
Journal de Théorie des Nombres
de Bordeaux 17 (2005), 381–396

Linear independence of values of a certain

generalisation of the exponential function – a new

proof of a theorem of Carlson

par Rolf WALLISSER

Résumé. Soit Q un polynôme non-constant à coefficients entiers,
sans racines sur les nombres entiers positifs. Nous donnons ici,
essentiellement avec la méthode de Hermite, une nouvelle démon-
stration de l’indépendence linéaire de certaines valeurs aux points
rationnels de la fonction

G(x) =
∞∑

n=0

xn

Q(1)Q(2) · · ·Q(n)
.

Abstract. Let Q be a nonconstant polynomial with integer
coefficients and without zeros at the non–negative integers. Es-
sentially with the method of Hermite, a new proof is given on
linear independence of values at rational points of the function

G(x) =
∞∑

n=0

xn

Q(1)Q(2) · · ·Q(n)
.

1. Introduction

Let Q ∈ Z[x] be a nonconstant polynomial of degree q with integer
coefficients and without zeros at the non–negative integers. Carlson [2]
investigated already in 1935 the arithmetical nature of values of the function

G(x) =
∞∑

n=0

xn

Q(1)Q(2) · · ·Q(n)
= 1 +

∞∑
n=1

xn

Q(1)Q(2) · · ·Q(n)
;(1)

For n = 0 we define Q(1) . . . Q(n) to be equal to one.
Carlson proves:

Theorem 1. Let α1, . . . , αh be any pairwise distinct non–zero rational
numbers. Then we have for the function G (compare (1)) that the values

1, G(α1), . . . , G(q−1)(α1), . . . , G(αh), . . . , G(q−1)(αh)(2)

are linearly independent over the field Q of rational numbers.



382 Rolf Wallisser

Remarks.
i) G satisfies a linear differential equation of order q with coefficients

which are polynomials over Q. Therefore it is not possible to replace
in the theorem the order (q − 1) of differentation by a higher one.

ii) One can assume that the numbers αj(1 ≤ j ≤ h) in the theorem are
integers. To show this, let us denote

αj :=
sj

tj
(1 ≤ j ≤ h), sj , tj ∈ Z∗, a := t1 · t2 . . . th,

tjα
∗
j := sja, α∗j ∈ Z, Q∗(x) := a ·Q(x).

If the theorem is proved for integers αj we use this result for the
function

G∗(x) =
∞∑

n=0

1
Q(1) · · ·Q(n)

(x

a

)n
=

∞∑
n=0

xn

Q∗(1) · · ·Q∗(n)
;

If (s0, s1, . . . , sh) ∈ Zh+1\~0 it follows

s0 + s1G
∗(α∗1) + · · ·+ shG∗(α∗h) 6= 0

The term on the left in this relation is by definition of G∗ and α∗j :=
αj · a equal to

s0 + s1G(α1) + · · ·+ sh G(αh)

Carlson’s proof depends on a certain Padé–approximation of G, a rep-
resentation of the remainder term by an integral and a careful evaluation
of this term using a Laurent development about infinity. Applying the
method of Siegel–Shidlowskij similar results, qualitative and good quanti-
tative ones, were obtained mainly by the Russian school (compare [4], pp.
128–136).

In this paper we use in principle the same method which Hermite applied
to establish the transcendence of the basis of the natural logarithm. Like
Hilbert [7] and Hurwitz [8] we apply divisibility properties to show the
non–vanishing of a certain sum of integers. Aside the exponential function,
this way was mainly used by Skolem [12] to get results on the irrationality
of certain numbers. We take the method of Hermite in the form as it is
described in Perron [10] and Skolem [12], and regain in a simple way the
result of Carlson.

2. The method of Hilbert–Perron–Skolem

Let

f(x) =
∞∑

n=0

knxn, k0 = 1.(3)
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One chooses a ”starting–polynomial”

P (x) := P0(x) :=
m∑

n=0

γnknxn(4)

and derives from P m other polynomials:

Pµ(x) =
m∑

n=µ

γn kn−µ xn−µ, 1 ≤ µ ≤ m.(5)

The ”approximating–polynomial” P ∗ belonging to P is the following:

P ∗(x) :=
m∑

µ=0

Pµ(x).(6)

Remark. If f denotes the exponential function (e.g Q(x) = x or kn = 1
n!)

one has the relation

P ∗(x) =
m∑

µ=0

P (µ)(x).

