paper On an Oppenheim-type conjecture for systems of quadratic forms, Israel J. Math.
149 (2004), 125–144, he gives conditions (different from ours) that guarantee the existence of a
nonzero integer solution of (1.1). His Conjecture 13 is partially answered by our Theorem 1.1.
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denotes the fourfold convolution of pN , the density of the discrete uniform
probability distribution on [−N,N ]s∩Zs. Since wN is a probability density
on Zs one trivially obtains |SN (α)| ≤ 1. The key point in the analysis of
Bentkus and Götze is an estimate of SN (α + ε)SN (α − ε) in terms of
ε alone. Lemma 2.2 gives a generalization of their estimate to the case
r > 1. It is proved via the double large sieve inequality. It shows that
for N−2 < |ε| < 1 the exponential sums SN (α − ε) and SN (α + ε) cannot
be simultaneously large. This information is almost sufficient to integrate
|SN (α)| within the required precision. As a second ingredient we use for
0 < T0 ≤ 1 ≤ T1 the uniform bound

lim
N→∞

sup
T0≤|α|≤T1

|SN (α)| = 0 .(1.5)

Note that (1.5) is false if the real pencil contains a rational form. The proof
of (1.5) follows closely Bentkus and Götze [2] and uses methods from the
geometry of numbers.

2. The double large sieve bound

The following formulation of the double large sieve inequality is due to
Bentkus and Götze [2]. For a vector T = (T1, . . . , Ts) with positive real
coordinates write T−1 = (T−1

1 , . . . , T−1
s ) and set

B(T ) = {(x1, . . . , xs) ∈ Rs | |xj | ≤ Tj for 1 ≤ j ≤ s} .(2.1)

Lemma 2.1 (Double large sieve). Let µ, ν denote measures on Rs and let
S, T be s-dimensional vectors with positive coordinates. Write

J =
∫

B(S)

(∫
B(T )

g(x)h(y)e(〈x, y〉) dµ(x)

)
dν(y),(2.2)

where 〈., .〉 denotes the standard scalar product in Rs and g, h : Rs → C are
measurable functions. Then

|J |2 � A(2S−1, g, µ)A(2T−1, h, ν)
s∏

j=1

(1 + SjTj) ,

where

A(S, g, µ) =
∫ (∫

y∈x+B(S)
|g(y)| dµ(y)

)
|g(x)| dµ(x) .
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The implicit constant is an absolute one. In particular, if |g(x)| ≤ 1 and
|h(x)| ≤ 1 and µ, ν are probability measures, then

|J |2 � sup
x∈Rs

µ(x + B(2S−1)) sup
x∈Rs

ν(x + B(2T−1))
s∏

j=1

(1 + SjTj) .

(2.3)

Remark. This is Lemma 5.2 in [1]. For discrete measures the lemma is
due to E. Bombieri and H. Iwaniec [3]. The general case follows from
the discrete one by an approximation argument.

Lemma 2.2. Assume that each form in the real pencil of Q1, . . . , Qr has
rank ≥ p. Then the exponential sum (1.3) satisfies

SN (α− ε)SN (α + ε) � µ(|ε|)p (α, ε ∈ Rr) ,(2.4)

where

µ(t) =


1 0 ≤ t ≤ N−2 ,

t−1/2N−1 N−2 ≤ t ≤ N−1 ,

t1/2 N−1 ≤ t ≤ 1 ,
1 t ≥ 1 .

Proof. Set S = SN (α− ε)SN (α + ε). We start with

S =
∑

x,y∈Zs

wN (x)wN (y)e(Qα−ε(x) + Qα+ε(y))

=
∑

m,n∈Zs

m≡n(2)

wN ( 1
2
(m−n))wN ( 1

2
(m+n))e(Qα−ε( 1

2
(m−n)) + Qα+ε( 1

2
(m+n)))

=
∑

m≡n(2)
|m|∞,|n|∞≤8N

wN ( 1
2
(m−n))wN ( 1

2
(m+n))e( 1

2
Qα(m) + 1

2
Qα(n) + 〈m,Qεn〉) .

To separate the variables m and n in the weight function write

wN (x) =
∫

B
h(θ)e(−〈θ, x〉) dθ ,(2.5)

where B = (−1/2, 1/2]s and h denotes the (finite) Fourier series

h(θ) =
∑
k∈Zs

wN (k)e(〈θ, k〉) .

Since w = pN ∗ pN ∗ pN ∗ pN we find h(θ) = hN (θ)2, where

hN (θ) =
∑
k∈Zs

pN ∗ pN (k)e(〈θ, k〉) .
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Now set

a(m) = e(1
2(Qα(m)− 〈θ1 + θ2,m〉)) ,

b(n) = e(1
2(Qα(n)− 〈θ1 − θ2, n〉)) .

Using (2.5) we find

|S| =
∣∣∣ ∫

B

∫
B

h(θ1)h(θ2)
∑

m≡n(2)
|m|∞,|n|∞≤8N

a(m)b(n)e(〈m,Qεn〉) dθ1dθ2

∣∣∣
≤
(∫

B
|h(θ)| dθ

)2

sup
θ1,θ2∈B

∣∣∣ ∑
m≡n(2)

|m|∞,|n|∞≤8N

a(m)b(n)e(〈m,Qεn〉)
∣∣∣ .

