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Complexity of Hartman sequences

par CHRISTIAN STEINEDER, et REINHARD WINKLER

RESUME. Soit T : x — x + ¢ une translation ergodique sur un
groupe abélien compact C et soit M une partie de C' dont la
frontiere est de measure de Haar nulle. La suite binaire infinie
a: Z+— {0,1} définie par a(k) = 1 si T%(0c) € M et a(k) = 0
sinon, est dite de Hartman. Notons Pa(n) le nombre de mots
binaires de longueur n qui apparaissent dans la suite a vue comme
un mot bi-infini. Cet article étudie la vitesse de croissance de
Pa(n). Celle-ci est toujours sous-exponentielle et ce résultat est
optimal. Dans le cas ou T est une translation ergodique = — =+«
(o = (a1,...,a5)) sur T® et M un parallélotope rectangle pour
lequel la longueur du j-eme coté p; n’est pas dans a;7Z + Z pour
tout j = 1,...,s, on obtient lim, Pa(n)/n* = 2°[;_, ps .

ABSTRACT. Let T : x — x 4 g be an ergodic translation on the
compact group C' and M C C' a continuity set, i.e. a subset with
topological boundary of Haar measure 0. An infinite binary se-
quence a : Z — {0,1} defined by a(k) = 1 if T*(0¢) € M and
a(k) = 0 otherwise, is called a Hartman sequence. This paper
studies the growth rate of Pa(n), where Pa(n) denotes the num-
ber of binary words of length n € N occurring in a. The growth
rate is always subexponential and this result is optimal. If T is an
ergodic translation  — =z + a (o = (a1,...,a5)) on T and M is
a box with side lengths p; not equal a;Z +Z for all j =1,...,s,
we show that lim,, Pa(n)/n® = 2°[['_; p .
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1. Motivation and Notation

The notion of a Hartman sequence has recently been introduced and
studied (cf. [5], [10], [12]). It can be seen as a generalisation of the notion
of a Sturmian sequence. Sturmian sequences (and their close relatives, the
Beatty sequences) are very interesting objects, as well from the combinato-
rial, the number theoretic and the dynamical point of view. Let us sketch
two approaches.
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Consider sequences a = (ag) of two symbols, say 0 and 1, where k runs
through the set Z of all integers or N of all positive integers. Such sequences
are also called two resp. one sided infinite binary words. Let Pa(n) be the
number of different binary words of length n occurring in a. The mapping
n — Pa(n) is called the complexity function of a. It is easily seen that the
complexity function is bounded if and only if a is (in the one sided case:
eventually) periodic. Among all aperiodic sequences Sturmian sequences
have minimal complexity, namely P(n) = n + 1. This is the combinatorial
approach to characterise Sturmian sequences, which has been introduced
in [6] and [7].

A different characterisation uses the symbolic coding of irrational rota-
tions. If T = R/Z denotes the circle group (one dimensional torus) and M
is a segment of T of angle 2ra with irrational o € T, then the definition
ar, = 1 if and only if ko € M defines a Sturmian sequence (cf. for instance
2)).

For understanding the definition of a Hartman sequence the second
approach is more appropriate. Replace T by more general compact abelian
groups C with normalised Haar measure u = uc and replace o by any
ergodic group translation. This means that we are interested in the trans-
formation T : C — C, T : x — x + g, where g is a generating element
of C, i.e. the orbit {kg : k € Z} is dense in C. Thus C is required to
be monothetic. C' can also be interpreted as a group compactification of
Z since C' is the closure of the image of Z under the dense homomorphic
embedding ¢ : Z — C, (k) = kg. (Note that for group compactifications
one usually does not require ¢ to be injective. But to avoid trivial case
distinctions we will demand that ¢(Z) is infinite.) This approach is particu-
larly appropriate for Theorems 1 and 2. For the classical theory of ergodic
group translations we refer for instance to [11].

A set M C C is called a (uc-)continuity set if pc(0OM) = 0 holds for
its topological boundary dM. For a continuity set M consider the induced
binary sequence a = (a;)?>___ defined by aj, = 1if T*(0¢) € M and aj, = 0
otherwise. Such sequences are called Hartman sequences. The set H C Z
defined by k£ € H if and only if a; = 1 is accordingly called a Hartman set.
Thus, by definition, a Hartman set H is the preimage H = (~'(M) of a
continuity set M C C where (C,¢) is a group compactification of Z and we
can write a = 1y. Note that for C = T® and g = (a1, ..., as), where the
family {1, aq,...,as} is linearly independent over Z, Hartman sequences
are binary coding sequences of Kronecker sequences.

