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A system of simultaneous congruences arising
from trinomial exponential sums

par TobbD COCHRANE, JEREMY COFFELT et CHRISTOPHER
PINNER

RESUME. Pour p un nombre premier et £ < k < h < p des entiers
positifs avec d = (h, k, ¢, p — 1), nous montrons que M, le nombre
de solutions simultanées z,y, z, w dans Z; de zh oyt = 2h +wh,

2k + gk =2k ok, 2l + yf = ¢+ wt, satisfait &
M < 3d*(p —1)% 4 25hké(p — 1).

Quand hkf = o(pd?), nous obtenons un comptage asymptotique
précis de M. Cela conduit a une nouvelle borne explicite pour des
sommes d’exponentielles tordues

p—1
> x(@) | < 3hdipE 4 VE(hke)pt,
=1

pour des trinémes f = az" + ba* + czf, et & des résultats sur la
valeur moyenne de telles sommes.

ABSTRACT. For a prime p and positive integers £ < k < h < p
with d = (h, k, ¢, p—1), we show that M, the number of simultane-
ous solutions z, y, z, w in Z;, to eyl = 2wl aF4yF = 2Fpwk,
xf +yf = 2¢ + w?, satisfies

M < 3d*(p — 1) + 25hkl(p — 1).

When hk{¢ = o(pd?) we obtain a precise asymptotic count on M.
This leads to the new twisted exponential sum bound

p—1

Z x(z)e? i @)/p

=1

< 3%d2p% + VB(hkl)ip?,

for trinomials f = az” + bx* + cxf, and to results on the average
size of such sums.

Manuscrit regu le 30 mars 2004.
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1. Introduction

For a prime p, integer polynomial f and multiplicative character x
mod p, define the complete exponential sum

p—1
SO 1) = x(@)er /@i,
x=1

Here we consider the case of trinomials
(1.1) f=az" +baF +ca®, 0<l<k<h<p, ptabe

From Weil [6]
1S(x, az" + bx* + cxt)| < hp%,
and in [2] and [3] we showed the Mordell [5] type bounds

(1.2) 1S(x, az" + ba* + cxt)| < Qé(hkﬂ)ép%,

(1.3) 1S(x, az" + ba* + cat)| < (k)ips.

Akulinicev [1] has also given a bound for a special class of trinomials.
The result (1.3) arises from the [3] bound

(1.4) 1S(x, az™ + ba* + cat))| Sp%M%,
where M denotes the number of solutions z,y, z, w in Z; to
2ty = 2wt
ab 4+ yF = 2wk,
xe+y£:z£+we.
It is straightforward that M is also the average value of |S(xo, f)|* as

a,b,c run through all of Z,, where xq is the principal character on Z,.
Ignoring the first equation it is not hard to show that

(1.5) M < (kO)(p—1)%,

giving (1.3). Utilising the first equation we showed in [3] the slight refine-
ment

(1.6) M < (k€)(p — 1),

(k. £)
where

d= (h,k,l,p—1).
Here we obtain a more precise bound, giving an asymptotic count on M
when (hkf)/d? = o(p). We distinguish by M* the number of solutions with

2= 20 gt — ol or gf =, ot = 22
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and when 2d|(p — 1) and h/d, k/d,¢/d are all odd
d_ _d d_ _d
Observe that

. 3d(p—1)2—=3d*(p—1) if2d|(p—1)and ¢/d,k/d, h/d all odd,
2d?(p —1)2 —d3(p—1)  otherwise.

We show here

Theorem 1.1. For any prime p and integers 0 < £ < k < h < p,
0<M—-M*"<(17h+ 8k — 190)ké(p — 1).