Note that a(m) and b(n) are independent of ε. Furthermore, by Bessel’s
inequality∫

B
|h(θ)| dθ =

∫
B
|hN (θ)|2 dθ ≤

∑
k∈Zs

(pN ∗ pN (k))2

≤ (2N + 1)−s
∑
k∈Zs

pN ∗ pN (k) ≤ (2N + 1)−s .

Hence

S � N−2s
∑

ω∈{0,1}s

sup
θ1,θ2∈B

∣∣∣ ∑
m≡n≡ω(2)

|m|∞,|n|∞≤8N

a(m)b(n)e(〈m,Qεn〉)
∣∣∣ .

We are now in the position to apply Lemma 2.1 . Denote by λ1, . . . , λs

the eigenvalues of Qε ordered in such a way that |λ1| ≥ · · · ≥ |λs|. Then
Qε = UT ΛU , where U is orthogonal and Λ = diag(λ1, . . . , λs). Set Λ1/2 =
diag(|λ1|1/2, . . . , |λs|1/2), E = diag(sgn(λ1), . . . , sgn(λs)) and

M = {Λ1/2Um | m ∈ Zs,m ≡ ω(2), |m|∞ ≤ 8N},

N = {EΛ1/2Um | m ∈ Zs,m ≡ ω(2), |m|∞ ≤ 8N}.
Furthermore, let µ denote the uniform probability distribution on M and ν
the uniform probability distribution on N . Choose Sj = Tj =
1 + 8

√
s|λj |1/2N . Then x ∈ M implies x ∈ B(T ) and y ∈ N implies

y ∈ B(S). If follows by (2.3) that∣∣∣N−2s
∑

m≡n≡ω(2)
|m|∞,|n|∞≤8N

a(m)b(n)e(〈m, Qεn〉)
∣∣∣2

� N−2s
(

sup
x∈Rs

A(x)
)2

s∏
j=1

(1 + |λj |N2) ,
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where

A(x) = #{m ∈ Zs | |m|∞ ≤ 8N,m ≡ ω(2),Λ1/2Um− x ∈ B(2S−1)}

� #{z ∈ UZs | |z|∞ � N , ||λj |1/2zj − xj | � S−1
j }

�
s∏

j=1

min(N, 1 + |λj |−1N−1) .

Hence

S �
s∏

j=1

µ̃(|λj |)

with µ̃(t) = N−1(1 + t1/2N) min(N, 1 + t−1N−1). To prove (2.4) we have
to consider the case N−2 ≤ |ε| ≤ 1 only. Otherwise the trivial bound
|SN (α)| ≤ 1 is sufficient. Since λj = λj(ε) varies continuously on Rr \ {0}
and λj(cε) = cλj(ε) for c > 0 there exist constants 0 < cj ≤ cj < ∞ such
that

λj(ε) ≤ cj |ε| (1 ≤ j ≤ s),

cj |ε| ≤λj(ε) ≤ cj |ε| (1 ≤ j ≤ p).(2.6)

If N−2 ≤ |ε| ≤ 1 then |λj | � 1 and µ̃(|λj |) � 1 for all j ≤ s. Further-
more, for j ≤ p we find |λj | � |ε| and µ̃(|λj |) � max(|ε|−1/2N−1, |ε|1/2).
Altogether this yields

S �
p∏

j=1

µ̃(|λj |) � max(|ε|−1/2N−1, |ε|1/2)p � µ(|ε|)p .

�

3. The uniform bound

Lemma 3.1 (H. Davenport [5]). Let Li(x) = λi1x1 + · · · + λisxs be s
linear forms with real and symmetric coefficient matrix (λij)1≤i,j≤s. Denote
by ‖.‖ the distance to the nearest integer. Suppose that P ≥ 1. Then the
number of x ∈ Zs such that

|x|∞ < P and ‖Li(x)‖ < P−1 (1 ≤ i ≤ s)

is � (M1 . . .Ms)−1. Here M1, . . . ,Ms denotes the first s of the 2s succes-
sive minima of the convex body defined by F (x, y) ≤ 1, where for x, y ∈ Rs

F (x, y) = max(P |L1(x)−y1|, . . . , P |Ls(x)−ys|, P−1|x1|, . . . , P−1|xs|) .
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Lemma 3.2. Assume that each form in the real pencil of Q1, . . . , Qr is
irrational. Then for any fixed 0 < T0 ≤ T1 < ∞

lim
N→∞

sup
T0≤|α|≤T1

|SN (α)| = 0 .

Proof. We start with one Weyl step. Using the definition of wN we find

|SN (α)|2 =
∑

x,y∈Zs

wN (x)wN (y)e(Qα(y)−Qα(x))

=
∑
z∈Zs

|z|∞≤8N

∑
x∈Zs

wN (x)wN (x + z)e(Qα(z) + 2〈z,Qαx〉)

= (2N + 1)−8s
∑

mi,ni,z

∑
x∈I(mi,ni,z)

e(Qα(z) + 2〈z,Qαx〉) .

