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A system of simultaneous congruences arising

from trinomial exponential sums

par Todd COCHRANE, Jeremy COFFELT et Christopher

PINNER

Résumé. Pour p un nombre premier et ` < k < h < p des entiers
positifs avec d = (h, k, `, p− 1), nous montrons que M , le nombre
de solutions simultanées x, y, z, w dans Z∗p de xh + yh = zh + wh,
xk + yk = zk + wk, x` + y` = z` + w`, satisfait à

M ≤ 3d2(p− 1)2 + 25hk`(p− 1).

Quand hk` = o(pd2), nous obtenons un comptage asymptotique
précis de M . Cela conduit à une nouvelle borne explicite pour des
sommes d’exponentielles tordues∣∣∣∣∣
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χ(x)e2πif(x)/p
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8 ,

pour des trinômes f = axh + bxk + cx`, et à des résultats sur la
valeur moyenne de telles sommes.

Abstract. For a prime p and positive integers ` < k < h < p
with d = (h, k, `, p−1), we show that M , the number of simultane-
ous solutions x, y, z, w in Z∗p to xh+yh = zh+wh, xk+yk = zk+wk,
x` + y` = z` + w`, satisfies

M ≤ 3d2(p− 1)2 + 25hk`(p− 1).

When hk` = o(pd2) we obtain a precise asymptotic count on M .
This leads to the new twisted exponential sum bound∣∣∣∣∣
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for trinomials f = axh + bxk + cx`, and to results on the average
size of such sums.

Manuscrit reçu le 30 mars 2004.
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1. Introduction

For a prime p, integer polynomial f and multiplicative character χ
mod p, define the complete exponential sum

S(χ, f) =
p−1∑
x=1

χ(x)e2πif(x)/p.

Here we consider the case of trinomials

(1.1) f = axh + bxk + cx`, 0 < ` < k < h < p, p - abc.

From Weil [6]
|S(χ, axh + bxk + cx`)| ≤ hp

1
2 ,

and in [2] and [3] we showed the Mordell [5] type bounds

(1.2) |S(χ, axh + bxk + cx`)| ≤ 9
1
9 (hk`)

1
9 p

5
6 ,

(1.3) |S(χ, axh + bxk + cx`)| ≤ (k`)
1
4 p

7
8 .

Akuliničev [1] has also given a bound for a special class of trinomials.
The result (1.3) arises from the [3] bound

(1.4) |S(χ, axh + bxk + cx`)| ≤ p
3
8 M

1
4 ,

where M denotes the number of solutions x, y, z, w in Z∗p to

xh + yh = zh + wh,

xk + yk = zk + wk,

x` + y` = z` + w`.

It is straightforward that M is also the average value of |S(χ0, f)|4 as
a, b, c run through all of Zp, where χ0 is the principal character on Zp.
Ignoring the first equation it is not hard to show that

(1.5) M ≤ (k`)(p− 1)2,

giving (1.3). Utilising the first equation we showed in [3] the slight refine-
ment

(1.6) M ≤ d

(k, `)
(k`)(p− 1)2,

where
d = (h, k, `, p− 1).

Here we obtain a more precise bound, giving an asymptotic count on M
when (hk`)/d2 = o(p). We distinguish by M∗ the number of solutions with

xd = zd, yd = wd, or xd = wd, yd = zd,
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and when 2d|(p− 1) and h/d, k/d, `/d are all odd

xd = −yd, zd = −wd.

Observe that

M∗ =

{
3d2(p− 1)2 − 3d3(p− 1) if 2d|(p− 1) and `/d, k/d, h/d all odd,
2d2(p− 1)2 − d3(p− 1) otherwise.

We show here

Theorem 1.1. For any prime p and integers 0 < ` < k < h < p,

0 ≤ M −M∗ ≤ (17h + 8k − 19`)k`(p− 1).

Thus, the average value of |S(χ0, f)|4 is on the order d2p2 when hk` � d2p.
We also have the upper bound

(1.7) M ≤ 3d2(p− 1)2 + 25(hk`)(p− 1),

for arbitrary h, k, `. In the trivial cases ` = d and k = 2d or 3d straight-
forwardly M = M∗. Otherwise (1.7) certainly improves upon (1.5) when
h < p/100, and (1.6) as long as h(k, `)/d < p/100. From (1.4) and (1.7) we
deduce the trinomial exponential sum bound:

Corollary 1.1. For any trinomial (1.1) and multiplicative character χ
(mod p),

|S(χ, axh + bxk + cx`)| ≤ 3
1
4 d

1
2 p

7
8 +

√
5(hk`)

1
4 p

5
8 .

