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On the ring of p-integers of a cyclic p-extension
over a number field

par Humio ICHIMURA

RESUME. Soit p un nombre premier. On dit qu'une extension
finie, galoisienne, N/F d’un corps de nombres F', & groupe de
Galois G, admet une base normale p-entiere (p-NIB en abrégé) si
Oy est libre de rang un sur Panneau de groupe O%[G| ou OF =
Or[1/p] désigne Panneau des p-entiers de F. Soit m = p° une
puissance de p et N/F une extension cyclique de degré m. Lorsque
Cm € F*, nous donnons une condition nécessaire et suffisante pour
que N/F admette une p-NIB (Théoréme 3). Lorsque (,, € F'* et
p 1 [F(¢m) ¢ F], nous montrons que N/F admet une p-NIB si et
seulement si N(()/F(¢n) admet p-NIB (Théoréme 1). Enfin, si
p divise [F(() @ F)], nous montrons que la propriété de descente
n’est plus vraie en général (Théoreme 2).

ABSTRACT. Let p be a prime number. A finite Galois extension
N/F of a number field F' with group G has a normal p-integral
basis (p-NIB for short) when O is free of rank one over the
group ring O%[G]. Here, O = Op[1/p] is the ring of p-integers
of F. Let m = p°® be a power of p and N/F a cyclic extension
of degree m. When (,, € F'*, we give a necessary and sufficient
condition for N/F to have a p-NIB (Theorem 3). When (,, & F'*
and pt [F(¢m) : F], we show that N/F has a p-NIB if and only if
N(¢m)/F((m) has a p-NIB (Theorem 1). When p divides [F((,) :
F], we show that this descent property does not hold in general
(Theorem 2).

1. Introduction

We fix a prime number p throughout this article. For a number field F,
let Op be the ring of integers, and O = Op[1/p] the ring of p-integers of
F'. A finite Galois extension N/F with group G has a normal integral basis
(NIB for short) when Oy is free of rank one over the group ring Op[G]. It
has a normal p-integral basis (p-NIB for short) when O, is free of rank one
over O%[G]. For a cyclic p-extension N/F unramified outside p, several
results on p-NIB are given in the lecture note of Greither [5]. Let N/F
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be such a cyclic extension of degree m = p®. In particular, it is known
(A) that when (,, € F*, it has a p-NIB if and only if N = F(e!/™) for
some unit € of O% ([5, Proposition 0.6.5]), and (B) that when (,, ¢ F*,
it has a p-NIB if and only if the pushed-up extension N ((p,)/F((n) has a
p-NIB ([5, Theorem 1.2.1]). Here, (,, is a fixed primitive m-th root of unity.
These results for the unramified case form a basis of the study of a normal
p-integral basis problem for Z,-extensions in Kersten and Michalicek [12],
[5] and Fleckinger and Nguyen-Quang-Do [2]. The purpose of this article
is to give some corresponding results for the ramified case.

Let m = p° be a power of p, F' a number field with {,, € F*. In Section
2, we give a necessary and sufficient condition (Theorem 3) for a cyclic
Kummer extension N/F of degree m to have a p-NIB. It is given in terms
of a Kummer generator of IV, but rather complicated compared with the
unramified case. We also give an application of this criterion.

When ¢, ¢ F* and p { [F((n) : F], we show the following descent
property in Section 3.

Theorem 1. Let m = p® be a power of a prime number p, F a number
field with ( & F*, and K = F((y,). Assume that p t [K : F]. Then, a
cyclic extension N/F of degree m has a p-NIB if and only if NK/K has a
p-NIB.

When p divides [K : F], this type of descent property does not hold in
general. Actually, we show the following assertion in Section 4. Let Cl)
be the ideal class group of the Dedekind domain O = Op[1/p].

Theorem 2. Let F' be a number field with (, € F* but (2 ¢ F*, and
K = F((y2). Assume that there exists a class C € Cly of order p which
capitulates in Q. Then, there exist infinitely many cyclic extensions N/F
of degree p> with N N K = F such that (i) N/F has no p-NIB but (ii)
NK/K has a p-NIB.

At the end of Section 4, we see that there are several examples of p and
F satisfying the assumption of Theorem 2.

Remark 1. In Theorem 1, the condition p t [K : F] means that [K : F]
divides p — 1. Further, p must be an odd prime as pt [K : F].