As a consequence of uniform distribution of ergodic group translations
(for the theory of uniform distribution of sequences we refer to [9]), Hartman
sequences share some nice properties with Sturmian sequences (cf. [5], [10]).
In particular each finite subword occurs with a uniform asymptotic density.
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More precisely: If the measure of a Hartman set H = :~!(M) is defined by
p(H) := pc (M), then

J(H) = dens(H) = lim card(H N{k,k+1,....,k+n—1})

n—o00 n

holds uniformly in k& € Z, cf. [5]. In particular, for a given Hartman set
H, this value neither depends on (C,¢) nor on M. In terms of Hartman
sequences: If, for a = (a;) = 1py, Ag(n) denotes the number of occur-
rences of 1’s in the block agag41 . .. agrn—1 of length n, there exists a bound
cym(n) = o(1), n — oo, such that

Ap(n)

n

— no(M)| < em(n)

for all k£ € N. This has been used in [12] to develop a new approach to
identify the underlying dynamical system from its symbolic coding.

In this paper we start to investigate the complexity of Hartman se-
quences. Corresponding to the zero entropy of the underlying dynamical
system, the growth rate of the complexity function of any Hartman se-
quence is subexponential. This upper bound turns out to be best possible.
In particular, the complexity of a Hartman sequence might be much higher
than, for instance, interval coding sequences for which the complexity es-
sentially is linear (cf. for instance [1] and [3]). In some sense this fact is due
to the more general choice of M rather than to the more general choice of
the compact group C. Nevertheless, for the case of an M with a very simple
geometric structure, namely a box in a finite dimensional compactification
C = T? the complexity grows polynomially of maximal order s. A more
systematic investigation of the role of the geometric properties of M and
the further development of the arguments used here is to be the object of
future research. So the results in this paper are the following:

e For any Hartman sequence a and A > 1 we have Pa(n) = o(\") for
n — oo (Theorem 1).

e For any sequence P, of subexponential growth rate and any compac-
tification (C,¢) there is a Hartman sequence a coming from (C,¢)
with P, = o(Pa(n)). This is even true, if Pa(n) counts only binary
words which occur in a with strictly positive density (Theorem 2).

e Assume that M is a box of side lengths p;, 7 =1,...,s, in T*. Then
the complexity Pa(n) of the induced Hartman sequence a has the
asymptotic growth rate ecn® if p; € o;Z + Z for all 5 =1,...,s. The
multiplicative constant c is given by ¢ = 2° Hj‘:l pj_l (Theorem 3).
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2. A universal upper bound for the complexity of Hartman
sequences

Corresponding to the fact that ergodic group translations have entropy
0, one conjectures that the complexity of a Hartman sequence is subexpo-
nential. Note that the topological entropy of shift spaces and complexity
are very closely related. Nevertheless we cannot apply immediately perti-
nent theorems in textbooks as [4] or [11] to obtain an upper bound for the
complexity of a Hartman sequence in terms of the entropy of the underlying
group rotation. Therefore we give a direct proof that the above conjecture
is true.

Theorem 1. For any compactification (C,t) of Z and any continuity set
M C C the complexity Pa(n) of the corresponding Hartman sequence a =
1y with H = 1=Y(M) satisfies

lim log Pa(n)

n—oo n

=0.

Proof. By Theorem 4 in [12] we may presume that there is a metric d for
the topology on C'. Let g = ¢(1) € C denote the generating element of the
compactification.

We write M’ for the complement C'\ M and Mj for the set of all x € C
with d(z,y) < ¢ for some y € M. Fix ¢ > 0. Using the regularity of the
Haar measure puc and the pco-continuity of M, we obtain uc(R) < e for
R = (Ms, \ M) U (Mg, \ M') whenever §; > 0 is sufficiently small. By a
standard argument we may assume that R is a continuity set. At least one
of the sets M and M’, say M, has nonempty interior. This means that
there is some open ball B with center = and positive diameter 6 < /2
with B C M. For the sake of simpler notation we assume x = 0.

Let W, denote the set of all binary words ag...a;_1 of length [ with
ar, = 1 whenever kg + B C M and a; = 0 whenever kg + B C M'.

By compactness of C' there is some Ng € N such that

No—1
n=0

showing that for every y € C there is some n € {0,1,..., Ny — 1} with
y+ng € B.