Thus, the average value of |S(xo, f)|* is on the order d?p? when hk{ < d?p.
We also have the upper bound

(1.7) M < 3d%(p— 1) +25(hkl)(p — 1),

for arbitrary h,k,f. In the trivial cases £ = d and k = 2d or 3d straight-
forwardly M = M*. Otherwise (1.7) certainly improves upon (1.5) when
h < p/100, and (1.6) as long as h(k,¢)/d < p/100. From (1.4) and (1.7) we
deduce the trinomial exponential sum bound:

Corollary 1.1. For any trinomial (1.1) and multiplicative character x
(mod p),

[S(x. az” + ba* + ca')| < 31dzp% + VE(hk)Tp3.

The bound is nontrivial provided d < p'/* and hkl¢ < p*/? and improves on
the Mordell type bounds (1.2), (1.3) when hkf > d°/?p3/8, and on the Weil
bound when h 3> max{d'/?p3/8, (k£)'/3p'/6}. The upper bound in (1.7) is
essentially best possible, although the constant 25 can likely be sharpened.
The following example shows that a bound of the form

M — M* < 0(hkl)(p — 1)
can not hold with a fixed 6 < 1.

Lower Bound Example. For any positive integer m > 5 and prime p = 1
(mod m), the exponents
-1 2(p—1
(=1 k== ,_20-D

m m

have

Mz (1 ) (ke 1)
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and hence

Mo s (1- 5 ) k- 1)
- 2m  (p—1) P

We prove this in Section 3.

Remark 1. If X% # xo then S(x, f) = 0 for any f = az™ + ba* + cat; to
p—1 p—1
see this simply replace z by xu @ where x @ (u) # 1.
If Xp%l = xo then x = X‘li for some character x; and we obtain the

following expression for the average value of |S(x, f)|* over the f = ax" +
bk + cxt:

P Y ISGG NP =D x(ayz e
M

a,b,c€Zy
=Y bl Y e
M*

= 2d%(p — 1)* 4 250hklp

with |0] < 1, unless 2d|(p — 1), ¢/d, k/d, h/d are all odd, and x* = xq, in
which case the constant 2 on the right is replaced by 3; here M and M*
are the sets of points contributing to M and M™* respectively.

Using the Holder inequality,

N 2 N N 2/3 N 1/3
() e () ()
=1 i=1 =1 =1

and the fact that
P > ISGG AP =d(p- 1),

a,b,c€Zy

-1
for XPT = X0, we obtain the following estimate for the average value of

1S(x, f)l:
(1.8)
¢1§ =1 <1_m><p—3 S IS06 Al < V= 1)

a,b,c€Zy

for hkl¢ < d?p. Again the constant % on the left must be replaced by %
in the exceptional case mentioned above.

Remark 2. By Weil’s fundamental work we know that S(x, f) = —w
— -+ —wy, for some complex numbers w;, each of modulus /p, and so if the
arguments of the w; are randomly distributed one might expect an upper
bound of the type [S(x, f)| < (hp)%“. It is interesting to note that upper
bounds of the type (1.3) and Corollary 1.1 are actually much sharper than
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this bound for large classes of trinomials. For instance, from (1.3) we have
the uniform upper bound,

1S(x, az™ + ba? + cx)| < 2Y/4p7/8,

which is sharper than /Ap for h > p3/4. It would be of interest to under-
stand how the extra cancellation in the sum of the w; is occurring in such
cases.

2. Proof of Theorem 1

Dividing by w we can clearly write M = (p — 1)|My| where Mj denotes
the solutions z,y, z in Z, to

a4yt — 21 =0,
(2.1) by - —1=0,

xE—I—yK—zE—l:O.
We write M for the solutions to (2.1) with

B R Y S
or
Y S [ g e
or
oY Y Y G S

the last of these contributing no solutions unless h/d, k/d,¢/d are all odd
and (p—1)/d is even. Straightforwardly these correspond to solutions with
respectively 2% = 1, y? = 2%, or y? = 1, 2% = 2%, or 2¢ = —1, 2% = —y*,
and hence M* = |Mj|(p — 1).