Using the relations (4) and (5) one obtains

P ∗(x) =
m∑

n=0

γn

n∑
ν=0

kνx
ν(7)

and with f(0) = k0 = 1

P ∗(0) =
m∑

n=0

γn.(8)

Finally it follows for the ”remainder–term”

∆(x) := P ∗(x)− P ∗(0)f(x)(9)

with (7) and (8)

∆(x) =
m∑

n=0

γn

n∑
ν=0

kνx
ν −

m∑
n=0

γn

∞∑
ν=0

kνx
ν(10)

= −
m∑

n=0

γn

∞∑
ν=n+1

kνx
ν .

To prove theorem 1 one has to show that for every non–zero vector

(s0, s
(0)
1 , . . . , s

(0)
h , . . . , s

(q−1)
1 , . . . , s

(q−1)
h ) ∈ Zhq+1(11)

the linear form

Λ = s0 · 1 +
h∑

j=1

q−1∑
ν=0

s
(ν)
j G(ν)(αj)(12)
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does not vanish.
To show this one uses the ”approximating–polynomial” P ∗ (compare (6))

to introduce the linear form

Λ∗ = s0 P ∗(0) +
h∑

j=1

q−1∑
ν=0

s
(ν)
j P ∗(ν)(αj).(13)

Using the ”remainder term” ∆(x) (compare (9)) one gets the following
connection between the linear forms Λ and Λ∗

Λ∗ = P ∗(0)Λ +
q−1∑
ν=0

h∑
j=1

s
(ν)
j ∆(ν)(αj).(14)

If one chooses an appropriate ”starting–polynomial” P one can show firstly
that the linear form Λ∗ is different from zero and secondly that

∣∣∣ q−1∑
ν=0

h∑
j=1

s
(ν)
j ∆(ν)(αj)

∣∣∣ ≤ 1
2
|Λ∗|.(15)

In this way one gets from (14)∣∣P ∗(0)
∣∣ · |Λ| ≥ 1

2
|Λ∗| > 0.(16)

Form this inequaliy one concludes Λ 6= 0 which proves theorem 1.

Remark. In the paper of Skolem [12] and in [1] one finds further applica-
tions of the method of Hilbert–Perron–Skolem.

3. The form of the polynomials Pµ in the special case of the
function G defined in 1.

We apply now the method of Hilbert–Perron–Skolem described in Chap
2 to the function G defined in Chap 1. In this case the values kn in (3) are
given by

kn :=
1

Q(1)Q(2) . . . Q(n)
.(17)

Let δ denote the operator x d
dx . The function G (compare (1)) satisfies the

linear differential equation of order q, (compare [4], Chap 2, 6.1. formula
(85)).

Q(δ)G(x) = Q(0) + xG(x).(18)
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If one applies Q(δ) to Pµ one gets

Q(δ)Pµ(x) =
m∑

n=µ

γn kn−µ Q(δ)xn−µ(19)

=
m∑

n=µ

γn kn−µ Q(n− µ)xn−µ

= γµQ(0) + x
m∑

n=µ+1

γn kn−(µ+1) xn−(µ+1)

= γµQ(0) + xPµ+1(x), 0 ≤ µ ≤ m.