Thus any word w of length Ny + [ occurring in a lies in some of the sets
Wing+1,i, 0 <@ < Ng — 1, consisting of all words

b0b1 . bz‘_la() e al_lbi “. bN0,1

with agai...a;_-1 € W; and byby ~--bNo—1 € {0,1}”. Since ’WNO+I’Z" =
2No| TV, this shows Pa(No + 1) < No2™No|W|.
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Note that each translate y + B is totally contained either in M or in M’
whenever y ¢ R. Thus, by the uniform distribution of (ng), in C, the subset
T CZ of all k € Z such that y = kg € R has density uc(C \ R) > 1 —e.

It follows that |IW;| < 22 hence Pa(No+1) < No2Not+2el for | sufficiently
large. This yields

log Pa(Ny + 1) < log Ny + (No + 2¢l) log 2
and, for n = Ny +1
, log Pa(n) _ .. log No + (No + 2¢l) log 2
lim sup ———= < lim sup
Nn—00 n l—00 No+1

< 2elog?2.

Since € > 0 can be chosen arbitrarily small this proves the theorem. O

3. A Hartman sequence of arbitrarily subexponential
complexity

We are going to show that the bound deduced in Theorem 1 is best
possible.

Let (C,¢) be any group compactification of Z and ¢ : N — N. Suppose
o(n) = epn < n with lim, &, = 0. We have to show that there exists
a continuity set M C C such that the Hartman sequence a := 1y with
H = ~Y(M) fulfills Pa(n) > 29,

By Theorem 4 in [12] it suffices to prove the assertion for metrisable C
and by Theorem 8.3 in [8] there is an invariant metric d for the topology
on C. For ¢ € C we write ||c|| = d(c,0). For each n € N choose a subset
H®™ of {0,...,n — 1} of cardinality A, > e,n and containing 0 such that
the diameter d,, of «(H™) is minimal. We claim that lim,, .. d,, = 0.

Otherwise we had a sequence n; < mo < ... and a § > 0 such that
dy, > 26 for all k. There is some r € (0, ) such that the open ball B with
center 0 € C' and radius r is a continuity set. By construction, the lower
density of the set of all n with «(n) € B is at most €, for all k. By uniform
distribution of ¢(n), the lower density is a density and coincides with the
Haar measure, hence p(B) < limg_,oepn, = 0. This contradicts the fact
that nonempty open sets have positive measure.

Let now H,(0), H,(1),..., H,(2%" — 1) be an enumeration of all sub-
sets of H™. Define recursively m,(0) = 0 and my(i + 1) to be the
minimal integer > my (i) + n such that |[¢(mn(i + 1)) < dn. We put
H, = U?igil(mn(i) + H,(7)). Obviously H, is a finite set of nonnegative
integers bounded by, say h, € N. Observe furthermore that by construction
lle(h)|| < 2d, for all h € H,,. Define, again recursively, lp = 1 and l,,41 to
be the minimal integer > I, + h,, such that ||¢(l,41)]| < dy. For the union
H = J;2 o(Hy + 1) this implies limy, o0 nem t(n) = 0. Thus M = o(H) is
a countable closed subset of C' with the only accumulation point 0, hence
a continuity set of measure 0 and H = ~!(M) is a Hartman set.
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In the corresponding Hartman sequence each H, induces at least 24~
different binary words of length n. Thus the complexity function P(n) is
bounded below by

P(n) > 24n > 25nn — 99(n),

This construction generates a zero set M. Hence each word in a con-
taining the letter 1 has asymptotic density 0. It would be nice to get a
positive frequency for many words. Let therefore M = {0, m, ma,...} be
an enumeration of M. There are §,, > 0 with J,, — 0 such that balls B,,,
n € N, with center m,, and radius ¢,, are pairwise disjoint continuity sets.
Replace M by the union of all B,,, which is again a continuity set. This
shows:

Theorem 2. Let (C, 1) be any group compactification of Z. Assume ¢(n) <
n and ¢(n) = o(n) for n — oco. Then there exists a continuity set M C
C such that its Hartman sequence a := 1,1y fulfills Pa(n) > 20(n)
Furthermore M can be chosen in such a way that for each n € N at least
29(") words of length n occur in a with strictly positive density.

