
Journal de Théorie des Nombres
de Bordeaux 18 (2006), 345–355

On a conjecture of Watkins

par Neil DUMMIGAN

Résumé. Watkins a conjecturé que si R est le rang du groupe des
points rationnels d’une courbe elliptique E définie sur le corps des
rationels, alors 2R divise le degré du revêtement modulaire. Nous
démontrons, pour une classe de courbes E choisie pour que ce soit
le plus facile possible, que cette divisibilité découlerait de l’énoncé
qu’un anneau de déformation 2-adique est isomorphe à un anneau
de Hecke, et est un anneau d’intersection complète. Mais nous
démontrons aussi que la méthode de Taylor, Wiles et autres pour
démontrer de tels énoncés ne s’applique pas à notre situation. Il
semble alors qu’on ait besoin d’une nouvelle méthode pour que
cette approche de la conjecture de Watkins puisse marcher.

Abstract. Watkins has conjectured that if R is the rank of the
group of rational points of an elliptic curve E over the rationals,
then 2R divides the modular parametrisation degree. We show, for
a certain class of E, chosen to make things as easy as possible, that
this divisibility would follow from the statement that a certain 2-
adic deformation ring is isomorphic to a certain Hecke ring, and is
a complete intersection. However, we show also that the method
developed by Taylor, Wiles and others, to prove such statements,
is necessarily inapplicable to our situation. It seems then that
some new method is required if this approach to Watkins’ conjec-
ture is to work.

1. Introduction

For any elliptic curve E defined over Q, of conductor N , there exists
a finite morphism Φ : X0(N) → E, defined over Q, where X0(N) is the
modular curve parametrising elliptic curves and cyclic subgroups of order
N [BCDT]. In any isogeny class of elliptic curves over Q, there is an
optimal E with Φ of minimal degree, such that any other finite morphism
from X0(N) to an elliptic curve in that isogeny class factors through this
minimal one. This “modular degree” deg(Φ) is an interesting invariant, and
since the work of Zagier [Z] it has been computed by a variety of methods,
summarised in the introduction to [Wa]. The modular degrees listed in
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Cremona’s tables [Cr] were obtained using modular symbols. Watkins has
calculated many examples, using a method based on approximating the
value of the symmetric square L-function at s = 2. On the basis of an
examination of this numerical data, precipitated by an observation of Elkies
on the first few rank 5 examples computed, Watkins made the following
conjecture (Conjecture 4.1 of [Wa]).

Conjecture 1.1. If R = rank(E(Q)) then 2R | deg(Φ).

He subsequently suggested that in fact the order of the 2-Selmer group
should divide the modular degree, and this stronger assertion is certainly
natural in view of the approach proposed in this note. (In fact Watkins
has since suggested that something even stronger, involving also the size of
the subgroup of Atkin-Lehner involutions through which Φ factors, may be
true.) The idea is to use the F2-linear, Gal(Q/Q)-equivariant “squaring”
map from E[2] to Sym2E[2] to induce a map from the 2-Selmer group of
E to a certain subgroup of H1(Q,Sym2E[2]), defined by local conditions.
This is then identified with the (reduced) tangent space to a certain 2-adic
deformation ring, parametrising strict equivalence classes of lifts of a certain
type, of the Gal(Q/Q)-action on E[2]. This deformation ring ought to be
isomorphic to a certain ring generated by Hecke operators, whose tangent
space can be related to the modular degree, at least if we assume that it is
a complete intersection. More precise details of this approach are described
in subsequent sections.

The method of choice for identifying deformation rings with Hecke rings
is that developed by Taylor and Wiles, simplified and extended by Faltings
and Diamond [Wi],[TW],[D]. Other useful references describing the appli-
cation to the semi-stable case of the Shimura-Taniyama-Weil conjecture are
[DDT] and [dS]. In the application to the Shimura-Taniyama-Weil conjec-
ture, one is dealing with `-adic representations for odd prime `, whereas
here ` = 2.