If the ”starting–polynomial” P0(x) := P (x) vanishes at zero with multi-
plicity m0, it follows

Pµ(0) = γµ = 0 for µ = 0, . . . ,m0 − 1(20)

and from (19) we have

Pµ(x) =
(1

x
Q(δ)

)µ
◦ P (x) for 0 ≤ µ ≤ m0.(21)

At the end of this chapter we will prove a connection of the operators δ and
D = d

dx giving with (21) the following representation of the polynomials
Pµ,

Pµ(x) =
µ·q∑
j=0

αj,µ xj−µ P (j)(x), µ ≤ m0.(22)

The coefficients αj,µ are integers and if Q ∈ Z[x] has the form

Q(x) = a0 + a1 x + · · ·+ aq xq, aq 6= 0, q ≥ 1(23)

one gets for the highest coefficient of Pµ

αµq,µ = aµ
q .(24)

Lemma 1. For δ = x d
dx and D = d

dx we have

δj =
j∑

i=0

ρi,j xi Di, ρij ∈ Z,

ρ0,0 := 1; ρ0,j := 0, ρi,j := iρi,j−1 + ρi−1,j−1 (0 < i < j),

ρj,j := ρj−1,j−1 (0 < j), ρi,j := 0 (i = −1 or i > j).
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Beweis. The lemma holds for j = 0. Assume that the lemma has been
verified for j = 0, 1, . . . , k. From this inductive hypothesis one deduces:

δk+1 f(x) =
(
x

d

dx

)k+1(
f(x)

)
=

(
x

d

dx

) k∑
i=0

ρi,k xi f (i)(x)

=
k∑

i=0

i ρi,k xi f (i)(x) +
k∑

i=0

ρi,k xi+1 f (i+1)(x)

=
k+1∑
i=0

(
i ρi,k + ρi−1,k

)
xi f (i)(x)

=
k+1∑
i=0

ρi,k+1 xi Di f(x).

The lemma follows by induction. �

Lemma 2. For Q(x) =
q∑

`=0

a` x` one has

i) Q(δ) =
q∑

j=0

αj xj Dj , αj :=
q∑

`=j

ρj,` a` (0 ≤ j ≤ q)

ii)
(1

x
Q(δ)

)µ
=

µ·q∑
j=0

αj,µxj−µ Dj , α0,0 := 1, αj,1 := αj (0 ≤ j ≤ q)

αµq,µ = αµ
q,1 = αµ

q = (ρq,q aq)µ = aµ
q

Beweis. From Lemma 1 we gain

Q(δ) =
q∑

`=0

a` δ` =
q∑

`=0

a`

( ∑̀
i=0

ρi,` xi Di
)

(i)

=
q∑

j=0

xj Dj
( q∑

`=j

ρj,`a`

)
=

q∑
j=0

αj xj Dj .

(ii) We use induction. Clearly the formula holds for µ = 0. Assume that ii)
is proved for µ = 0, 1, . . . , k. For the following it is not necessary to have
an explicit expression for the numbers αj,µ for j = 0, . . . , qµ − 1, µ ≥ 1.
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We get

(1
x

Q(δ)
)k+1

=
q∑

i=0

αi,1 xi−1
q·k∑
j=0

αj,k Di(xj−k Dj)

=
q∑

i=0

αi,1 xi−1
q·k∑
j=0

αj,k

×
i∑

h=0

(
i

h

)
(j − k) . . . (j − k − h + 1) xj−k−h Di+j−h

=
q∑

i=0

q·k∑
j=0

i∑
h=0

αi,1 αj,k

(
i

h

)(
j − k

h

)
h!xi+j−h−(k+1) Di+j−h

=
q·(k+1)∑

r=0

αr,k+1 xr−(k+1) Dr.

To finish the proof, we see

αq(k+1),k+1 = αq,1 αq·k,k =
(
aq · ak

q

)
= ak+1

q .

�

4. A survey of some results on higher congruences

Let P denote the set of prime numbers. For the proof of theorem 1
one needs some results on those primes p ∈ P for which the congruence
f(x) ≡ 0(modp) is solvable. Here f(x) denotes a polynomial with ra-
tional integer coefficients which is not identically zero (mod p). Moreover
results on those primes p are needed for which the given polynomial splits
mod p in degree of f (deg f) linear factors. In algebraic–number–theory one
can find many papers in this direction going essentially back to Dedekind
[3] and Hasse [6]. Gerst and Brillhart [5] have given an excellent more
elementary introduction to these problems. For better readability of this
work I mention here some notations, definitions, conclusions and theorems.
All proofs of these results can be found in [5].