Here the first sum is over all m1,m2,m3, n1, n2, n3, z ∈ Zs with |mi|∞ ≤ N ,
|ni|∞ ≤ N , |z|∞ ≤ 8N and I(mi, ni, z) is the set

{x ∈ Zs | |x− n1 − n2 − n3|∞ ≤ N, |x + z −m1 −m2 −m3|∞ ≤ N} .

It is an s-dimensional box with sides parallel to the coordinate axes and
side length � N . By Cauchy’s inequality it follows that

|SN (α)|4 � N−9s
∑

mi,ni,z

∣∣∣ ∑
x∈I(mi,ni,z)

e(2〈x,Qαz〉)
∣∣∣2

� N−3s
∑

|z|∞≤8N

s∏
i=1

min
(
N, ‖2〈ei, Qαz〉‖−1

)2
.

Here we used the well known bound∑
x∈I1×···×Is

e(〈x, y〉) �
s∏

i=1

min(|Ii|, ‖〈ei, y〉‖−1) ,

where Ii are intervals of length |Ii| � 1 and ei denotes the i-th unit vector.
Set

N (α) = #{z ∈ Zs | |z|∞ ≤ 16N, ‖2〈ei, Qαz〉‖ < 1/16N for 1 ≤ i ≤ s}.

We claim that

|SN (α)|4 � N−sN (α) .(3.1)

To see this set

Dm(α)=#{z ∈ Zs | |z|∞ ≤ 8N, mi−1
16N ≤ {2〈ei, Qαz〉} < mi

16N for i ≤ s},

where {x} denotes the fractional part of x. Then Dm(α) ≤ N (α) for all
m = (m1, . . . ,ms) with 1 ≤ mi ≤ 16N . Note that if z1 and z2 are counted
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in Dm(α) then z1 − z2 is counted in N (α). It follows that

|SN (α)|4 � N−3s
∑

1≤mi≤16N

Dm(α)
s∏

i=1

min
(
N,

16N

mi − 1
+

16N

16N −mi

)2

� N−3sN (α)
∑

1≤mi≤8N

s∏
i=1

N2

m2
i

� N−sN (α) .

To estimate N (α) we use Lemma 3.1 with P = 16N and Li(x) = 2〈ei, Qαx〉
for 1 ≤ i ≤ s. This yields

N (α) � (M1,α . . .Ms,α)−1 ,(3.2)

where M1,α ≤ · · · ≤ Ms,α are the first s from the 2s successive minima of
the convex body defined in Lemma 3.1.

Now suppose that there exists an ε > 0, a sequence of real numbers
Nn →∞ and α(n) ∈ Rr with T0 ≤ |α(n)| ≤ T1 such that

|SNn(α(n))| ≥ ε .(3.3)

By (3.1) and (3.2) this implies

ε4N s
n �

( s∏
i=1

Mi,α(n)

)−1
.

Since (16Nn)−1 ≤ M1,α(n) ≤ Mi,α(n) we obtain ε4N s
n � N s−1

n M−1
s,α(n) and

this proves

(16Nn)−1 ≤ M1,α(n) ≤ · · · ≤ Ms,α(n) � (ε4Nn)−1 .

By the definition of the successive minima there exist x
(n)
j , y

(n)
j ∈ Zs such

that (x(n)
1 , y

(n)
1 ), . . . , (x(n)

s , y
(n)
s ) are linearly independent and Mj,α(n) =

F (x(n)
j , y

(n)
j ). Hence for 1 ≤ i, j ≤ s

|Li(x
(n)
j )− y

(n)
j,i )| � N−2

n ,

|x(n)
j,i | � 1 .

Since |α(n)| ≤ T1 this inequalities imply |y(n)
j,i | �T1 1. This proves that the

integral vectors

Wn = (x(n)
1 , y

(n)
1 , . . . , x(n)

s , y(n)
s ) (n ≥ 1)

are contained in a bounded box. Thus there exists an infinite sequence
(n′k)k≥1 with Wn′1

= Wn′k
for k ≥ 1. The compactness of {α ∈ Rs | T0 ≤

|α| ≤ T1} implies that there is a subsequence (nk)k≥1 of (n′k)k≥1 with
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limk→∞ α(nk) = α(0) and T0 ≤ |α(0)| ≤ T1. Let xj = x
(nk)
j and yj = y

(nk)
j

for 1 ≤ j ≤ s. Then xj and yj are well defined and

yj = (L1(xj), . . . , Ls(xj)) = 2Qα(0)xj (1 ≤ j ≤ s) .(3.4)

We claim that x1, . . . , xs are linearly independent. Indeed, suppose that
there are qj such that

∑s
j=1 qjxj = 0. Then

∑s
j=1 qjyj = 0 by (3.4). This

implies
∑s

j=1 qj(xj , yj) = 0 and the linear independence of (xj , yj) yields
qj = 0 for all j. The matrix equation 2Qα(0)(x1, . . . , xs) = (y1, . . . , ys)
implies that Qα(0) is rational. By our assumptions this is only possible if
α(0) = 0, contradicting |α(0)| ≥ T0 > 0. This completes the proof of the
Lemma. �

Lemma 3.3. Assume that each form in the real pencil of Q1, . . . , Qr is
irrational and has rank ≥ 1. Then there exists a function T1(N) such that
T1(N) tends to infinity as N tends to infinity and for every δ > 0

lim
N→∞

sup
Nδ−2≤|α|≤T1(N)

|SN (α)| = 0 .