Dickinson [Di] has successfully applied the Taylor-Wiles method with
` = 2, in order to help prove the modularity of certain icosahedral Galois
representations [BDST]. He imposes certain conditions on a Galois repre-
sentation with coefficients in an extension of F2, including the distinctness
of the two characters arising from the semi-simplification of the restric-
tion to a decomposition group at 2. This condition is not satisfied in our
situation, where the coefficient field is F2.

Any application of the Taylor-Wiles method divides naturally into a
“Galois theory” part and a “Hecke algebras” part. In our situation (under
the conditions imposed in §2), it seems that the Hecke algebras part of the
proof can be made to work, using ideas from [CDT] and [Di]. However, the
Galois theory part cannot work, due ironically to the presence of the classes
in H1(Q,Sym2E[2]) whose construction was hinted at above. One might
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say that the heart of the difficulty is the reducibility of Sym2E[2], which
has the image of the squaring map as a non-trivial proper submodule.

A connection between hypothetical “R = T” results (with ` = 2) and
evenness of the modular degree also arises in recent work of Calegari and
Emerton [CE]. They also encountered a problem in trying to apply the
Taylor-Wiles method, but managed to bypass R = T in proving their re-
sults, by a direct construction of a non-trivial element in the tangent space
of a Hecke ring.

2. Local conditions

Let E/Q be an elliptic curve, of conductor N . We assume:
(1) N is even and squarefree;
(2) the Gal(Q/Q)-module V := E[2] of 2-torsion points is ramified at

all primes p | N (equivalently, given (1), ordp(∆) is odd for such p,
where ∆ is the minimal discriminant);

(3) E has no rational point of order 2;
(4) the action of complex conjugation on V is non-trivial (equivalently

E(R) is connected).

Let ρE : Gal(Q/Q)→ Aut(T2(E)) be the 2-adic representation attached
to E, where T2(E) = lim←−E[2n] is the 2-adic Tate module, and let ρ :
Gal(Q/Q) → Aut(V ) be its reduction modulo 2. It follows from (3) and
(4) above that ρ is surjective. Note that Aut(V ) ' GL2(F2) ' D6, the
dihedral group of order 6. The consequent absolute irreducibility of ρ is
important for the construction of the universal deformation ring in §5, and
the conditions (1) and (2) make the local deformation conditions easier.
The conditions (1), (2) and (4) help in the proof of Lemma 4.1, and all
four conditions help to make the calculation in §3 work out easily. (See
also p.3 of [CE] for comments on the difficulty of getting such calculations
to work without (4).) Though neither (3) nor (4) is, on its own, invariant
under 2-isogeny, the irreducibility of ρ, implied by the conditions (3) and
(4) together, prevents the existence of 2-isogenies. Hence, if the conditions
(1)-(4) hold for E, then they also hold for any elliptic curve in the same
isogeny class as E.

Let W := Sym2V = 〈x⊗x, y⊗y, x⊗y+y⊗x〉, where {x, y} is any basis
for V . Via the Weil pairing we have an isomorphism of F2[Gal(Q/Q)]-
modules V ' V ∗. Under this isomorphism, x 7→ (y 7→ 1, x 7→ 0) and
y 7→ (x 7→ 1, y 7→ 0). Hence W is isomorphic to the module attached to the
representation Ad0ρ, and elements of W may be identified with trace-zero
2-by-2 matrices over F2. Thus

x⊗ x 7→
(

0 1
0 0

)
, y ⊗ y 7→

(
0 0
1 0

)
, x⊗ y + y ⊗ x 7→

(
1 0
0 1

)
.
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W ∗ is the F2-vector space of polynomial functions of degree 2 on V , thus
W ∗ = 〈x2, y2, xy〉, where x and y are considered as elements of V ∗, as
above. We have, for example,

x2 : x⊗x 7→ 0×0 = 0, y⊗y 7→ 1×1 = 1, x⊗y+y⊗x 7→ 0×1+1×0 = 0.

H0(Q,W ) = 〈x ⊗ y + y ⊗ x〉 and H0(Q,W ∗) = 〈x2 + xy + y2〉. In fact
W 'W ∗ via

x⊗ x 7→ y2 + xy, y ⊗ y 7→ x2 + xy, x⊗ y + y ⊗ x 7→ x2 + xy + y2.