Remark 2. As for the descent property of normal integral bases in the
usual sense, the following facts are known at present. Let F' be a number
field with ¢, ¢ F*, and K = F((,). For a cyclic extension N/F of degree
p unramified at all finite prime divisors, it has a NIB if and only if NK/K
has a NIB. This was first proved by Brinkhuis [1] when p = 3 and F' is an
imaginary quadratic field, and then by the author [7] for the general case.
When p = 3, for a tame cyclic cubic extension N/F.it has a NIB if and



p-integer ring of a cyclic p-extension 781

only if NK/K has a NIB. This was first proved by Greither [6, Theorem
2.2] when p = 3 is unramified in F'/Q, and then by the author [9] for the
general case.

2. A condition for having a p-NIB

In [4, Theorem 2.1], Gémez Ayala gave a necessary and sufficient condi-
tion for a tame Kummer extension of prime degree to have a NIB (in the
usual sense). In [8, Theorem 2|, we generalized it for a tame cyclic Kummer
extension of arbitrary degree. The following is a p-integer version of these
results. Let m = p® be a power of a prime number p, and F' a number field.
Let 2 be an m-th power free integral ideal of O%. Namely, o™ t 2 for all
prime ideals p of O%. We can uniquely write

m—1
a= ]
i=1

for some square free integral ideals 2; of O% relatively prime to each other.
As in [4, 8], we define the associated ideals B; of 2 as follows.

m—1
(1) B = [[7™ 0<j<m-1).

=1
Here, for a real number x, [z] denotes the largest integer < x. By definition,
we have By = B; = Of.

Theorem 3. Let m = p° be a power of a prime number p, and F' a number
field with ¢, € F*. Then, a cyclic Kummer extension N/F of degree m
has a p-NIB if and only if there exists an integer a € O with N = F(al/m)
such that (i) the principal integral ideal aO% is m-th power free and (ii) the
ideals associated to a0 by (1) are principal.

The proof of this theorem goes through exactly similarly to the proof of
[8, Theorem 2]. So, we do not give its proof. (In the setting of this theorem,
the conditions (iv) and (v) in [8, Theorem 2] are not necessary as m is a
unit of O%.)

It is easy to see that the assertion (A) mentioned in Section 1 follows
from this theorem. The following is an immediate consequence of Theorem
3.

Corollary 1. Let m and F be as in Theorem 3. Let a € O be an integer
such that the principal integral ideal aO'% is square free. Then, the cyclic
extension F(a'/™)/F has a p-NIB.

Let Hr be the Hilbert class field of F'. The p-Hilbert class field H, of F'
is by definition the maximal intermediate field of Hr/F in which all prime
ideals of Op over p split completely. Let Clg be the ideal class group of
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F' in the usual sense, and P the subgroup of Clp generated by the classes
containing a prime ideal over p. Then, we naturally have Cl% = Clp/P.
Hence, by class field theory, Cl} is canonically isomorphic to Gal(Hg/F).
It is known that any ideal of O% capitulates in O% . This is shown exactly
similarly to the classical principal ideal theorem for Hp/F' given in Koch
[13, pp. 103-104]. Now, we can derive the following “capitulation” result
from Theorem 3.

Corollary 2. Let m and F be as in Theorem 3. Then, for any abelian
extension N/F of exponent dividing m, the pushed-up extension NHp/Hp
has a p-NIB. In particular, if by = |Cl| = 1, any abelian extension N/F
of exponent dividing m has a p-NIB.

Proof. For brevity, we write H = H/,. For each prime ideal £ of O, we
can choose an integer we € O such that £0} = weO) by the principal
ideal theorem mentioned above. Let €1, - , €, be a system of fundamental
units of O, and ¢ a generator of the group of roots of unity in H. Let
N/F be an arbitrary abelian extension of exponent dividing m. Then, we
have

N = F(ai/mv T 7a;/m)

for some a; € Of. We see that NH is contained in
N=H (Cl/m7 63/1717 W}:/m ‘ 1<i<r, gla;- ..as> .