The bound is nontrivial provided d � p1/4 and hk` � p3/2 and improves on
the Mordell type bounds (1.2), (1.3) when hk` � d9/2p3/8, and on the Weil
bound when h � max{d1/2p3/8, (k`)1/3p1/6}. The upper bound in (1.7) is
essentially best possible, although the constant 25 can likely be sharpened.
The following example shows that a bound of the form

M −M∗ ≤ θ(hk`)(p− 1)

can not hold with a fixed θ < 1.

Lower Bound Example. For any positive integer m ≥ 5 and prime p ≡ 1
(mod m), the exponents

` = 1, k =
(p− 1)

m
, h =

2(p− 1)
m

,

have

M ≥
(

1− 1
2m

)
(hk`)(p− 1),



62 Todd Cochrane, Jeremy Coffelt, Christopher Pinner

and hence

M −M∗ ≥
(

1− 1
2m

− m2

(p− 1)

)
(hk`)(p− 1).

We prove this in Section 3.

Remark 1. If χ
p−1

d 6= χ0 then S(χ, f) = 0 for any f = axh + bxk + cx`; to
see this simply replace x by xu

p−1
d where χ

p−1
d (u) 6= 1.

If χ
p−1

d = χ0 then χ = χd
1 for some character χ1 and we obtain the

following expression for the average value of |S(χ, f)|4 over the f = axh +
bxk + cx`:

p−3
∑

a,b,c∈Zp

|S(χ, f)|4 =
∑
M

χ(xyz−1w−1)

=
∑
M∗

χ1(xdydz−dw−d) +
∑

M−M∗

χ(xyz−1w−1)

= 2d2(p− 1)2 + 25θhk`p

with |θ| ≤ 1, unless 2d|(p − 1), `/d, k/d, h/d are all odd, and χ2 = χ0, in
which case the constant 2 on the right is replaced by 3; here M and M∗

are the sets of points contributing to M and M∗ respectively.
Using the Hölder inequality,

N−1

(
N∑

i=1

ai

)2

≤
N∑

i=1

a2
i ≤

(
N∑

i=1

ai

)2/3( N∑
i=1

a4
i

)1/3

,

and the fact that

p−3
∑

a,b,c∈Zp

|S(χ, f)|2 = d(p− 1),

for χ
p−1

d = χ0, we obtain the following estimate for the average value of
|S(χ, f)|:
(1.8)

1√
2

√
d(p− 1)

(
1− 25hk`p

4d2(p− 1)2

)
≤ p−3

∑
a,b,c∈Zp

|S(χ, f)| ≤
√

d(p− 1)

for hk` � d2p. Again the constant 1√
2

on the left must be replaced by 1√
3

in the exceptional case mentioned above.
Remark 2. By Weil’s fundamental work we know that S(χ, f) = −ω1

−· · ·−ωh for some complex numbers ωi, each of modulus
√

p, and so if the
arguments of the ωi are randomly distributed one might expect an upper
bound of the type |S(χ, f)| � (hp)

1
2
+ε. It is interesting to note that upper

bounds of the type (1.3) and Corollary 1.1 are actually much sharper than
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this bound for large classes of trinomials. For instance, from (1.3) we have
the uniform upper bound,

|S(χ, axh + bx2 + cx)| ≤ 21/4p7/8,

which is sharper than
√

hp for h � p3/4. It would be of interest to under-
stand how the extra cancellation in the sum of the ωi is occurring in such
cases.

2. Proof of Theorem 1

Dividing by w we can clearly write M = (p− 1)|M0| where M0 denotes
the solutions x, y, z in Z∗p to

xh + yh − zh − 1 = 0,

xk + yk − zk − 1 = 0,(2.1)

x` + y` − z` − 1 = 0.

We write M∗
0 for the solutions to (2.1) with

xh = xk = x` = 1, yh = zh, yk = zk, y` = z`,

or
yh = yk = y` = 1, xh = zh, xk = zk, x` = z`,

or
xh = −yh, xk = −yk, x` = −y`, zh = zk = z` = −1,

the last of these contributing no solutions unless h/d, k/d, `/d are all odd
and (p−1)/d is even. Straightforwardly these correspond to solutions with
respectively xd = 1, yd = zd, or yd = 1, xd = zd, or zd = −1, xd = −yd,
and hence M∗ = |M∗

0 |(p− 1).
We recall Theorem 1 of Wooley [7]: If fi(x1, ..., xk) are polynomials in

Z[x] of degree di, then the number of simultaneous solutions x1, ..., xk in Zp

to fi(x1, ..., xk) = 0, i = 1, ..., k with det
(

∂fi

∂xj

)
6= 0 is bounded by d1 · · · dk.