Let G∞ := Gal(C/R) and, for each prime number p, Gp := Gal(Qp/Qp).
All of these are considered as subgroups of Gal(Q/Q), though this depends
on choices of embeddings of Q in C and the Qp. Let Ip be the inertia
subgroup at p.

Let Q be any finite set of primes, none dividing N . We define a Selmer
group H1

Q(Q,W ) := {c ∈ H1(Q,W )| resp(c) ∈ Lp ∀ primes p ≤ ∞}, where
the subspaces Lp ⊂ H1(Gp,W ) are defined as follows.

(1) L∞ := H1(G∞,W ). Its annihilator in H1(G∞,W ∗) with respect to
the local Tate duality pairing is L⊥∞ = {0}.

(2) Choose a basis {x, y} for V such that G2 and I2 act on V via〈(
1 1
0 1

)〉
. E has multiplicative reduction at 2, and consideration of

the Tate parametrisation, and the fact that V is ramified at 2, shows
that such a basis exists. Let W 0 := 〈x⊗ x〉 and

L2 := ker(H1(G2,W )→ H1(G2,W/W
0)).

(3) At q ∈ Q let Lq := H1(Gq,W ), so L⊥q = {0}.
(4) At all other finite primes p let Lp = H1(Gp/Ip,W

Ip), and note that
L⊥p = H1(Gp/Ip, (W ∗)Ip).

Lemma 2.1. L2 ' H1(G2,W
0), dimF2(L2) = 3.

Proof. Let {x, y} be a basis as above for V . Take the cohomology, for G2,
of the exact sequence 0→W 0 →W →W/W 0 → 0. The H0-part is exact:

0→ 〈x⊗ x〉 → 〈x⊗ x, x⊗ y + y ⊗ x〉 → 〈[x⊗ y + y ⊗ x]〉 → 0,

so
L2 ' H1(G2,W

0) ' Hom(G2,F2) ' Q×
2 /(Q

×
2 )2,

which is 3-dimensional over F2. �

Define filtrations {0} ⊂ W 0 ⊂ W 1 ⊂ W and {0} ⊂ (W ∗)0 ⊂ (W ∗)1 ⊂
W ∗ to be respectively {0} ⊂ 〈x ⊗ x〉 ⊂ 〈x ⊗ x, x ⊗ y + y ⊗ x〉 ⊂ W and
{0} ⊂ 〈x2〉 ⊂ 〈x2, xy〉 ⊂W ∗. Note that W 0 and (W ∗)1 form an annihilator
pair, as do W 1 and (W ∗)0. We do not need the full strength of the following
lemma, but include it for completeness.
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Lemma 2.2. L⊥2 ' H1(G2, (W ∗)1), dimL⊥2 = 4.

Proof. By Tate’s local duality and local Euler characteristic formula,

#H1(G2,W )
#H0(G2,W )#H0(G2,W ∗)

= #W,

so #H1(G2,W ) = 27. By Lemma 2.1, L2 = H1(G2,W
0) and is 3-dimensi-

onal. Since H1(G2, (W ∗)1) annihilates H1(G2,W
0), to prove part (1) it

suffices to show that dimH1(G2, (W ∗)1) = 4. (It is easy to prove that it
injects into H1(G2,W

∗).)
Consider the cohomology for G2 of the exact sequence 0 → (W ∗)0 →

(W ∗)1 → (W ∗)1/(W ∗)0 → 0. TheH i vanish for i > 2. TheH0 terms are all
1-dimensional, as are the H2 terms (using Tate’s local duality). The outer
H1 terms are both 3-dimensional, isomorphic to Q×

2 /(Q
×
2 )2 as in the proof

of Lemma 2.1. Since the alternating sum of the dimensions in the long exact
sequence has to be zero, we find that indeed dimH1(G2, (W ∗)1) = 4. �

3. A Selmer group calculation

Given a finite set of primes Q, none of which divides N , we have defined
a Selmer group H1

Q(Q,W ). We may similarly define a dual Selmer group
H1

Q∗(Q,W ∗) using the dual local conditions L⊥v , for all places v of Q.