Here, £ runs over the prime ideals of O% dividing a;---as. As H/F is
unramified, the principal ideal £0% = weO) is square free. Hence, by
Corollary 1, the extensions

(2)  H(VY™)/H, H(e/™)/H, H(wy™)/H with £a;--a,
have a p-NIB. As the ideal weO) = £0); is square free, the extension

H (w}:/ "™)/H is fully ramified at the primes dividing £ and unramified at
other prime ideals of Q. Therefore, we see from the choice of ¢ and ¢;
that the extensions in (2) are linearly independent over H and that the
ideal generated by the relative discriminants of any two of them equals
O'y. Therefore, the composite N/H has a p-NIB by a classical theorem on
rings of integers (cf. Frohlich and Taylor [3, III (2.13)]). Hence, NH/H
has a p-NIB as NH C N. O

Remark 3. For the ring of integers in the usual sense, a result correspond-
ing to this corollary is obtained in [8, Theorem 1].

3. Proof of Theorem 1

The “only if” part follows immediately from [3, III, (2.13)].
Let us show the “if” part. Let m = p°, F', K be as in Theorem 1. Here,
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p is an odd prime number (see Remark 1). Let N/F be a cyclic extension
of degree m, L = NK, and G = Gal(L/K) = Gal(N/F). Assume that
0} = O%|G] - w for some w € 0. To prove that N/F has a p-NIB, it
suffices to show that we can choose W € O such that 07 = O [G]- W.
Actually, when this is the case, we easily see that O = OR[G] - W. Let
Ap = Gal(L/N) = Gal(K/F) and ¢ = |Ap| (> 2). As pt[K : F], £ divides
p — 1 (see Remark 1). We fix a primitive m-th root of unity: ¢ = (,,. Let
o be a fixed generator of the cyclic group Ap of order ¢, and let k € Z be
an integer with (¢ = (", which is uniquely determined modulo m. For an
integer x € Z, let ], be the class in Z/p’ = Z/p/Z represented by z. For

1 < f <, the class [k],; in the multiplicative group (Z/ pf)* is of order £.
We put

ty=p(p -1/t (e 2).
For each 1 < f < e, we choose integers rf1,--+,7f:, € Z so that their

classes modulo pf form a complete set of representatives of the quotient
(Z/p?)* /{[k],s). Then, we have

(3)  A{[0lms [P Trpi? M [ 1< f<e, 1<i<ty, 1<j< €} =Z/m.
For brevity, we put
a(f, i, j) = p*rpi =t

Fixing a generator g of G, we define the resolvents ag and ay; ; of w by

m—1 m—1

A _ . A

ao= Y w’ and g =y (W
A=0 A=0

foreach 1 < f <e, 1 <i<tpand1 < j <L By (3), we see that the

determinant of the m x m matrix of the coefficients of w9 in the above m
equalities is divisible only by prime ideals of Ok dividing p. Hence, it is a
unit of O%. Therefore, from the assumption 0} = O%[G] - w, we obtain

(4) O}, = Ogag+ Y Ofcayij.
f’i?j

Let C’)’L(O) = O, and let (’)’L(f’i’j) be the additive group of integers =z € O],
such that 29 = ¢*(F4d)g. As 7 = ¢, we see that

(5) OIL(f’i’j) — (O/L(fﬂ',l))aj_l‘

As is easily seen, we have ag € O and oy, ; € (’)’L(f’i’j). From O] =
O%[G] - w, we see that

0, = O = Ofgag and OLY™) = Ofcay; = o).
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Here, the last equality holds by (5). Therefore, from (4), we obtain
(6) 1 =0+ Okafii.

f7 i’ j
Now, we put

—1+Z@f21 _1+ZTrL/N th11> GON
fitsg fii

(f1i,9)

Here, Try/n denotes the trace map. As afl 1 €0} , we have

W =1+ Z ¢alfi ’J)Aa?,]i,_ll
f7 i? ]
for0 <A <m-—1. We see that the determinant of the m x m matrix of
the coefficients of a9 7 11 in the above m equalities is a unit of O’. Hence,
by (6), we obtain O} = O%[G]-W. Therefore, as W € O, N/F has a
p-NIB. O

4. Proof of Theorem 2

Let F', K be as in Theorem 2, and Ap = Gal(K/F). As (, € F*, we can
choose a generator o of the cyclic group Ar of order p so that ng = C;z
with k = 3 or 1 + p according to whether p =2 or p > 3. When p > 3, we

put
p—1

D => rlo? 17 (€ Z|AF]).
=0
The following lemma is an exercise in Galois theory.
Lemma. Under the above setting, let x be a nonzero element of K. We
put

(7)

Let L = K(a'/?*). Assume that a ¢ (K*)P. Then, L/F is an abelian
extension of type (p, p?). Hence, there exists a cyclic extension N/F of
degree p*> with NN K =F and L = NK.