Proof. We first prove that there exist functions T0(N) ≤ T1(N) such that
T0(N) ↓ 0 and T1(N) ↑ ∞ for N →∞ and

lim
N→∞

sup
T0(N)≤|α|≤T1(N)

|SN (α)| = 0 .(3.5)

From Lemma 3.2 we know that for each m ∈ N there exist an Nm with

|SN (α)| ≤ 1
m

for N ≥ Nm and
1
m
≤ |α| ≤ m .

Without loss of generality we assume that (Nm)m≥1 is increasing. For
Nm ≤ N < Nm+1 define T0(N) = 1

m , T1(N) = m and for N < N1 set
T0(N) = T1(N) = 1. Obviously this choice satisfies (3.5). Replacing T0(N)
by max(T0(N), N−1) we can assume that N−1 ≤ T0(N) ≤ 1. Finally,
Lemma 2.2 with p ≥ 1 yields

sup
Nδ−2≤|α|≤T0(N)

|SN (α)|

� sup
Nδ−2≤|α|≤T0(N)

µ(|α|)p � max(N−δ/2, T0(N)1/2)p → 0 .

�

4. The integration procedure

In this section we use Lemma 2.2 to integrate |SN (α)|. It is here where
we need the assumption p > 8r.
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Lemma 4.1. For 0 < U ≤ T set B(U, T ) = {α ∈ Rr | U ≤ |α| ≤ T} and
define

γ(U, T ) = sup
α∈B(U,T )

|SN (α)| .

Furthermore, let h be a measurable function with 0 ≤ h(α) ≤ (1 + |α|)−k,
k > r. If each form in the real pencil generated by Q1, . . . , Qr has rank ≥ p
with p > 8r and if γ(U, T ) ≥ 4p/(8r)N−p/4 then∫

B(U,T )
|SN (α)|h(α) dα � N−2r min(1, U−(k−r))γ(U, T )1−

8r
p .

Proof. Set B = B(U, T ) and γ = γ(U, T ). For l ≥ 0 define

Bl = {α ∈ B | 2−l−1 ≤ |SN (α)| ≤ 2−l} .

If L denotes the least non negative integer such that γ ≥ 2−L−1 then
|SN (α)| ≤ γ ≤ 2−L and for any M ≥ L

B =
M⋃

l=L

Bl ∪DM ,

where DM = {α ∈ B | |SN (α)| ≤ 2−M−1}. By Lemma 2.2

|SN (α)SN (α + ε)| ≤ Cµ(|ε|)p

with some constant C depending on Q1,. . . ,Qr. By considering C−1/2SN (α)
instead of SN (α) we may assume C = 1. If α ∈ Bl and α+ ε ∈ Bl it follows
that

4−l−1 ≤ |SN (α)SN (α + ε)| ≤ µ(|ε|)p .

If |ε| ≤ N−1 this implies |ε| ≤ N−224(l+1)/p = δ, say, and if |ε| ≥ N−1 this
implies |ε| ≥ 2−4(l+1)/p = ρ, say. Note that δ ≤ ρ if 28(l+1)/p ≤ N2, and
this is true for all l ≤ M if

M + 1 ≤ log(Np/4)/ log 2 .(4.1)

We choose M as the largest integer less or equal to log(N2rγ
8r
p
−1)/ log 2−1 .

Then the assumption γ ≥ 4p/(8r)N−p/4 implies L ≤ M , (4.1) and

2−M � N−2rγ1−8r/p .(4.2)

To estimate the integral over Bl we split Bl in a finite number of subsets.
If Bl 6= ∅ choose any β1 ∈ Bl and set Bl(β1) = {α ∈ Bl | |α − β1| ≤ δ}. If
α ∈ Bl \Bl(β1) then |α−β1| ≥ ρ. If Bl \Bl(β1) 6= ∅ choose β2 ∈ Bl \Bl(β1)
and set Bl(β2) = {α ∈ Bl \ Bl(β1) | |α − β2| ≤ δ}. Then |α − β1| ≥ ρ
and |α− β2| ≥ ρ for all α ∈ Bl \ {Bl(β1) ∪Bl(β2)}. Especially |β1 − β2| ≥
ρ. In this way we construct a sequence β1, . . . , βm of points in Bl with
|βi − βj | ≥ ρ for i 6= j. This construction terminates after finitely many
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steps. To see this note that the balls Kρ/2(βi) with center βi and radius
ρ/2 are disjoint and contained in a ball with center 0 and radius T + ρ/2.
Thus mvol(Kρ/2) ≤ vol(KT+ρ/2) and this implies m � (1 + T/ρ)r. Since
Bl ⊆

⊎m
i=1 Bl(βi) ⊆

⊎m
i=1 Kδ(βi) we obtain∫

Bl

|SN (α)|h(α) dα ≤ 2−l
m∑

i=1

∫
Kδ(βi)

(1 + |α|)−kdα

� 2−l
∑
i≤m
|βi|≤1

δr + 2−l
∑
i≤m
|βi|>1

(
δ

ρ

)r ∫
Kρ/2(βi)

|α|−k dα .