Definition 1. A prime p for which f(x) is not identically zero (modp)
and for which the congruence f(x) ≡ 0(mod p) is solvable is called a prime
divisor of f .

Proposition 1. Schur [11] has shown that every nonconstant polynomial
f has an infinite number of prime divisors.
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Definition 2. Let f(x) = a
∏

fi(x)βi(a, βi ∈ Z, βi > 0, fi(x) ∈ Z[x] dis-
tinct, primitive and irreducible) be the unique factorisation of f(x) into
irreducible polynomials. f(x) will be said to ”split completely”(mod p), p
a prime, iff each fi(x) is congruent (mod p) to a product of deg fi distinct
linear factors and p doesn’t divide the discriminant of g(x) =

∏
fi(x).

If f(x) ”splits completely” (mod p) then f(x) is congruent (mod p) to a
product of deg f linear factors of the form ax+ b, a, b ∈ Z, p 6 | a. It is this
property which is needed in our prove of theorem 1.

Theorem 5 of the work of Gerst and Brillhart [5] gives a general infor-
mation on the prime divisors of a polynomial. The following Proposition 2
is proved there as a corollary (compare [5], page 258).

Proposition 2. Every non-constant polynomial f(x) has an infinite num-
ber of prime divisors p for which it ”splits completely” (mod p).

5. The choice of the ”starting–polynomial” P and some
divisibility properties of the values P

(ρ)
µ (αj)

To prove theorem 1 one can assume that in (11) or (12) not all of the
numbers s

(ν)
j (1 ≤ j ≤ h, 0 ≤ ν ≤ q − 1) are zero.

Let the value s
(ν0)
j0

be the ”highest” term in (11) which is different from
zero; that is:

s
(ν0)
j0

6= 0,

s
(ν)
j = 0, 1 ≤ j ≤ h, ν0 < ν ≤ q − 1,(25)

s
(ν0)
j = 0, j0 < j ≤ h.

So in case (25) the linear form Λ∗ of (13) has the form

Λ∗ = s0 P ∗(0) +
h∑

j=1

ν0−1∑
ν=0

s
(ν)
j P ∗(ν)(αj) +

j0∑
j=1

s
(ν0)
j P ∗(ν0)(αj).(251)

Let p ∈ P be a prime number which satisfies the relation:

(26) Q “splits completely” (mod p)

(compare Definition 2 and Proposition 2 in Chap 4). Choose a sufficiently
large p with (26) which fulfills in addition the conditions

p 6 | s
(ν0)
j0

, p 6 | aqαj0

h∏
j=1
j 6=j0

(αj0 − αj).(27)
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Define the ”starting–polynomial” P of the method of Hilbert–Perron–
Skolem (compare Chap 2, (4)) in the following way:

P (x) := xp·q(x− αj0)
(p−1)q+ν0

h∏
j=1
j 6=j0

(x− αj)p·q.(28)

Then the derivatives of P satisfy the relations:

(29)

i) P (`)(αj0) =


0, ` < (p− 1)q + ν0,
αp·q

j0

(
(p− 1)q + ν0

)
!×

h∏
j=1
j 6=j0

(αj0 − αj)p·q, ` = (p− 1)q + ν0.

ii) 1 ≤ j ≤ h, j 6= j0,

P (`)(αj) =


0, ` < p · q,
(q · p)!αp·q

j (αj − αj0)
(p−1)q+ν0×

h∏
r=1

r 6=j0,j

(αj − αr)p·q, ` = p · q.

iii) P (`)(0) =


0, ` < p · q,

(pq)!(−αj0)
(p−1)q+ν0

h∏
j=1
j 6=j0

(−αj)p·q, ` = p · q.

The Taylor development at x = 0 of the ”starting–polynomial” P begins
with the term cxp·q, c 6= 0. Therefore one concludes from (20)

Pµ(0) = 0 for µ = 0, . . . , p · q − 1.(30)

From (22) one gets for µ ≤ p · q

P (ρ)
µ (x) =

µ·q∑
j=0

αj,µ

(
xj−µ P (j)(x)

)(ρ)
.(31)

and from this follows with (29) for µ < p

(32) P (ρ)
µ (αj0) =

 0 0 ≤ µ < p− 1, 0 ≤ ρ ≤ q − 1,
0 for µ = p− 1, 0 ≤ ρ < ν0,
Aν0 µ = p− 1, ρ = ν0.