4. The case of Kronecker sequences and Boxes

We finally restrict our attention to the special case that C = T? is a fi-
nite dimensional compactification with generating element g = (a1, ..., as)
modulo 1, i.e. ¢ : k— kg = k(au, ..., as), where the family {1, a1,...,as}
is linearly independent over Z (such (kg), are also called Kronecker se-
quences), and M a box in T®. To be more precise we use the following
notational convention.

As usual, {r} = r —[r] and [r] = max{k € Z : k < r} denote the
fractional respectively integer part of » € R. Thus T® = (R/Z)* = x(R?) is
considered to be the image of the additive group R® under the mapping k =
ks (21,...,25) — ({x1},...,{xs}). Although T has no order structure it
is useful to think about intervals in T as images of intervals in R under
K1, boxes in T* as images of boxes in R® etc. To avoid too cumbersome
notation we therefore write, for instance, [[7_;[~p;/2,p;/2), p; € (0,1)

s X
also forsthe set M = ns(ngl[—pj'/Z,pj/.Q)). It 1s' naturffml to. call a set
M = [[;—1[mj,m;j+p;) C T® an s-dimensional box in T* with side lengths
pj, 3 =1,...,s. We are especially interested in Hartman sequences a = 1,
H = 171(M), for this kind of M and call such a Bohr sequences.

Let us fix a box M of side lengths p;, 7 = 1,...,s, and assume that no
pj is in o;Z + Z. We are going to determine the asymptotic behaviour of
Py, (n) for the Bohr sequence b = 1g, H = . *(M).

We will use the following notation: For a word w = ag...an,—1 € {0,1}"
we introduce the set

Ay ={zeT’: (z+igeM < a;=1)fori=0,...,n—1}



Complexity 353

and write w = w(x) for z € A,,. Note that, provided A,, # 0, Ay, has inner
points. Because of the density of the set {ng : n € N}, the continuity of T
and the special form of M this implies

Pp(n) = {w € {0,1}": Ay # 0}.

To compute the number of all nonempty A,, we first consider a half open
cube Cp := ¢o + [—0/2,0/2)® C T° with center ¢y and side length o < p;

forall j =1,...,s. We are going to estimate the local complexity function
P(Cy,n) = |W| for W = W(Cp) := {w € {0,1}" : A, NCy # 0}. Note
that for k cubes C4,...,C} in T® with disjoint closures we have

k
Pa(n) > ) P(Cjn)
j=1

for sufficiently large n. As above, A, N Cy # 0 implies pc (A, N Cp) > 0.
So P(Cy,n) is the number of different words w = b;...b;1,—1 of length n
in b with ig € C. Define

s S
. g 0. O i o p; O
M= [-2+2.2-2) m=T[-2-2,2+%), 1=\,

L1179 T97 9 2 b9 272 72
7=1 7=1

and furthermore, for each j =1,...,s,

. o -
gj)::{x:(ml,...,xs)eMl:a:j<—%]+§or:cj2%]—§},
gj) ¢=Q§J)\UQ§”-

J#j

Observe that the sets ng ) (in contrast to the ng )) are pairwise disjoint.
For w =ag...anp_1 in W note that

(co+ig € My =a; =1) and (co +ig & M1 = a; =0).
This shows that for w = ag...a,—1 and v’ = q(...a,,_; in W the letters
a; and a} can differ only if ¢y +ig € I'. Since I = U;Zl ng), we define, for
j=1,...,sand | =0,1,

IV ={ic{0,....n—1}: co+ige QY},

L=
j=1

Due to the special geometric situation (Cp and M are boxes), for x =
(11717...,-755) € COv w = ’UJ(I) = (ai(x))0§i<n € Wa j € {17"')8}7 the
tuple (ai(az))ie ;) depends only on z;, namely in the following way. Let

0
X; = [yo,yo + o) be the interval for the j-th coordinate of points in Cj.
Then for each ¢ € I(()j ) there is one point y; (namely either p;/2 — ig or
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—p;j/2 — ig) such that y; splits the interval X; into two subintervals X ](O)

and X;l) such that a;(x) = 0 for j € X](.O) and a;(xz) = 1 for z; € XJ(.U.
Since p; € o;Z + Z, all y;, 1 € I(j), are distinct. As a consequence the

mapping &; (ai(‘r))ielm takes at least ‘I(()j) + 1] different values, hence
0
4 = {(ai(@)), 0 =« € Co}l > |15 +11.