Proposition 3.1. Let Q be a set of primes as above. Suppose that for
each q ∈ Q the arithmetic Frobenius element Frobq ∈ Gq acts on V via
an element ρ(Frobq) of order 3 (hence with eigenvalues α, α + 1, where
α2 + α+ 1 = 0). Then

#H1
Q(Q,W )

#H1
Q∗(Q,W ∗)

= 2r,

where r = #Q.

Proof. By Theorem 2.18 of [DDT] (based on Proposition 1.6 of [Wi]),

#H1
Q(Q,W )

#H1
Q∗(Q,W ∗)

=
#H0(Q,W )
#H0(Q,W ∗)

∏
places of Q

#Lv

#H0(Gv,W )
.

Now #H0(Q,W ) = #H0(Q,W ∗) = 2. In the product we shall show that
each q ∈ Q contributes a factor of 2 (this is the reason for the condition
on Frobq), that the contributions from 2 and ∞ cancel out, and that the
contributions from all other places are trivial.

(1) For p - 2Q∞, #Lp = #H1(Gp/Ip,W
Ip) = #H0(Gp,W ).

(2) For q ∈ Q, Frobq has eigenvalues α2 = α + 1, (α + 1)2 = α and
α(α + 1) = 1 on W ' W ∗, so #H0(Gq,W

∗) = 2. By Tate’s local
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duality and Euler characteristic formula (noting that ordq(#W ) = 0),
this is equal to #H1(Gq ,W )

#H0(Gq ,W )
. In other words, #Lq

#H0(Gq ,W )
= 2.

(3) #L2 = 23, by Lemma 2.1, and #H0(G2,W ) = #〈x⊗x, x⊗y+y⊗x〉 =
22, so #L2

#H0(G2,W )
= 2.

(4) Let G∞ = 〈σ〉. Choose a basis {x, y} for V such that σ acts as(
0 1
1 0

)
. (Recall that we assumed the action of σ on V to be non-

trivial.) Then #H0(G∞,W ) = #〈x ⊗ x + y ⊗ y, x ⊗ y + y ⊗ x〉 =
22. If f ∈ Z1(G∞,W ) (the group of 1-cocycles) then f(σ2) = 0 so
f(σ)+f(σ)σ = 0, so f(σ) ∈ H0(G∞,W ) = 〈x⊗x+y⊗y, x⊗y+y⊗x〉.
Modding out by the coboundaries (σ − 1)W = 〈x ⊗ x + y ⊗ y〉, we
find that #H1(G∞,W ) = 2 and #L∞

#H0(G∞,W )
= 1

2 .

�

4. Application of the squaring map

There is the usual descent map ψ : E(Q)/2E(Q) ↪→ H1(Q, E[2]) '
H1(Q, V ∗). Then there is the squaring map s : V ∗ → W ∗. This sim-
ply squares linear functions on V to produce quadratic functions on V .
It is linear, because the characteristic is 2, and Gal(Q/Q)-equivariant,
because squaring fixes the coefficient field F2. There is an induced map
s∗ : H1(Q, V ∗) → H1(Q,W ∗), which is injective because H0(Q,W ∗) and
H0(Q,W ∗/V ∗) are both one-dimensional, and H0(Q, V ∗) is trivial by as-
sumption.

Lemma 4.1. If P ∈ E(Q) then s∗ψ(P ) ∈ H1
φ∗(Q,W ∗).

Proof. We need to check that resv(s∗ψ(P )) ∈ L⊥v for all places v of Q.

(1) It is well-known that ψ(P ) is unramified at all primes p - N∞. The
same is then true for s∗ψ(P ).

(2) Suppose that p | N and p 6= 2. The point P ∈ E(Q) is represented
by some v ∈ Q×

p on the Tate curve Q×
p /q

Z. This v lies at worst in
the unramified quadratic extension of Qp, so is certainly fixed by the
inertia subgroup Ip of Gp. We may choose Q ∈ E(Qp) with 2Q = P

in such a way that Q is represented by u ∈ Q×
p with u2 = v. For any

σ ∈ Ip, ψ(P )(σ) = Qσ − Q is represented by uσ/u, whose square is
vσ/v = 1, so ψ(P )(σ) ∈ 〈x〉, where {x, y} = {−1, q1/2} is a basis for

V ' V ∗ with respect to which Gp and Ip act via
〈(

1 1
0 1

)〉
.