Note that |α| � |βi| for α ∈ Kρ(βi) if |βi| ≥ 1. If U > 1 the first sum is
empty and the second sum is � (δ/ρ)r

∫
|α|>U/2 |α|

−k dα � (δ/ρ)rU−(k−r).
If U ≤ 1 then the first sum contains � ρ−r summands; Thus both sums
are bounded by (δ/ρ)r. This yields∫

Bl

|SN (α)|h(α) dα � 2−l

(
δ

ρ

)r

min(1, U−(k−r)) .

Altogether we obtain by (4.2) and the definition of δ, ρ, L∫
B
|SN (α)|h(α) dα �

M∑
l=L

2−l

(
δ

ρ

)r

min(1, U−(k−r)) + 2−M

∫
|α|≥U

h(α) dα

�
(
N−2r

M∑
l=L

2−l(1−8r/p) + 2−M
)

min(1, U−(k−r))

�
(
N−2r2−L(1−8r/p) + 2−M

)
min(1, U−(k−r))

� N−2rγ1−8r/p min(1, U−(k−r)) .

�

5. Proof of Theorem 1.1

We apply a variant of the Davenport-Heilbronn circle method to count
weighted solutions of (1.1). Without loss of generality we may assume
ε = 1. Otherwise apply Theorem 1.1 to the forms ε−1Qi. We choose
an even probability density χ with support in [−1, 1] and χ(x) ≥ 1/2 for
|x| ≤ 1/2. By choosing χ sufficiently smooth we may assume that its
Fourier transform satisfies χ̂(t) =

∫
χ(x)e(tx) dx � (1 + |t|)−r−3. Set

K(v1, . . . , vr) =
r∏

i=1

χ(vi) .
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Then K̂(α) =
∏r

i=1 χ̂(αi). By Fourier inversion we obtain for an integer
parameter N ≥ 1

A(N) :=
∑
x∈Zs

wN (x)K(Q1(x), . . . , Qr(x))

=
∑
x∈Zs

wN (x)
∫

Rr

e(α1Q1(x) + · · ·+ αrQr(x))K̂(α) dα1 . . . dαr

=
∫

Rr

SN (α)K̂(α) dα .

Our aim is to prove for N ≥ N0, say,

A(N) ≥ cN−2r(5.1)

with some constant c > 0. This certainly implies the existence of a non-
trivial solution of (1.1), since the contribution of the trivial solution x = 0
to A(N) is � N−s and s ≥ p > 8r. To prove (5.1) we divide Rr in a major
arc, a minor arc and a trivial arc. For δ > 0 set

M = {α ∈ Rr | |α| < N δ−2} ,

m = {α ∈ Rr | N δ−2 ≤ |α| ≤ T1(N)} ,

t = {α ∈ Rr | |α| > T1(N)} ,

where T1(N) denotes the function of Lemma 3.3. Using the bound K̂(α) �
(1 + |α|)−r−3, Lemma 4.1 (with the choice U = T1(N) and the trivial
estimate γ(T1(N),∞) ≤ 1) implies∫

t
SN (α)K̂(α) dα = O(N−2rT1(N)−3) = o(N−2r) .

Furthermore, Lemma 4.1 with U = N δ−2 and T = T1(N), together with
Lemma 3.3 yield∫

m
SN (α)K̂(α) dα = O(N−2rγ(N δ−2, T1(N))1−

8r
p ) = o(N−2r) .

Thus (5.1) follows if we can prove that the contribution of the major arc is∫
M

SN (α)K̂(α) dα � N−2r .(5.2)

6. The major arc

Lemma 6.1. Assume that each form in the real pencil of Q1, . . . , Qr has
rank ≥ p. Let g, h : Rs → C be measurable functions with |g| ≤ 1 and
|h| ≤ 1. Then for N ≥ 1

N−2s

∫
[−N,N ]s

∫
[−N,N ]s

g(x)h(y)e(〈x,Qαy〉) dx dy � (|α|−1/2N−1)p .
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Proof. Note that the bound is trivial for |α| ≤ N−2. Hence we assume
|α| ≥ N−2. Denote by λ1, . . . , λs the eigenvalues of Qα ordered in such
a way that |λ1| ≥ · · · ≥ |λs|. Then Qα = UT ΛU , where U is orthogonal
and Λ = diag(λ1, . . . , λs). Write x = (x, x), where x = (x1, . . . , xp) and
x = (xp+1, . . . , xs). Then

N−2s

∫
[−N,N ]s

∫
[−N,N ]s

g(x)h(y)e(〈x,Qαy〉) dx dy

= N−2s

∫
U [−N,N ]s

∫
U [−N,N ]s

g(U−1x)h(U−1y)e(〈x,Λy〉) dx dy

= N−2(s−p)

∫
|x|∞≤

√
sN

|y|∞≤
√

sN

e
( s∑

i=p+1

λixiyi

)
J(x, y) dx dy ,(6.1)

where

J(x, y) = N−2p

∫
[−
√

sN,
√

sN ]p

∫
[−
√

sN,
√

sN ]p
g̃(x)h̃(y)e

( p∑
i=1

λixiyi

)
dx dy .