Hence we have

M −M∗ ≤ (hk`)(p− 1) + |M1|(p− 1)

where M1 denotes the solutions to (2.1), not in M∗
0 , and with

xyz

hk`
det

hxh−1 hyh−1 −hzh−1

kxk−1 kyk−1 −kzk−1

`x`−1 `y`−1 −`z`−1

 = det

xh yh −zh

xk yk −zk

x` y` −z`


= det

xh yh 1
xk yk 1
x` y` 1

 = 0
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Thus for these solutions we obtain the additional equation

(2.2) F1 := xh(yk − y`) + xk(y` − yh) + x`(yh − yk) = 0.

Since zk = xk + yk − 1 and z` = x` + y`− 1 the solutions to (2.1) must also
satisfy

F2 := (xk + yk − 1)`/e − (x` + y` − 1)k/e = 0

where e = (`, k). Observe that for a given pair x, y the number of solutions
(x, y, z) is at most d (we obtain zh, zk, z` and hence zd from (2.1)). Thus
applying Wooley again to the pair (xy)−`F1, F2 we obtain that

|M1| ≤ (h + k − 2`)
k`

e
d + |M2|

where M2 denotes the solutions in M1 which additionally have

(2.3) det

(
x∂F1

∂x y ∂F1
∂y

x∂F2
∂x y ∂F2

∂y

)
= 0.

To avoid rewriting the same expressions we define the following polyno-
mials in y:

(2.4) ∆ := yk − y`

and

U := (h− k)(yh − y`), H := (k − h)yk+h + (`− k)yk+` + (h− `)yh+`,

(2.5)

V := (`− h)(yh − yk), L := (k − `)yh − (h− `)yk + (h− k)y`,

and, noting the highest and lowest degree terms,

A := (y` − 1)H + y`U∆(2.6)

= (h− k)yk+h + (k − `)yh+2` + · · ·+ (k − `)yk+` + (h− k)y3`,

B := −(yk − 1)H − ykU∆

= −(y` − 1)H + y`V ∆ = −(k − `)yh+k+` + · · · − (k − `)yk+`,

C := (yk − 1)H − ykV ∆ = (k − `)y2k+h + · · ·+ (k − `)y`+k.

We note the relations

V y` + Uyk + H = 0,(2.7)

Ayk−` + B(1 + yk−`) + C = 0,(2.8)

and
(2.9)
B2−AC = (A+B)(Ayk−`+B), A+B = −∆Ly`, B+Ayk−` = −∆Hy−`,
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as can be readily checked using Maple. Using the relation F1 = 0 we have

x
∂F1

∂x
= hxh(yk − y`) + kxk(y` − yh) + `x`(yh − yk)

= xkU + x`V,

∆y
∂F1

∂y
= (yk − y`)

(
xh(kyk − `y`) + xk(`y` − hyh) + x`(hyh − kyk)

)
= xk

(
(yk − y`)(`y` − hyh)− (y` − yh)(kyk − `y`)

)
+ x`

(
(yk − y`)(hyh − kyk)− (yh − yk)(kyk − `y`)

)
= (xk − x`)H.

Using that zk = xk + yk − 1 and z` = x` + y` − 1 gives

x
∂F2

∂x
=

`

e
(xk + yk − 1)

`
e
−1kxk − k

e
(x` + y` − 1)

k
e
−1`x`

=
k`

e

zk`/e

(xk + yk − 1)(x` + y` − 1)

×
(
xk(x` + y` − 1)− x`(xk + yk − 1)

)
=

k`

e
zk`/e−k−`

(
zk(y` − 1)− z`(yk − 1)

)
,

∆y
∂F2

∂y
= ∆

k`

e

zk`/e

(xk + yk − 1)(x` + y` − 1)

×
(
yk(x` + y` − 1)− y`(xk + yk − 1)

)
= −k`

e
zk`/e−k−`∆

(
zky` − z`yk

)
.

Thus we obtain from the determinant (2.3) that
(2.10)(
zk(y` − 1)− z`(yk − 1)

)
(xk−x`)H +∆

(
xkU + x`V

)(
zky` − z`yk

)
= 0.