Since p 6= 2, Ip has a unique cyclic quotient of order 2. Let σ be a
generator of this quotient. We have seen that the restriction of ψ(P )
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to Ip is in the image of H1(Ip, 〈x〉) = Hom(Ip, 〈x〉). But x = yσ−y, so
in fact ψ(P ) restricts to zero in H1(Ip, V ∗), hence resp(s∗ψ(P )) ∈ L⊥p .

(3) For p = 2, if the reduction is split then we may prove as above that
ψ(P )(σ) ∈ 〈x〉, where now σ may be anything in G2. (It is still
true to say that σ fixes v.) In the case of non-split reduction, it
may be the case that vσ = v−1, then uσ = ±u−1, and, taking into
account the twist by the quadratic character, Qσ −Q is represented
by (uσ)−1/u = ±1 ∈ 〈x〉. In either case, res2(s∗ψ(P )) is in the image
of H1(G2, (W ∗)0), which is contained in L⊥2 by (the easy part of)
Lemma 2.2.

(4) Let G∞ = 〈σ〉, acting by
(

0 1
1 0

)
with respect to a chosen ba-

sis {x, y} of V ∗. If f ∈ Z1(G∞, V ∗) is a cocycle then, as in the
proof of Proposition 3.1, f(σ) ∈ (V ∗)G∞ = 〈x + y〉. But x + y =
xσ − x, so H1(G∞, V ∗) = {0}. Necessarily then res∞(ψ(P )) = 0, so
res∞(s∗ψ(P )) ∈ L⊥∞ = {0}.

�

Proposition 4.2. Let R = rank(E(Q)). Then 2R | #H1
φ(Q,W ).

Proof. By Proposition 3.1 with Q = φ, #H1
φ(Q,W ) = #H1

φ∗(Q,W ∗), and
Lemma 4.1 shows that 2R divides the latter. �

5. Deformation rings and Hecke rings

Let f =
∑∞

n=1 anq
n be the newform attached to E. Let C be the category

whose objects are complete noetherian local Z2-algebras with residue field
F2 and whose morphisms are local Z2-algebra homomorphisms. Let ρ :
Gal(Q/Q) → GL2(F2) be as above. If R ∈ C, a lifting ρ : Gal(Q/Q) →
GL2(R) is said to be of type φ if and only if the following conditions hold.

(1) ρ is unramified outside N .

(2) ρ|G2 ∼
(
ελ(a2) ∗

0 λ(a2)

)
, where ε is the restriction of the 2-adic cy-

clotomic character, and λ(a2) is the unramified character mapping
Frob2 to a2.

(3) For any odd prime p | N , ρ|Gp ∼
(
εχ−1 ∗

0 χ

)
, where χ is an unrami-

fied character.
(4) det ρ = ε.

Note that a2 = ±1, according as the multiplicative reduction at 2 is split
or non-split.
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Lemma 5.1. (1) There is a universal coefficient ring Rφ and a universal
deformation of ρ of type φ:

ρuniv
φ : Gal(Q/Q)→ GL2(Rφ)

(see §§8 and 10 of [M] for precise definitions).
(2) Let PR be the kernel of the homomorphism Rφ → Z2 corresponding

to the lifting ρE (associated to the 2-adic Tate module of E). There
is a canonical isomorphism of F2-vector spaces

HomF2(PR/P2
R,F2) ' H1

φ(Q,W ).