Since the sets Iéj ), 7 =1,...,s, are pairwise disjoint and all coordinates j
can be treated independently, we conclude

S
P(Co,n) = W] = TT(E"1+1).
j=1
For € > 0 we know by uniform distribution of the sequence (ng), that

] > w(@QF)n — en

for n sufficiently large. Since M(Q(()j)) = 2Hj‘:1,j;éi(pj —o)o,j=1,...,s,

we get
|W| > n® H( H —a)a—e)
=1 j=1j#
for n sufficiently large. Thus we obtain

. . P(Co, n) s s
%E?“;‘*ZTII(II(W—UW—g)
=1 j=1j#i
for all € > 0 and therefore

.. CO’
hnni gf > 2° H H
i=1j5=1,j#1i

As a consequence of uniform distribution we know that d(z,z’) > § implies
w(z) # w(a’) if the words are sufficiently long. Thus W (Cp) and W (C}) are
disjoint whenever two cubes Cj and C|, are separated by a strictly positive
distance 6. Fix now k£ € N and consider the disjoint cubes C1, ..., Cgs with
centers ¢; = (m;/k), m; € {0,...,k — 1} and side length ¢ = 1/k — 4,
0<d< % We get

Py(n) P(Ci,n) _ oo
lim inf >§:1 AT psgs( |||| S
im inf — 2 Zlﬁ& s a4, +

Since this holds for all § > 0 we can consider the limit 6 — 0 to get

s

im in b > kszs H H — ) =9 H(p] o %)571‘

lim inf
i=1j=1,j#i Jj=1
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For k — oo this finally shows the lower bound

P(n :
lim inf ﬁ >5[ pst.
N—00 ns J
j=1
To obtain an upper bound for the complexity we consider instead of A; as
defined above the numbers

B; = ’{(ai(x))iely) T x € CO}‘ < ‘Ifj) + 1’.

Note that the sets Ifj), j =1,...,s, are (in contrast to the sets Iéj))
not disjoint. This implies that a;(z) possibly depends on more than one
component of x. Comparison with the argument for the lower bound shows

that the relevant mapping x +— (ai(x))z,g(j), x € Cy, can only take one
1

additional value, namely the zero word a;(z) = 0 for all i € Ifj ). Thus
arguments similar (in fact even simpler) to those above show that |B;| <

\Ifj)| + 2 and finally

B
lim sup &

n—0o00 n

< 2° f[ pi

j=1
Since the same argument applies if M is not centered at 0 we have proved:

Theorem 3. Consider an ergodic translation T : x — x + g on T® with
g = (a1,...,a5). Assume p; € (0,1)\ (Z + Z) for all j = 1,...,s.
For mj € [0,1), j = 1,...,s, let M = szl[mj,mj + pj) denote an
s-dimensional box of side lengths pj, and b the corresponding Bohr se-
quence. Then the complexity function of b satisfies

lim ——= =
n—oo ns J
J=1

Pb(n) 28 - p5~71-

We add the following remarks.
Complexity and volume versus surface: Let V(M) denote the volume
of a box M in T* and v;(M) = [[;_; ;,; pi the (s —1)-dimensional measures
(surfaces) of the facets of M. Then we can express the formula in Theorem
3 in terms of V(M) as well as in terms of the v;(M):

S S
2 [ ot =22Vt =2° [ ] o (M)
j=1 j=1

Consider first M’ := My U My, where the M; are disjoint translates of M.
The same arguments as in the proof of Theorem 3 show that M’ induces a



356 Christian STEINEDER, Reinhard WINKLER

Hartman sequence a’ of complexity

lim Par(n) =2° ﬁ(QUj(M)).

n—oo ns ]
Jj=1

Comparison with the value 2°[[%_, v;(M) for M indicates that the com-
plexity is related to the surface rather than to the volume.

On the other hand we can consider an automorphism A of T® (i.e.
A € SL(s,Z)). The topological generator A(g) and the parallelepiped
A(M) induce the same Hartman sequence as g and M. Here the volume
V(M) = V(A(M)) is invariant while the product of the surface measures
may change.

The interplay between the geometry of more general sets M and the
complexity of the corresponding Hartman sequences might be an interest-
ing topic of more systematic future investigations.

Dropping linear independence: If the assumption p; ¢ o;Z + Z fails
then a modification of the proof of Theorem 3 based on a careful investi-
gation of the resulting cancellation effects yields a corresponding formula.

Complexity determines dimension: Given P} (n) and the information
that M is a box (of some unknown dimension s and unknown side lengths
p;j), Theorem 3 tells us how s can be determined.
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