Dividing by (xz)`, and using (2.6) for the coefficients obtained, gives one
more equation

(2.11) F3 := A(xz)k−` + B(xk−` + zk−`) + C = 0.

From (2.8) this can also be written

(2.12) F3 = A((xz)k−` − yk−`) + B(xk−` + zk−` − 1− yk−`) = 0.

Notice that the solutions in M∗
0 with ∆ 6= 0 have {xk−`, zk−`} = {1, yk−`}.

These are precisely the solutions to (2.12) which are independent of the y
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dependence A,B. From (2.11) we obtain the relation

(2.13) zk−`(Axk−` + B) = −(Bxk−` + C).

From (2.6) it is clear that y`+min{k,2`} divides F3. Applying Wooley again
to F3/y`+min{k,2`}, xk + yk − zk − 1, x` + y` − z` − 1, we obtain:

|M2| ≤ (h + k − 5` + 2 max {k, 2`})k` + |M3|+ |M4|

where M3, M4 are solutions M2 with

(2.14) det

 x
(k−`)

∂F3
∂x − z

(k−`)
∂F3
∂z

y
(k−`)

∂F3
∂y

xk zk yk

x` z` y`

 = 0,

with ∆(Axk−` + B) = 0 for M3 and ∆(Axk−` + B) 6= 0 for M4. Observe
that for each y there will be at most k`/e values of x (using F2 = 0 as
long as at least one of yk − 1 and y` − 1 is non-zero, and using F1 = 0 to
obtain xk−` = 1 when yk = y` = 1 and yh 6= 1 since we are not in M∗

0 ).
If Axk−` + B = 0, then Bxk−` + C = 0 and, eliminating xk−` we obtain
B2−AC = 0. From (2.9) this gives ∆HL = 0 and the number of values of
y in M3 is at most (k − `) + (h− `) + (h− `). Hence

|M3| ≤ (2h + k − 3`)
k`

e
d.

For M4 observe from (2.12) that if xk−` = 1 then zk−` = yk−` (we know
that A+B 6= 0 else we would be in M3). Since yk−` 6= 1 in M4, the relations

(2.15) z` =
xk−`(y` − 1)− (yk − 1)

xk−` − zk−`
, x` =

zk−`(y` − 1)− (yk − 1)
xk−` − zk−`

,

arising from the k and ` equations of (2.1), then give z` = y`, x` = 1,
zk = yk, xk = 1. But from F1 = ∆(xh − 1) = 0 this forces xh = 1,
yh = zh and we obtain no solutions not in M∗

0 . Likewise if xk−` = yk−`

then Ayk−` + B 6= 0 and zk−` = 1, and z` = −1, zk = −1, x` = −y`,
xk = −yk, and F1 = ∆(xh + yh) = 0 giving xh = −yh, and we obtain no
solutions not in M∗

0 .
Hence, writing X = xk−`, Y = yk−`, we may assume henceforth for

points in M4 that

(2.16) X 6= 1, X 6= Y and k 6= 2`.

The assumption k 6= 2` follows from the observation that if k = 2` then
(x` − 1)(y` − 1) = 1 (as in (3.1)) and so either X = 1 or Y = 1, the
latter implying ∆ = 0 whence we are in M3. Defining A1 := y

(k−`)
∂A
∂y ,

B1 := y
(k−`)

∂B
∂y , C1 := y

(k−`)
∂C
∂y , using (2.13) to eliminate zk−`, and invoking
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relation (2.9), we have

x

(k − `)
∂F3

∂x
= A(xz)k−` + Bxk−` =

(B2 −AC)X
AX + B

=
HL∆2X

AX + B

− z

(k − `)
∂F3

∂z
= −(A(xz)k−` + Bzk−`) = BX + C,

and using successively (2.8), (2.13) to eliminate zk−` and (2.8) again,

− y

(k − `)
∂F3

∂y
= A1(xz)k−` + B1(xk−` + zk−`) + C1

= A1((xz)k−` − yk−`) + B1(xk−` + zk−` − 1− yk−`)

+ (B + C)

= (B1A−BA1)
(X − 1)(X − Y )

AX + B
+ (B + C).