We recall Theorem 1 of Wooley [7]: If fi(z1,...,x) are polynomials in
Z]x] of degree d;, then the number of simultaneous solutions z1, ...,z in Z,

to fi(x1,....,xp) = 0,7 =1,..., k with det (gg]:;) # 0 is bounded by dj - - - d.
Hence we have

M — M* < (hk€)(p—1) + [Mi|(p — 1)
where M, denotes the solutions to (2.1), not in M, and with

hl’h_l hyh_l —hzh_l :L'h yh —Zh

% det | kaF=1 kyFl —kzF1 | =det | 2F yF —2F
gxé—l Eyé_l _EZZ—I xé yé —
zh yh 1
=det|2F ¢*¥ 1] =0
zt gyt 1
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Thus for these solutions we obtain the additional equation
(2.2) Fri=a"(y* — ") + 2" = ") + 2 (" - ") = 0.

Since 2% = 2% +y¥ — 1 and 2* = 2% + y* — 1 the solutions to (2.1) must also
satisfy

Fyi= (" 4" — 1) — @' + 4  — )M =0

where e = (¢, k). Observe that for a given pair x,y the number of solutions
(z,y,2) is at most d (we obtain 2", z¥, 2¢ and hence z? from (2.1)). Thus
applying Wooley again to the pair (zy)~“F}, Fy we obtain that

k¢
where M, denotes the solutions in M; which additionally have
OF , OF
x5t yst
2.3 det [~ 28 784 ) =o0.

To avoid rewriting the same expressions we define the following polyno-
mials in y:

(2.4) A=qyF —yf
and
(2.5)
U:=(h—k)" =y, H=FE=hy "+ =Ry + (h =0y,
Vi=((=m)y" —y"), L=(k—-0y"—(h—0y" +(h -k,
and, noting the highest and lowest degree terms,
(2.6) A:=(y'—1)H+y'UA
= (h=k)y"™" + (k= 0y + o+ (k= 0y* " + (h— k)™,
B:=—(y*-1)H —y*UA
= (' ~DH+y VA= —(k = Oy" ™ 4+ — (k- )",
C:=w"-1)H—y*VA = (k- Oy* " 4. 4 (k- 0)y*TF,

We note the relations

(2.7) Vy' +Uy" + H =0,
(2.8) Ayt L B+ +C =0,
and
(2.9)

B2—AC = (A+B)(Ay**+B), A+B=—-ALy’, B+Ay/** = —AHy™,
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as can be readily checked using Maple. Using the relation F; = 0 we have

F
x% = ha(y* — ") + kP (y" = ") + L (" = ")
= 2FU + 2%V,
OF
Ayt = (8 =) (o k" = 1)+ a0~ hy) 4 (= )

= 2" ((yk — ")y —hy") = (v" —y")(ky* - ﬁyz))
+ 2t ((y’“ —y")(hy" = ky") = (" — ") (k" - ﬁyg))
= (2F — xf)H.
Using that z* = 2% + % — 1 and 2/ = 2f + ¢* — 1 gives

OFy 0 4 o ik Koo o0 \Eo1, e

of _ ¢t _1)s _r —1)e
T e(iL’ +y Ye kx e(ac +y Je Az

ke Zkt/e

e @y - Y )
X (mk(xz + oyt —1) — 2@k 4+ yF — 1))

_ klzke/e—k—e <zkz(yé 1) =gk — 1)) ,

e
A @fA% Zke/e
Toy T T e @ ryF - D@l 1)

x (vt 4y =) =y 4yt 1))

_ _%zkk/e—k—éA (zk:yﬁ _ Zzyk> .
e

Thus we obtain from the determinant (2.3) that
(2.10)

(Zk(yz 1) = 2AyE 1)> (zF — ') H + A (xk:U i x€V> (zk;yz _ Zzyk;) —0.
Dividing by (z2)¢, and using (2.6) for the coefficients obtained, gives one
more equation

(2.11) Fy:=A(2)* '+ B+ H+c=o0.