Proof of Theorem 2. Let C be as in Theorem 2, and Q a prime ideal of
O contained in C. By the assumption of Theorem 2, Q0% = O is a
principal ideal. Let 8 = aO% be an arbitrary principal prime ideal of O}
of degree one in K/F relatively prime to Q, and let p = P N O%. Then, p
is a prime ideal of O splitting completely in K. Let 2 = o3, and define
an integer a by (7). As QO = SO’ is invariant under the action of o, we
have

{ a3, for p = 2,
a =

p—1 p—2 p—2 p—1
D = g0 et TR for p > 3.

p—1 p—2 p—2 p—1
a0 = acd® 0% or " o R o gL O
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according to whether p =2 or p > 3. Here,
T=14+k4---+rPL

For p > 3, since k! = 1+ ip, T = p mod p?, the last term equals

p—1 ,

H o D) g xP* 0

=0
for some X € Of. We may as well replace a with a/3* (resp. a/X?") for
p =2 (resp. p > 3). Then, it follows that

p—1
(8) aO’K _ OéOé3JO/K or H aUp_l_Z(lJriP)IBPO/K

i=0
according to whether p = 2 or p > 3. In particular, we see that a & (K*)P
as p splits completely in K and P = aO’ is a prime ideal of O over p.
Then, by the lemma, L = K(al/pQ) is of degree p? over K, and there exists
a cyclic extension N/F of degree p? with NN K = F and NK = L. We see
from (8) and Theorem 3 that L/K has a p-NIB. Let us show that N/F has
no p-NIB. For this, assume that it has a p-NIB. Let N; be the intermediate
field of N/F of degree p. By the assumption, N;/F has a p-NIB. We see
from (7) and x = 1 mod p that Ny K = K (b'/?) with

p—1
b=xx% - -2°

As b € Of and ¢, € F*, it follows that Ny = F((¢3b)"/?) for some 0 <
s < p—1. Since 2O = PAO), we have bOf = pQP. As Ni/F has
a p-NIB, it follows from Theorem 3 that there exists an integer ¢ € O%
with Ny = F(c!/?) such that cO/, is p-th power free. Hence, ¢ = (G yP
for some 1 <r < p—1and y € F*. We have cO% = p"(yQ")P. As the
integral ideal cO’ is p-th power free, we must have yQ" = O%. This is a
contradiction as the class C containing £ is of order p. O

We see in the below that there are many examples of p and F' satisfying
the assumption of Theorem 2.

Let p = 2. Let g1, g2 be prime numbers with g1 = g2 = —1 mod 4 and
Q1 # q2, and let F = Q(y/—q1¢2). Then, the imaginary quadratic field F'
satisfies the assumption of Theorem 2. The reason is as follows. Let 9 be
the unique prime ideal of O over ¢i. We see that the class C = [Q] €
Cl} is of order 2 from genus theory. Let K = F(v/—1) = F(,/qi¢q2) and
k = Q(y/q1q2). By genus theory, the class number of k in the usual sense
is odd. Hence, we have q1O; = (aO})? for some integer a. Therefore,
Q0 = a0, and the class C capitulates in O.

Let us deal with the case p > 3. Let p be an odd prime number, k a real
quadratic field in which p remains prime, F' = k((p), and K = F'((,2). Let
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B;1/Q be the unique cyclic extension of degree p unramified outside p, and
k1 = kB;1. Clearly, we have K = FBj. In the tables in Sumida and the
author [10, 11], we gave many examples of p and k having an ideal class
C € Cli, of k which is of order p and capitulates in k;. (More precisely, real
quadratic fields in the rows “ng = 0” and “ng = 1”7 of the tables satisfy the
condition.) For such a class C, the lift Crp € Clp to F is of order p and it
capitulates in K. As p remains prime in k, there is only one prime ideal of
F (resp. K) over p, and it is a principal ideal. Hence, we have Clp = Cl}
and Clg = Cl). Thus, we obtain many examples of p > 3 and F satisfying
the assumption of Theorem 2.
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