Aν0 :=
(
(p− 1)q + ν0

)
!
(
αj0

h∏
j=1
j 6=j0

(αj0 − αj)
)p·q

α
(p−1)(q−1)
j0

· α(p−1)q,p−1,

(33)

ap−1
q = α(p−1)q,p−1.
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From (27), (32) and (33) one concludes

pq 6 | P
(ν0)
p−1 (αj0), q ≥ 1.(34)

With (29) and (31) one gets (the same holds for α0 := 0),

P (ρ)
µ (αj) = 0, j 6= j0, µ ≤ p− 1, ρ ≤ q − 1.(35)

To find such properties for µ ≥ p, one takes the representation which follows
from (5)

P (ρ)
µ (αj) =

m∑
n=µ+ρ

γn kn−µρ!
(

n− µ

ρ

)
α

n−(µ+ρ)
j(36)

and one expresses γn · kn−µ (compare the definition of kn in (17)) in the
following way:

γn · kn−µ = γn · kn
kn−µ

kn
= γn · kn ·Q(n− µ + 1) · · ·Q(n).(37)

For µ ≥ p the product Q(n − µ + 1) . . . Q(n) has at least p factors. By
the assumption (26) that the polynomial Q ”splits completely”(mod p) in
q linear factors of the form ax + b, p 6 | a, one gets

pq
∣∣ Q(n− µ + 1) · · ·Q(n), µ ≥ p.(38)

If one remembers that the αj , 1 ≤ j ≤ h, could be chosen as integers
(compare remark ii) to theorem 1) one recognizes from (4) and (28) that the
coefficient γn kn of the starting polynomial P is also an integer. Therefore
we have from (37) and (38)

pq
∣∣ γn · kn−µ, p ≤ µ ≤ n ≤ m.(39)

From this we conclude with (36)

pq
∣∣ P (ρ)

µ (αj), p ≤ µ ≤ m, 0 ≤ ρ < q, 1 ≤ q, 0 ≤ j ≤ h (α0 := 0)(40)

6. The values P ∗(ν)(αj) and the non–vanishing
of the linear form Λ∗

We apply the divisibility properties proved in chapter 5 to show that the
linear form Λ∗ of (251)

Λ∗ := s0P
∗(0) +

h∑
j=1

ν0−1∑
ν=0

s
(ν)
j P ∗(ν)(αj) +

j0∑
j=1

s
(ν0)
j P ∗(ν0)(αj)

does not vanish. P ∗ (compare (6)) is defined with the polynomial P of (28)
by

P ∗(x) =
m∑

µ=0

Pµ(x), m = p · q · h + (p− 1)q + ν0 =: deg P.(41)
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It follows from (5) and (30)

P ∗(0) =
m∑

µ=pq

Pµ(0) =
m∑

µ=pq

γµ(42)

and from (32) and (35)

P ∗(ρ)(αj) =
m∑

µ=p

P (ρ)
µ (αj) j 6= j0, ρ ≤ q − 1,

(43)

P ∗(ρ)(αj0) =
m∑

µ=p

P (ρ)
µ (αj0), ρ < ν0.

With (40) we get from (43)

pq
∣∣P ∗(ρ)(αj)(j 6= j0, ρ ≤ q − 1) and pq

∣∣P ∗(ρ)(αj0)(ρ < ν0).