From (2.8) this can also be written

(2.12) Fy=A((z2)" =" H+ B+ 22 —1 -y =0

Notice that the solutions in Mg with A # 0 have {zF=¢ 2%=6} = {1,y*~}.
These are precisely the solutions to (2.12) which are independent of the y
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dependence A, B. From (2.11) we obtain the relation
(2.13) 2 Ax* + B) = —(B2" + 0).

From (2.6) it is clear that yt™in{k28} divides F3. Applying Wooley again
to Fs/yﬁrmin{k’%}’ b + y’“ —2F -1, 2% + yZ — 2t — 1, we obtain:

M| < (h+ k — 50+ 2 max {k, 20 k0 + | M| + | M

where M3, My are solutions My with

x OFy ___z OFy _y OF
G—0) 9¢ —i—0) 9 (i—0) 9y
(2.14) det zF P y* =0,
. S !

with A(AzF=¢ + B) = 0 for M3 and A(Az*=* + B) # 0 for My. Observe
that for each y there will be at most kf/e values of = (using Fp = 0 as
long as at least one of y* — 1 and y* — 1 is non-zero, and using F; = 0 to
obtain zF¢ = 1 when y* = ¥’ = 1 and y" # 1 since we are not in My).
If Az*~t + B = 0, then Bz** 4+ C' = 0 and, eliminating z*~¢ we obtain
B? — AC = 0. From (2.9) this gives AHL = 0 and the number of values of
y in M3 is at most (k —¢) + (h —£) + (h — ¢). Hence

k¢
|M3| < (2h + k — 30)—d.

e
For M, observe from (2.12) that if 2*=¢ = 1 then 2*~¢ = y*=* (we know

that A+ B # 0 else we would be in M3). Since y*~* # 1 in My, the relations

MY - - -y, A - - -

2.15 A= 2! =
( ) :L,kff _ Zkfé ’ l‘kfé _ Zkfé ’

arising from the k and ¢ equations of (2.1), then give 2/ = ¢, z¢ = 1,
1

& = yk ¥ = 1. But from F} = A(z" — 1) = 0 this forces 2" = 1,
k—¢

y" = 2" and we obtain no solutions not in M. Likewise if z¥~¢ = y
then Ay*~*+ B # 0 and 2"~ =1, and 2* = 1, 2% = —1, 2" = —f,
ak = _yk7 and F = A(xh + yh) = 0 giving zh = —yh, and we obtain no

solutions not in M.
Hence, writing X = 2% YV =y
points in My that

(2.16) X#1, X#Y and k#20

The assumption k # 2/ follows from the observation that if k¥ = 2¢ then
(' — 1)(y* — 1) = 1 (as in (3.1)) and so either X = 1 or Y = 1, the

k=f we may assume henceforth for

latter implying A = 0 whence we are in M3. Defining A; := ﬁ%,
By = ﬁ%—lj, Cy = ﬁ%, using (2.13) to eliminate z*~¢, and invoking
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relation (2.9), we have

x  OFy ket w_e (B*—AC)X HLA?X
TR 'y ory: Sy oy
z  OF3 k—t k—t
=0 02 (A(z2)" "4+ B2""") +C,

and using successively (2.8), (2.13) to eliminate 2~ and (2.8) again,

OF: _ _ _
_(kgﬁ)ﬁiyg = Ai(z2)" '+ Bi(a" 2 + O
_ Al((xz)k:—é - yk—f) + Bl(xk:—é + zkz—é 1 yk—ﬁ)
+(B+0C)
_ X -DHX-Y)
= (B1A - B4,) AX+ B + (B +C).