Here g̃(x) = g(U−1x)IA(x)(x) with

A(x) = {x ∈ Rp | (x, x) ∈ U [−N,N ]s} ⊆ [−
√

sN,
√

sN ]p ,

and h̃ is defined similarly. If |α| ≥ N−2 then by (2.6) |λi| � |α| � N−2 for
i ≤ p. Now we apply the double large sieve bound (2.3). For 1 ≤ j ≤ p

set Sj = Tj =
√

s|λj |N . Let µ = ν be the continuous uniform probability
distribution on

∏p
j=1[−Tj , Tj ] and set ḡ(x) = g̃(|λ1|−1/2x1, . . . , |λp|−1/2xp)

and h̄(x) = h̃(sgn(λ1)|λ1|−1/2x1, . . . , sgn(λp)|λp|−1/2xp). Then

|J(x, y)|2 �
∣∣∣∣∫ ∫ ḡ(x)h̄(y) dµ(x) dν(y)

∣∣∣∣2
�

p∏
j=1

(1 + |λj |N2)(|λj |−1N−2)2

� |α|−pN−2p .

Together with (6.1) this proves the lemma. �

For α ∈ M we want to approximate SN (α) by

G0(α) =
∫ ∑

x∈Zs

wN (x)e(Qα(x + z)) dπ(z) ,(6.2)

where π = IB ∗ IB ∗ IB ∗ IB is the fourfold convolution of the continuous
uniform distribution on B = (−1/2, 1/2]s. Set g(u) = e(Qα(u)). Denote by
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gu1 the directional derivative of g in direction u1, and set gu1u2 = (gu1)u2 .
We use the Taylor series expansions

f(1) = f(0) +
∫ 1
0 f ′(τ) dτ ,

f(1) = f(0) + f ′(0) +
∫ 1
0 (1− τ)f ′′(τ) dτ ,

f(1) = f(0) + f ′(0) + 1
2f ′′(0) + 1

2

∫ 1
0 (1− τ)2f ′′′(τ) dτ .

Applying the third of these relations to f(τ) = g(x + τu1), the second to
f(τ) = gu1(x + τu2) and the first to f(τ) = gu1ui(x + τu3) we find for
u1, u2, u3 ∈ Rs

g(x+u1) = g(x)+gu1(x)+ 1
2gu1u1(x)+ 1

2

∫ 1
0 (1−τ)2gu1u1u1(x+τu1)dτ ,

gu1(x+u2) = gu1(x) + gu1u2(x) +
∫ 1
0 (1−τ)gu1u2u2(x+τu2)dτ ,

gu1ui(x+u3) = gu1ui(x) +
∫ 1
0 gu1uiu3(x+τu3)dτ .

Together we obtain the expansion

g(x) = g(x + u1)− gu1(x + u2)−
1
2
gu1u1(x + u3) + gu1u2(x + u3)

+
∫ 1

0

{
− gu1u2u3(x + τu3) +

1
2
gu1u1u3(x + τu3)

+ (1− τ)gu1u2u2(x + τu2)−
1
2
(1− τ)2gu1u1u1(x + τu1)

}
dτ .

Multiplying with wN (x), summing over x ∈ Zs, and integrating u1, u2, u3

with respect to the probability measure π yields

SN (α) = G0(α) + G1(α) + G2(α) + G3(α) + R(α) ,

where G0(α) is defined by (6.2),

G1(α) = −
∫ ∫ ∑

x∈Zs

wN (x)gu(x + z) dπ(u) dπ(z) ,

G2(α) = −1
2

∫ ∫ ∑
x∈Zs

wN (x)guu(x + z) dπ(u) dπ(z) ,

G3(α) =
∫ ∫ ∫ ∑

x∈Zs

wN (x)guv(x + z) dπ(u) dπ(v) dπ(z) ,

and

R(α) � sup
|u|∞,|v|∞,|w|∞,|z|∞≤1

∣∣∣ ∑
x∈Zs

wN (x)guvw(x + z)
∣∣∣ .
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An elementary calculation yields

gu(x) = 4πi e(Qα(x))〈x,Qαu〉 ,
guv(x) = (4πi)2e(Qα(x))〈x,Qαu〉〈x,Qαv〉+ 4πi e(Qα(x))〈u, Qαv〉 ,

guvw(x) = (4πi)3e(Qα(x))〈x,Qαu〉〈x,Qαv〉〈x, Qαw〉+ (4πi)2e(Qα(x))×(
〈x,Qαv〉〈u, Qαw〉+ 〈x,Qαu〉〈v,Qαw〉+ 〈x,Qαw〉〈u, Qαv〉

)
.