Therefore we have

pq
∣∣ (

s0 P ∗(0) +
h∑

j=1

ν0−1∑
ρ=0

s
(ρ)
j P ∗(ρ)(αj) +

j0−1∑
j=1

s
(ν0)
j P ∗(ν0)(αj)

)
(44)

which is the same (compare the definition of Λ∗ in (251)) as

pq
∣∣ (

Λ∗ − s
(ν0)
j0

P ∗(ν0)(αj0)
)
.(45)

From (32) we get

P ∗(ν0)(αj0) = P
(ν0)
p−1 (αj0) +

m∑
µ=p

P (ν0)
µ (αj0).(46)

Because of (40) the second term on the right of (46) is a multiple of pq

whereas the first term is not divisible by pq (see (34)). Therefore we get
from (46)

pq 6 | P ∗(ν0)(αj0), q ≥ 1.(47)

Since we assumed in (27) p 6 | s
(ν0)
j0

we get with (47)

pq 6 | s
(ν0)
j0

P ∗(ν0)(αj0).

Together with (45) one derives now the important relation

pq 6 | Λ∗ or Λ∗ 6= 0.(48)
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7. A lower bound for Λ∗

Let t be a prime number and let µt denote the number

µt :=
∣∣{x ∈ Z, 0 ≤ x < t, Q(x) ≡ 0(modt)}

∣∣;(49) ∣∣{. . . }∣∣ denotes the cardinality of the set {. . . }.

After Nagell [9] one has the estimate∑
t≤x

µt
log t

t
= κ log x + O(1)(50)

where κ denotes the number of irreducible factors of Q.
Let p ∈ P be the prime number which was chosen in Chapter 5 (compare

(26), (27)). In (37) we have seen that for µ ≥ p every coefficient γn kn−µ in
the representation (36) of P

(ρ)
µ (αj) contains the factor

Q(n− µ + 1) . . . Q(n) (p ≤ µ ≤ n ≤ m).

In all these products the argument of Q goes at least through p consecutive
positive integers. Therefore, using the definition of µt in (49), in each one
of these products the prime number t occurs at least in order µt

[p
t

]
. In

consequence for µ ≥ p, every number P
(ρ)
µ (αj) is divisible by a positive

integer Bp with

Bp ≥
∏
t∈P

tµt[
p
t
].

Regarding the construction of P ∗ (compare (41)) one has by(43)

Bp

∣∣ P ∗(ρ)(αj), j 6= j0, 0 ≤ ρ < q, Bp

∣∣P ∗(ρ)(αj0), 0 ≤ ρ < ν0.(51)

The same divisibility property can be proved for α0 := 0 so one has

Bp

∣∣ P ∗(0).(52)

For j = j0 and ν = ν0 it was shown in (46)

P ∗(ν0)(αj0) = P
(ν0)
p−1 (αj0) +

m∑
µ=p

P (ν0)
µ (αj0).(53)

The second term on the right is by the argument above again divisible by
Bp. For the first term one gets by (32) and (33)(

(p− 1)q + ν0

)
!
∣∣ P

(ν0)
p−1 (αj0).(54)
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From the relations (49) – (54) we conclude that

Λ∗ =
(
s0P

∗(0) +
h∑

j=1

ν0−1∑
ρ=0

s
(ρ)
j P ∗(ρ)(αj) +

j0−1∑
j=1

s
(ν0)
j P ∗(ν0)(αj)

)
+ s

(ν0)
j0

P ∗(ν0)(αj0)

can be divided by

D := g.c.d.
((

(p− 1) q + ν0

)
!,

∏
t∈P

tµt[
p
t
]
)

(55)

that means

D |Λ∗.(56)

One has

D ≥ g.c.d.
(
(p− 1)! ,

∏
t∈P

tµt[
p
t
]
)
≥ g.c.d.

( ∏
t∈P

t[
p−1

t
] ,

∏
t∈P

tµt[
p−1

t
]
)
.

This gives, because of µt ≤ q,

D ≥ exp
(1

q

∑
t≤p

µt
log t

t
· t ·

[p− 1
t

])
.(57)

Finally one gets from (50), (56) and (57) the lower bound

|Λ∗| ≥ |D| ≥ exp
(κ

q
p log p + O(p)

)
.(58)

8. An estimate of the remainder terms ∆(ν)(αj)

∆(x) was defined in (10). Since we have γn = 0 for 0 ≤ n < q · p, we get
for 0 ≤ ν ≤ q − 1

∆(ν)(x) = −
m∑

n=q·p
γn ·

∞∑
ρ=n+1

kρ ν!
(

ρ

ν

)
xρ−ν(59)

= −
m∑

n=q·p
γn · kn ν!