Thus from the determinant condition (2.14), and writing X2/ — 2F =

X(y* —1) — (y* — 1), we see that
~HLA?X <Zky£ﬂ2£yk>
equals
— (BX + C)(AX + B)(Xy* — ") + [(B1A — A41B)(X — 1)(X —Y)
+(B+C)(AX + B)] (X(4' = 1) = (4 = 1))
= (X - |[(BA-AB)X -Y) (X' -1 - - 1)
—(AX + B) (Bg/(x ~Y)+(B+ C)ﬂ ,
while from (2.10)

k, ¢

_AXU +V) (W) — H(X - 1)(X(' —1) — (4F - 1)).

Thus since X # 1 we must have T} = T where
Ty := H2LAX (X(yf 1) (yF - 1))

and, using from (2.8) and (2.9) that —(B + C)(AY + B) = Y(A + B)
x (AY + B) = YHLA?,
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Ty i= (XU +V) [(BiA- AB)(X -Y) (X' = 1) - (4" - 1))
—(AX + B) <By£(X —Y)+(B+ o))
= XU+ {(X =) [(BiA- AB)(X (' —1) - (4" ~ 1))
~By'(AX + B) — (B+C)A| + YHLA? |
Now
Ty = H2LAX ((y‘f )X —Y) - y*‘fA) — (X —Y)T3 — H2 LAYy~
with
Ty := H2LA ((y‘Z )X - gﬂA) .
Also, using (2.7),
Ty = (X - YTy — H’LA*Yy~*
with
= |(BiA- 4B) (X(y' = 1) - (4" - 1))
~By'(AX + B) = (B+ C)A| (XU + V) + YHLAU
= A(aX —b)(XU + V) + YHLA2U
where

a:= ((BlA ~ A By 1) - AByf) /A,
b= ((BlA — A1B)(y* — 1) + By + (B + C)A) /A

(one can verify by Maple that a and b are polynomials). Since X # Y we
obtain T3 = Ty, a quadratic relation in X, and after multiplying by (k —¥¢),
(2.17) ax?F=0 4 gak=t 4y — 0,

with (using Maple to expand and identify the highest and lowest degree
terms)

= (k—0Ua = (h—k)?(k—0)(k—20)y 52 4. 4 1),
= (k—0(Va—Ub— H*L(y* - 1))

= —(h = k)2(k = )(k = 20" ()
vi=(k—0)(-Vb+ H’ LAy " + YHLUA)

= (h—0)l(k — h)(k — E)y?’H%(y?’h_% ot 1).

o
8
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Observing that B3 = Ca + Ay (as can be checked on Maple), the relation
(2.13) and quadratic (2.17) yield the equations

(2.18) Fy=a(zz)" "t —y=0
and
(2.19) e (:rk_e + zk_e) = —f.

One can use Maple to obtain explicit expressions for the polynomials «
and y

with
f(hik, €) = (k — €)(h — k) (k — 20) (y2h+k+f _ yk+2z>
+k(h—0)(k—10) <y2h+ze _ ka—M)
+ (2h% + 2% + 14hkl — k(* — h(* — 3hk® — 30°k
— 5h%0 — 5k%0) (yh+k+2z _ yh+k+g)
(b= )k =€) (22 = )
+ (20 —=h)(h—£)(h — k) <yh+2k+€ _ yh+2e>
+({+k—h)(h—20)(h—k) (yh+3£ _ yh+2k:>
—(h+l—k)(h—Fk)(k—1) (yk+3£ B y2h+’f) '

Thus applying Wooley again to Fy/y*+4¢, aF 4-yF —2F — 1, 28 4yt — 26 — 1,
we have
|My| < (3h + 2k — 40) kL + | Ms|
where solutions in M5 have an additional zero determinant (of the form
(2.14) with Fy in place of F3).
Writing oy = ﬁ%, "= Uf%@%, we have

ar OF, B
(k —0) 8:c4 = o*(@2)"™" = e,
az OFy _
=00 —a*(22)"" = —7a,
ay OF.
Y4 — a(an(@z)C =) = ary — am,

(k—12) 0y
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and thus for solutions in My we gain the relation
(2.20) avy ((zkye — 295 + (aFyf — $eyk)> + (o y—am ) (zF 28 —2t2F) = 0.