Thus from the determinant condition (2.14), and writing Xz` − zk =
X(y` − 1)− (yk − 1), we see that

−HL∆2X

(
zky` − z`yk

x`

)
equals

− (BX + C)(AX + B)(Xy` − yk) + [(B1A−A1B)(X − 1)(X − Y )

+(B + C)(AX + B)]
(
X(y` − 1)− (yk − 1)

)
= (X − 1)

[
(B1A−A1B)(X − Y )

(
X(y` − 1)− (yk − 1)

)
−(AX + B)

(
By`(X − Y ) + (B + C)

)]
,

while from (2.10)

−∆(XU + V )
(

zky` − z`yk

x`

)
= H(X − 1)(X(y` − 1)− (yk − 1)).

Thus since X 6= 1 we must have T1 = T2 where

T1 := H2L∆X
(
X(y` − 1)− (yk − 1)

)
and, using from (2.8) and (2.9) that −(B + C)(AY + B) = Y (A + B)
× (AY + B) = Y HL∆2,
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T2 := (XU + V )
[
(B1A−A1B)(X − Y )

(
X(y` − 1)− (yk − 1)

)
−(AX + B)

(
By`(X − Y ) + (B + C)

)]
= (XU + V )

{
(X − Y )

[
(B1A−A1B)(X(y` − 1)− (yk − 1))

−By`(AX + B)− (B + C)A
]

+ Y HL∆2
}

.

Now

T1 = H2L∆X
(
(y` − 1)(X − Y )− y−`∆

)
= (X − Y )T3 −H2L∆2Y y−`

with
T3 := H2L∆

(
(y` − 1)X − y−`∆

)
.

Also, using (2.7),

T2 = (X − Y )T4 −H2L∆2Y y−`

with

T4 :=
[
(B1A−A1B)

(
X(y` − 1)− (yk − 1)

)
−By`(AX + B)− (B + C)A

]
(XU + V ) + Y HL∆2U

= ∆(aX − b)(XU + V ) + Y HL∆2U

where

a :=
(
(B1A−A1B)(y` − 1)−ABy`

)
/∆,

b :=
(
(B1A−A1B)(yk − 1) + B2y` + (B + C)A

)
/∆

(one can verify by Maple that a and b are polynomials). Since X 6= Y we
obtain T3 = T4, a quadratic relation in X, and after multiplying by (k− `),

(2.17) αx2(k−`) + βxk−` + γ = 0,

with (using Maple to expand and identify the highest and lowest degree
terms)

α := (k − `)Ua = (h− k)2(k − `)(k − 2`)yk+4`(y3h−2` + · · ·+ 1),

β := (k − `)(V a− Ub−H2L(y` − 1))

= −(h− k)2(k − `)(k − 2`)yk+4`
(
y3h+k−3` + · · ·+ 1

)
,

γ := (k − `)(−V b + H2L∆y−` + Y HLU∆)

= (h− `)`(k − h)(k − `)y3`+2k(y3h−2` + · · ·+ 1).
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Observing that Bβ = Cα + Aγ (as can be checked on Maple), the relation
(2.13) and quadratic (2.17) yield the equations

(2.18) F4 := α(xz)k−` − γ = 0

and

(2.19) α
(
xk−` + zk−`

)
= −β.

One can use Maple to obtain explicit expressions for the polynomials α
and γ

α = (h− k)(yh − y`)y`f(h, k, `),

γ = (h− `)(yh − yk)y`f(h, `, k),

with

f(h, k, `) = (k − `)(h− k)(k − 2`)
(
y2h+k+` − yk+2`

)
+ k(h− `)(k − `)

(
y2h+2` − y2k+`

)
+ (2h3 + 2k3 + 14hk`− k`2 − h`2 − 3hk2 − 3h2k

− 5h2`− 5k2`)
(
yh+k+2` − yh+k+`

)
+ h(h− `)(k − `)

(
y2k+2` − y2h+`

)
+ (2`− h)(h− `)(h− k)

(
yh+2k+` − yh+2`

)
+ (` + k − h)(h− `)(h− k)

(
yh+3` − yh+2k

)
− (h + `− k)(h− k)(k − `)

(
yk+3` − y2h+k

)
.

Thus applying Wooley again to F4/yk+4`, xk + yk− zk− 1, x` + y`− z`− 1,
we have

|M4| ≤ (3h + 2k − 4`)k` + |M5|
where solutions in M5 have an additional zero determinant (of the form
(2.14) with F4 in place of F3).