Since gu and guv are sums of odd functions (in at least one of the compo-
nents of u) we infer G1(α) = 0 and G3(α) = 0. Furthermore, the trivial
bound guvw(x) � |α|3N3 + |α|2N for |x|∞ � N yields

R(α) � |α|3N3 + |α|2N .

This is sharp enough to prove∫
M
|R(α)K̂(α)| dα �

∫
|α|≤Nδ−2

|α|3N3 + |α|2N dα

�
∫ Nδ−2

0
ur+2N3 + ur+1N du

� N3−(2−δ)(r+3) + N1−(2−δ)(r+2)

� N−2r−3+δ(r+3) = o(N−2r) .

To deal with G0 and G2 we need a bound for

G̃j(α, u) =
∫

Rs

∑
x∈Zs

wN (x)L(x + z)je(Qα(x + z)) dπ(z) ,

where L(x) = 〈x, Qαu〉 and 0 ≤ j ≤ 2. Using the definition of wN and π

we find that G̃j(α, u) is equal to∫
B4

∑
x1,...,x4∈Zs

4∏
i=1

pN (xi)L
( 4∑

i=1

(xi+zi)
)j

e
(
Qα

( 4∑
i=1

(xi+zi)
))

dz1. . .dz4

= (2N+1)−4s

∫
|x1|∞,...,|x4|∞≤N+1/2

L
( 4∑

i=1

xi

)j
e
(
Qα(

4∑
i=1

xi)
)

dx1. . .dx4.

Expanding L(x1 + x2 + x3 + x4) and Qα(x1 + x2 + x3 + x4) this can be
bounded by

max
l1+l2+l3+l4=j

N−4s

∣∣∣∣∣∣
∫ { 4∏

i=1

L(xi)lie(Qα(xi))
}

e
(
2
∑
i<j

〈xi, Qαxj〉
)
dx1 . . . dx4

∣∣∣∣∣∣
� max

l1+l2+l3+l4=j

(|α|N)j

N4s

∣∣∣∣∣∣
∫{ 4∏

i=1

hi(xi)
}

e(2
∑
i<j

〈xi, Qαxj〉)dx1 . . . dx4

∣∣∣∣∣∣.
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Here

hi(xi) = L(xi)lie(Qα(xi))(|α|N)−liI{|xi|≤N+1/2} � 1 .

Applying Lemma 6.1 to the double integral over x1 and x2 and estimating
the integral over x3 and x4 trivially we obtain uniformly in |u| � 1

G̃j(α, u) � (|α|N)j |α|−p/2N−p .

Setting

Hj(N) =
∫

Rr

Gj(α)K̂(α) dα

we conclude for sufficiently small δ > 0 and p > 8r (G0(α) = G̃0(α, 0))∫
M

G0(α)K̂(α) dα = H0(N)−
∫
|α|≥Nδ−2

G̃0(α, 0)K̂(α) dα

= H0(N) + O(N−p(
∫

Nδ−2≤|α|≤1
|α|−p/2 dα + 1))

= H0(N) + O(N−p−(2−δ)(r−p/2)) + O(N−p)

= H0(N) + o(N−2r) .

Similarly, the explicit expression of guu(x) and the definition of G̃j(α, u)
yield∫

M
G2(α)K̂(α) dα

= H2(N) + O
(

sup
|u|∞≤2

∫
|α|≥Nδ−2

|G̃2(α, u)K̂(α)|+ |α||G̃0(α, u)K̂(α)|dα
)

= H2(N) + O
(
N2−p(

∫
Nδ−2≤|α|≤1

|α|2−p/2 dα + 1)
)

+ O
(
N−p(

∫
Nδ−2≤|α|≤1

|α|1−p/2 dα + 1)
)

= H2(N) + o(N−2r) .

Hence ∫
M

SN (α)K̂(α) dα = H0(N) + H2(N) + o(N−2r) .

Altogether we have proved that for p > 8r

A(N) = H0(N) + H2(N) + o(N−2r) .(6.3)
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7. Analysis of the terms H0(N) and H2(N)

Lemma 7.1. Denote by πN the fourfold convolution of the continuous uni-
form probability distribution on BN = (−N − 1/2, N + 1/2]s and by fN the
density of πN . Then

H0(N) =
∫

K(Q1(x), . . . , Qr(x))fN (x) dx

and

H2(N) = −1
6

∫
K(Q1(x), . . . , Qr(x))∆fN (x) dx ,

where ∆fN (x) =
∑s

i=1
∂2fN

∂x2
i

(x). Furthermore, ∆fN (x) � N−s−2.

Proof. By Fourier inversion and the definition of wN and π = π0 we find

H0(N) =
∫

Rr

G0(α)K̂(α) dα

=
∫ ∑

x∈Zs

wN (x)
∫

Rr

e(Qα(x + z))K̂(α) dα dπ(z)

=
∫ ∑

x∈Zs

wN (x)K(Q1(x + z), . . . ,Qr(x + z)) dπ(z)

=
∫

K(Q1(x), . . . ,Qr(x)) dπN (x) .