Proof. The existence of a universal ring for deformations of ρ subject only
to the condition (1) above follows from Proposition 2 in §20 of [M]. Note
that ρ is absolutely irreducible, thanks to our assumptions about E. The
determinant condition (4) is handled by §24 of [M], and (3) by §29 of [M].
The effects of these conditions on the description of HomF2(PR/P2

R,F2) are
also dealt with in the aforementioned sections of [M]. That the condition
(2) is a “deformation condition” may be proved by a similar argument to
that used for (3), using its equivalence to (ρ(h) − ε(h))(ρ(h) − 1) = 0 and
(ρ(h) − ε(h))(ρ(g) − λ(a2)(g)) = 0 for all h ∈ I2 and all g ∈ G2. Its effect
on the description of HomF2(PR/P2

R,F2) (matching the local condition L2)
is easy to prove. Note that we would not get the correct local subspace
L2 (with which the calculation in §3 works) without fixing the unramified
character λ(a2). �

Let J be the largest abelian subvariety of J0(N) on which U2 = a2,
where J0(N) is the Jacobian of the modular curve X0(N). Let T′ be the
commutative Z-algebra generated by the Hecke operators Tp (for p - N)
and Up (for p | N) acting as endomorphisms of J (via Picard functoriality).
Let T = T′ ⊗Z Z2. Let m be that maximal ideal of T which is the kernel
of the homomorphism from T to F2 such that Tp 7→ ap (for p - N) and
Up 7→ ap (for p | N). Let Tm be the localisation of T at m. The following
is a consequence of Proposition 2.4 of [Bz]. (Recall that 2 || N and ρ is
ramified at 2, so the image of ρ|G2 is not contained in the scalar matrices.)

Lemma 5.2. Ta2(J)m is a free Tm-module of rank 2.

Since the Hecke operators commute with the Galois action on Ta2(J)m,
we have a representation ρT : Gal(Q/Q)→ GL2(Tm). This is a lifting of ρ,
and is of type φ (see Theorem 13 and Proposition 14 of [Di] for a summary
of what is needed for this). Hence it arises (up to strict equivalence) from
ρuniv

φ via a homomorphism θ : Rφ → Tm.
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Conjecture 5.3. θ is an isomorphism and Rφ ' Tm is a complete inter-
section.

I am grateful to F. Calegari for pointing out that this is not a simple
consequence of the conjectures of Fontaine-Mazur and Langlands, and we
do not even know that Rφ is torsion-free. We shall see next how to deduce
Watkins’ conjecture for E, from Conjecture 5.3. Let PT be the kernel of the
homomorphism θE : Tm → Z2 such that Tp 7→ ap (for p - N) and Up 7→ ap

(for p | N). Let I = AnnTm(PT ) and η = θE(I). As in Proposition 4.7
of [DDT], Tm may be identified with a manifestly reduced ring, then as in
§4.4 of [DDT], η is non-zero and Z2/η ' Tm/(PT + I).

Proposition 5.4. Let E/Q be an elliptic curve satisfying the conditions
listed at the beginning of §2. Let R = rank(E(Q)) and let deg(Φ) be the
degree of an optimal modular parametrisation for the isogeny class of E.
Conjecture 5.3 implies that 2R | deg(Φ).

Proof. We may take E to be optimal, with Φ : X0(N) → E of minimal
degree. The morphism Φ factors through π : J0(N)→ E, and we have also
π̂ : E → J0(N). The latter is an injection, and π · π̂ on E is multiplication
by deg(Φ). Let P ′T be the kernel of the homomorphism θ′E : T′ → Z such
that Tp 7→ ap (for p - N) and Up 7→ ap (for p | N). Then the image of
P ′T is dense in PT , and π̂(E) is the connected part of the kernel of P ′T on
J . Let T′′ be the commutative Z-algebra generated by the Hecke operators
Tp (for p - N) and Up (for p | N) acting as endomorphisms of J0(N). Let
P ′′T be the kernel of the homomorphism θ′′E : T′′ → Z such that Tp 7→ ap

(for p - N) and Up 7→ ap (for p | N). By restriction from J0(N) to J , T′′
surjects onto T′ and P ′′T surjects onto P ′T . Hence P ′T (J) ⊂ P ′′T (J0(N)), the
kernel of the projection π : J0(N)→ E.