Writing α1 = y
(k−`)

∂α
∂y , γ1 = y

(k−`)
∂γ
∂y , we have

αx

(k − `)
∂F4

∂x
= α2(xz)k−` = γα,

− αz

(k − `)
∂F4

∂z
= −α2(xz)k−` = −γα,

αy

(k − `)
∂F4

∂y
= α(α1(xz)k−` − γ1) = α1γ − αγ1,
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and thus for solutions in M5 we gain the relation

(2.20) αγ
(
(zky` − z`yk) + (xky` − x`yk)

)
+(α1γ−αγ1)(xkz`−x`zk) = 0.

When zk−` 6= xk−` and α 6= 0 we use (2.15) to rewrite (zky` − z`yk) +
(xky` − x`yk) as

z`x`

(
zk−`y` − yk

x`
+

xk−`y` − yk

z`

)
= (xkz` − zkx`)

(
zk−`y` − yk

zk−`(y` − 1)− (yk − 1)
+

xk−`y` − yk

xk−`(y` − 1)− (yk − 1)

)
= (xkz` − zkx`)

T5

T6

where using (2.18) and (2.19)

T5 := 2γy`(y` − 1) + β(yk(y` − 1) + y`(yk − 1)) + 2αyk(yk − 1),

T6 := γ(y` − 1)2 + β(y` − 1)(yk − 1) + α(yk − 1)2.

Thus, by (2.20)

F5 := αγT5 + (α1γ − αγ1)T6 = 0,

a relation which only depends upon the variable y.
If α = 0 then γ = 0 (from (2.18) both are zero or non-zero) and y will

still be a zero of F5. If zk−` = xk−` and α 6= 0 then from (2.19) and (2.18)

(2.21) xk−` = −β/2α, β2 − 4αγ = 0,

while (2.20) gives αγ
(
z` + x`

)
(xk−`y` − yk) = 0 and, since xk−` 6= yk−`,

we must have x` = −z`, xk = −zk, and 2xk = 1− yk, 2x` = 1− y`. Hence
T6 = 4x2`(γ + βxk−` + αx2(k−`)) = 0 by (2.17), and T5 = 8x2`(γ + βxk−` +
αx2(k−`))−2x`

(
2γ + β(1 + xk−`) + 2αxk−`

)
= 0, by (2.17) and (2.21), and

these solutions are also included in F5 = 0. Hence all solutions in M5 have
y value satisfying F5 = 0, where for each y there are at most k`

e d ≤ k`
choices of x and z as we saw in the bound for M3.

Again appealing to Maple we obtain

F5 = −`(`−h)(k−h)5(2`−k)(`−k)3(`+h−k)∆y4k+11`
(
y9h+k−7` + · · ·+ 1

)
a nonzero polynomial by our assumption (2.16). Since the values where
∆ = 0 are already accounted for in M3 and for each choice of y there are
at most k` choices for (x, z) (as noted above in the estimate for |M3|) we
have finally

|M5| ≤ (9h + k − 7`)k`,

and
M −M∗ ≤ (17h + 8k − 19`)k`(p− 1).
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3. Proof for the Example.

Let m be a positive integer with m ≥ 5, p a prime with p ≡ 1 (mod m),
and (h, k, `) = (2(p− 1)/m, (p− 1)/m, 1).

Clearly M = (p− 1)M0 where M0 counts the solutions x, y, z in Z∗p to

(3.1) xk + yk = zk + 1, x2k + y2k = z2k + 1, x + y = z + 1.

From the first two equations we have zk = xkyk and (xk − 1)(yk − 1) = 0
and so xk = 1, yk = zk or yk = 1, xk = zk. Now if xk = 1, yk = zk then
y = ξz for the k values ξ with ξk = 1, the remaining equation requiring
(x+zξ) = (z+1). Thus for ξ = 1 we have the (p−1) solutions x = 1, z = y,
and for the (k − 1) remaining ξ 6= 1 we have solutions z = (x− 1)/(1− ξ),
y = ξz for the (k − 1) values of x 6= 1 with xk = 1. A similar count is
obtained when yk = 1 and xk = zk. Hence

M0 = 2(p− 1) + 2(k − 1)2 −M ′

where M ′ is the number of solutions to x+y = z+1 with xk = yk = zk = 1,
so that m3M ′ equals the number of solutions to xm + ym = zm + 1. By
Theorem 6.37 of [4]

m3M ′ ≤ p2 + (m− 1)3p,

and, for m ≥ 5,

M0 ≥ 2(k − 1)2 + 2(p− 1)− p2/m3 − p >

(
2− 1

m

)
k2.
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