This proves the first assertion of the Lemma. Similarly,

−2G2(α) =
∫ ∫

guu(x) dπ(u)dπN (x) .

This implies

−2H2(N) = −2
∫

G2(α)K̂(α)dα=
∫ ∫ ∫

Rr

guu(x)K̂(α)dα dπ(u)dπN (x) .

With the abbreviations Lm = 2〈x,Qmu〉 and L̃m = 2〈u, Qmv〉 the inner-
most integral can be calculated as∫

Rr

guu(x)K̂(α) dα

=
∫

Rr

e(Qα(x))


r∑

m,n=1

LmLn
∂̂2K

∂vm∂vn
(α) +

r∑
m=1

L̃m
∂̂K

∂vm
(α)

 dα

=
r∑

m,n=1

LmLn
∂2K

∂vm∂vn
(Q1(x),...,Qr(x)) +

r∑
m=1̃

Lm
∂K

∂vm
(Q1(x),...,Qr(x)) .
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Here we used the relations

∂̂K

∂vm
(α) = 2πi αmK̂(α) ,

∂̂2K

∂vm∂vn
(α) = (2πi)2αmαnK̂(α) .

Since
s∑

i,j=1

uiuj
∂2

∂xi∂xj
(K(Q1(x), . . . ,Qr(x)))

=
r∑

m,n=1

LmLn
∂2K

∂vm∂vn
(Q1(x),...,Qr(x)) +

r∑
m=1

L̃m
∂K

∂vm
(Q1(x),...,Qr(x))

we find∫
Rr

guu(x)K̂(α) dα =
s∑

i,j=1

uiuj
∂2

∂xi∂xj
(K(Q1(x), . . . ,Qr(x)) .

Altogether we conclude

−2H2(N) =
∫ ∫ s∑

i,j=1

uiuj
∂2

∂xi∂xj
(K(Q1(x),...,Qr(x))) dπ(u) dπN (x)

=
s∑

i=1

∫ ∫
u2

i

∂2

∂x2
i

(K(Q1(x),...,Qr(x))) dπ(u) dπN (x)

=
(∫

u2
1 dπ(u)

) s∑
i=1

∫
∂2

∂x2
i

(K(Q1(x),...,Qr(x)) dπN (x) .

Since πN has compact support and fN is two times continuously differen-
tiable, partial integration yields∫

∂2

∂x2
i

(K(Q1(x),...,Qr(x))fN (x) dx =
∫

K(Q1(x),...,Qr(x))
∂2fN

∂xi
(x) dx .

This completes the proof of the second assertion of the Lemma, since∫
u2

1 dπ(u) = 1/3.

Finally, we prove

∂2fN

∂x2
i

(x) � N−s−2 .

Note that

f̂N (t) =
s∏

i=1

(
sin(πti(2N + 1))

πti(2N + 1)

)4

= f̂0((2N + 1)t) .



Systems of quadratic diophantine inequalities 235

Hence, by Fourier inversion

∂2fN

∂x2
i

(x) = (−2πi)2
∫

f̂N (t)t2i e(−〈t, x〉) dt

= −(2π)2(2N + 1)−s−2

∫
f̂0(t)t2i e(−(2N + 1)〈t, x〉) dt

� N−s−2 .

This completes the proof of Lemma 7.1. We remark that we used the
fourfold convolution in the definition of wN , πN , fN for the above treatment
of H2(N) only. At all other places of the argument a twofold convolution
would be sufficient for our purpose. �

Lemma 7.2. Assume that the system Q1(x) = 0, . . . , Qr(x) = 0 has a
nonsingular real solution, then

λ(
{
x ∈ Rs | |Qi(x)| ≤ N−2, |x|∞ ≤ 1

}
) � N−2r ,

where λ denotes the s-dimensional Lebesgue measure.

Proof. This is proved in Lemma 2 of [10]. Note that if a system of homoge-
neous equations Q1(x) = 0, . . . , Qr(x) = 0 has a nonsingular real solution,
then it has a nonsingular real solution with |x|∞ ≤ 1/2.

Now we complete the proof of Theorem 1.1 as follows. For c > 0 and
N > 0 set

A(c,N) = λ({x ∈ Rs | |Qi(x)| ≤ N−2, |x|∞ ≤ c}) .

Then

A(c,N) = csA(1, cN) .

By Lemma 7.1

H0(N) � N−s

∫
|x|∞≤2N

K(Q1(x), . . . , Qr(x)) dx

�
∫
|y|∞≤2

K(N2Q1(y), . . . , N2Qr(y)) dy

� A(2, 2N)

� A(1, 5N)
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and

H2(N) � N−s−2

∫
|x|∞≤5N

K(Q1(x), . . . , Qr(x)) dx

� N−2

∫
|y|∞≤5

K(N2Q1(y), . . . , N2Qr(y)) dy

� N−2A(5, N)

� N−2A(1, 5N) .

With Lemma 7.2 this yields

H0(N) + H2(N) � A(1, 5N) � N−2r

for N ≥ N0, say. Together with (6.3) this completes the proof of Theo-
rem 1.1. �
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