When K¢ # 2F=¢ and o # 0 we use (2.15) to rewrite (2Fy’ — 2fy%) +
(ijyé _ xeyk) as

0 (zkeye o yk xk—fyé o yk>

AN +
xt 2t

_ (wkzé B kaf) 2yt — P i byt — ¥
Ay 1) = (WF 1) 2 1) - (yF - 1)
T
_ (ko k15
= (2"z" = 2"z )T6

where using (2.18) and (2.19)
Ts =2y (" = 1)+ B (" — D)+ (0 = 1) + 209" (4" - 1),
Ts =~y —1)*+ By — D — 1)+ ay* — 1)
Thus, by (2.20)
F5 .= anT5 + (a1y — ay1)Tg = 0,

a relation which only depends upon the variable y.
If @« =0 then v = 0 (from (2.18) both are zero or non-zero) and y will
still be a zero of Fy. If 2¢=¢ = 2¥=¢ and a # 0 then from (2.19) and (2.18)

(2.21) zFt = —B/2a, (% —4day =0,
while (2.20) gives avy (zg + :BE) (zF=fy* — y*¥) = 0 and, since zF=¢ # yF=¢,
we must have zf = —2¢, 2F = —2F and 22% =1 — ¢*, 22¢ = 1 — y*. Hence

T = 42 (v + BzF ¢ 4+ ax?F=0) = 0 by (2.17), and T5 = 8z (y + Sz~ +
az?k=0y) — 2zt (27 4+ B(1 + 2F7%) + 2a27¢) =0, by (2.17) and (2.21), and
these solutions are also included in F5 = 0. Hence all solutions in My have
y value satisfying F5 = 0, where for each y there are at most %d < k¢
choices of = and z as we saw in the bound for M3.

Again appealing to Maple we obtain

Fs = —0(0—h) (k—R)>(20— k) (—k)3 (0+h—k) Ay +11¢ (yg’”’f*”’ +ot 1)

a nonzero polynomial by our assumption (2.16). Since the values where
A = 0 are already accounted for in M3 and for each choice of y there are
at most k¢ choices for (z,z) (as noted above in the estimate for |Ms|) we
have finally
|Ms5| < (9 + k — TO)kL,
and
M — M* < (17h + 8k — 190)kl(p — 1).
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3. Proof for the Example.

Let m be a positive integer with m > 5, p a prime with p = 1 (mod m),

and (h,k,0) = (2(p—1)/m,(p—1)/m,1).
Clearly M = (p — 1) My where My counts the solutions x,y, z in Z; to

(3.1) Fryf =241, PR =222 41, a4y=z+1

From the first two equations we have z¥ = 2¥y* and (2% — 1)(y* — 1) =0
and so zF = 1, y* = 2F or y*¥ = 1, 2 = 2F. Now if 2* = 1, y* = 2* then
y = £z for the k values ¢ with &¥ = 1, the remaining equation requiring
(x+2€) = (2+1). Thus for £ = 1 we have the (p—1) solutions z = 1, z = y,
and for the (k — 1) remaining £ # 1 we have solutions z = (x — 1)/(1 — &),
y = &z for the (k — 1) values of o # 1 with 2¥ = 1. A similar count is
obtained when y* = 1 and z* = 2*. Hence

My=2(p—1)4+2k—-12-M

where M’ is the number of solutions to z+y = z+1 with 2% = y*¥ = 2F =1,
so that m3M’ equals the number of solutions to ™ + y™ = 2™ + 1. By
Theorem 6.37 of [4]

m*M' < p* + (m —1)°p,
and, for m > 5,

1
Mo > 2(k = 1)* +2(p — 1) — p*/m® —p > <2—m> k2.
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