(
n

ν

)
xn−ν ·

∞∑
ρ=n+1

(
ρ
ν

)(
n
ν

) kρ

kn
· xρ−n.

We have Q ∈ Z[x] and Q is of degree q. Therefore exists an integer n0(Q)
so that

for all n > n0(Q),
∣∣Q(n)

∣∣ ≥ nq

2
.(60)

In (59) we have ρ > n ≥ q p. From (60) follows that if p is sufficiently large
we have ∣∣∣kρ

kn

∣∣∣ =
1

|Q(n + 1) . . . Q(ρ)|
≤

( 2
nq

)(ρ−n)
.(61)
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Since we can take the prime number p, chosen in (26) and (27), as large as
we want, we can consider only numbers x with the property

4|x|
p

<
1
2
.(62)

Then one gets the estimate∣∣∣ ∞∑
ρ=n+1

(
ρ
ν

)(
n
ν

) kρ

kn
xρ−n

∣∣∣ ≤ ∞∑
ρ=n+1

2ρ
(( 2

nq

)
|x|

)ρ−n
(63)

=
∞∑

ρ=n+1

2n
( 4

nq
|x|

)ρ−n

≤ 2n+3 · |x|
nq

≤ 2n+2|x|.

Let P∗ denote the polynomial

P∗(x) :=
m∑

n=q·p

∣∣γn kn

∣∣ xn.(64)

With (59) and (63) follows∣∣∆(ν)(x)
∣∣ ≤ 4 · 2m|x|P (ν)

∗
(
|x|

)
, 0 ≤ ν ≤ q − 1, |x| < p

8
.(65)

If p̃ and q̃ ∈ C[x] are polynomials,

p̃(x) :=
L∑

`=0

a` x`, q̃(x) :=
L∑

`=0

b` x`,

one writes

p̃(x) ≺ q̃(x) :⇔ for all `, 0 ≤ ` ≤ L, |a`| ≤ |b`|.(66)

From the definition of P in (4) and (28) it follows that there are constants
c1 > 0 and c2 > 0, which depend only on α1, . . . , αh so that we have

P∗(x) ≺
(
c1(1 + x)

)m(67)

and

P
(ν)
∗ (x) ≺ cm

2 (1 + x)m, 1 ≤ ν ≤ q − 1.(68)

For a p ∈ P that satisfies

8|αj | ≤ p, 1 ≤ j ≤ h(69)

we get from (65) and (68)∣∣∆(ν)(aj)
∣∣ ≤ cp

3, 1 ≤ j ≤ h.(70)

Here c3 > 0 is a constant, which depends on α1, . . . , αh and Q, but not on
p ∈ P.
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9. Proof of the linear independence over Q of the numbers
1, G(ν)(αj) (1 ≤ j ≤ h, 0 ≤ ν ≤ q − 1)

We have to show that for every non–zero vector in (11) the linear form

Λ := s0 G(0) +
q−1∑
ν=0

h∑
j=1

s
(ν)
j G(ν)(αj), G(0) = 1(71)

is different from zero.
In (14) we have seen that the linear forms Λ and Λ∗ are connected in the

following way:

Λ∗ = P ∗(0)Λ +
q−1∑
ν=0

h∑
j=1

s
(ν)
j ∆(ν)(αj).(72)

If H denotes the height of the vector in (11),

H := max
ν,j

(
|s(ν)

j |
)
,(73)

it follows from (72) with (58) and (70)∣∣P ∗(0)Λ
∣∣ ≥ |Λ∗| −

q−1∑
ν=0

h∑
j=1

∣∣s(ν)
j ∆(ν)(αj)

∣∣(74)

≥ exp
(κ

q
p log p + O(p)

)
−H exp(p · c4)

where c4 > 0 is a constant independent of p and H. From (74) one gets for
sufficiently large p (depending on H)

Λ 6= 0,(75)

which proves the linear independence over Q of the numbers 1, G(α1), . . . ,
G(q−1)(αh).
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