According to Theorem 5.3 of [DDT], Conjecture 5.3 is equivalent to
#(PR/P2

R) = #(Z2/η). Combining this with Proposition 4.2 and Lemma
5.1 (2), we find that 2R | #(Z2/η) =: 2S , say. Since Z2/η ' Tm/(PT + I)
we can write 2S = p + i for some p ∈ PT and i ∈ I, with 2 - i in Tm.
Choose S′ ≥ S such that 2S′−S kills any 2-power torsion in the quotient of
the kernel of P ′T on J by its connected part π̂(E).

By Lemma 5.2 we may choose g′ ∈ J [2S′ ] such that i(g′) has exact
order 2S′ . Choose an element p′ ∈ T′, 2-adically approximating p ∈ T
sufficiently closely that p and p′ act the same way on J [2S′ ]. In particular
p′(g′) = p(g′) (and therefore also i′(g′) = i(g′), where i′ := 2S − p′). Since
PT annihilates I, i′(g′) = i(g′) is in the kernel of P ′T . Hence if g := 2S′−Sg′

then i′(g) lies in π̂(E), say i′(g) = π̂(h), and has exact order 2S . Also
i′(g) = i(g) = (2S − p)(g) = −p(g) = −p′(g) ∈ P ′T (J) ⊂ ker(π). Hence h
is a point of order 2S on E, killed by π · π̂ = [deg(Φ)]. This shows that
2S | deg(φ), so 2R | deg(Φ). �
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6. A problem

Proposition 6.1. Fix n ≥ 2 and let R = rank(E(Q)). Let Q be a set of
r primes such that, for each q ∈ Q, q - N , q ≡ 1 (mod 2n) and Frobq acts
non-trivially on V . Then #H1

Q(Q,W ) ≥ 2R+r.

Proof. Gal(Q(ζ2n)/Q) contains a complex conjugation, which by assump-
tion acts non-trivially on V , so Frobq ∈ Gal(Q/Q(ζ2n)) must act on V
through an element of order 3. Therefore Proposition 3.1 applies, and shows
that it suffices to prove 2R | #H1

Q∗(Q,W ∗). Lemma 4.1 shows that if P ∈
E(Q) then s∗ψ(P ) ∈ H1

φ∗(Q,W ∗), where ψ : E(Q)/2E(Q) → H1(Q, V ∗)
is the 2-descent map and s : V ∗ → W ∗ is the squaring map, hence that
2R | #H1

φ∗(Q,W ∗). We shall prove that 2R | H1
Q∗(Q,W ∗) by extending

this to show that s∗ψ(P ) ∈ H1
Q∗(Q,W ∗). It remains to show that, for all

all q ∈ Q, resq(s∗ψ(P )) = 0.
Since q - N , we know that resq(ψ(P )) ∈ H1(Gq/Iq, V

∗), hence that
resq(s∗ψ(P )) ∈ H1(Gq/Iq,W

∗), so it suffices to prove that if f is a cocycle
representing s∗ψ(P ) then f(Frobq) ∈ (Frobq − 1)W ∗. But since Frobq

acts on V ∗ via an element of order 3, which may be represented by the

matrix
(

1 1
1 0

)
with respect to some choice of basis, it is easy to check that

(Frobq − 1)W ∗ = s(V ∗), which is exactly where f(Frobq) must lie, since
s∗ψ(P ) ∈ H1(Q, s(V ∗)) ⊂ H1(Q,W ∗). �

This proposition shows that, no matter how we try to choose the set Q of
auxiliary primes, the dimension of the tangent space H1

Q(Q,W ) is greater
than the r required for the Taylor-Wiles method (unless R = 0, a case
which is not of any interest for our intended application).

Khare [K] has an alternative method for proving R = T results, when
N is square-free. He has applied it for ` > 5. Again, one needs to show
that a certain Selmer group H1

Q(Q,W ∗) (not quite his notation) is trivial.
If we were to try to extend his method to ` = 2, the set Q would comprise
auxiliary primes q such that ρ(Frobq) has order 2 (c.f. [Bz]), the local con-
ditions at primes in Q would be different, and the problem described above
would not necessarily arise. But the reducibility of Sym2E[2], which lay
behind the problem, appears nonetheless to cause a fundamental difficulty
for this method too. In the papers [KR] and [R], on which [K] depends,
the absolute irreducibility of Ad0ρ appears to be an important condition.
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