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RESUME. Soit K un corps p-adique. Nous donnons une carac-
térisation explicite des extensions abéliennes de K de degré p en
reliant les coefficients des polynomes engendrant les extensions
L/K de degré p aux exposants des générateurs du groupe des
normes Np/x(L*). Ceci est appliqué a un algorithme de con-
struction des corps de classes de degré p™, ce qui conduit a un
algorithme de calcul des corps de classes en général.

ABSTRACT. Let K be a p-adic field. We give an explicit charac-
terization of the abelian extensions of K of degree p by relating the
coefficients of the generating polynomials of extensions L/K of de-
gree p to the exponents of generators of the norm group Ny, (L*).
This is applied in an algorithm for the construction of class fields
of degree p™, which yields an algorithm for the computation of
class fields in general.

1. Introduction

Local class field theory gives a complete description of all abelian ex-
tensions of a p-adic field K by establishing a one-to-one correspondence
between the abelian extensions of K and the open subgroups of the unit
group K* of K. We describe a method that, given a subgroup of K* of
finite index, returns the corresponding abelian extension.

There are two classic approaches to the construction of abelian exten-
sions: Kummer extensions and Lubin-Tate extensions. Kummer extensions
are used in the construction of class fields over global fields [Fie99, Coh99].
The theory of Lubin-Tate extensions explicitly gives generating polynomials
of class fields over p-adic fields including the Artin map.

The goal of this paper is to give an algorithm that constructs class fields
as towers of extensions from below thus avoiding the computation of a larger
class field and the determination of the right subfield. The wildly ramified
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part of a class field is constructed as a tower of extensions of degree p over
the tamely ramified part of the class field.

Our approach allows the construction of class fields of larger degree than
the approach with Lubin-Tate or Kummer extensions. Given a subgroup G
of K* these methods provide a class field L g that corresponds to a subgroup
H of G and that contains the class field corresponding to G. In general
the degree of Ly is very large and the computation of the corresponding
subfield expensive. Our approach does not yield a construction of the Artin
map though.

We start by recalling the structure of the unit groups of p-adic fields
(section 2). In section 3 we state the main results of local class field theory
and the explicit description of tamely ramified class fields. It follows that
we can restrict our investigation to cyclic class fields of degree p™. We begin
our investigation by constructing a minimal set of generating polynomials
of all extensions of K of degree p (section 4). In section 5 we relate the
coefficients of the polynomials generating extensions of degree p to the
exponents of the generators of their norm groups. This yields an algorithm
for computing class fields of degree p. Section 6 contains an algorithm for
computing class fields of degree p™. In section 7 we give several examples
of class fields.

Given a fixed prime number p, Q, denotes the completion of Q with
respect to the p-adic valuation |- | = p~*(), K is a finite extension of
degree n over Q, complete with respect to the extension of |- | to K, and
Ok = {a € K| |a| <1} is the valuation ring of K with maximal ideal
pxk = {a € K||a| <1} = (wx). The residue class field is defined by
K = Og/pxg and f = fg is the degree of K over the finite field with p
elements F,. For v € Ok the class y+px is denoted by . The ramification
index of pg is denoted by e = ex and we recall that ef = n. By dg we
denote the discriminant of K and by d, the discriminant of a polyno-
mial .

2. Units

It is well known that the group of units of a p-adic field K can be de-
composed into a direct product

K* = (mr) x () x (1 +pg) % x K* x (1+pk),

where (i € K a (#K —1)-th root of unity. The multiplicative group 1+px
is called the group of principal units of K. If n € 1 +pg is a principal unit
with vp(n — 1) = X we call A the level of 7.

A comprehensive treatment of the results presented in this section can
be found in [Has80, chapter 15].
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Lemma 2.1 (p-th power rule). Let a be in Ok. Let p = —me be the
factorization of p where € is a unit. Then the p—th power ofl—l—om;‘( satisfies

1+ apwll)? mod ]:11}){/\Jrl if 1<A< pefl ,
(1+am™P={ 1+ (aP — soz)w];()‘ mod pZ;()‘H if A= pe_l ,
1— eomi‘;re mod p;‘jeﬂ if A> pefl )

The maps hy : a+p — o +pg and hs : a+ pg — —ca + px are
automorphisms of K, whereas hy : a+py — of —ea+py is in general
only a homomorphism. The kernel of he is of order 1 or p.

As (1+pX)/(L+pp™) = pp/pptt = K| it follows that if my 1, ..., 7 1
is a system of generators for the level A < -5 (for the level A > -2), then
nivl, . ’T’if is a system of generators for the level p\ (for the level A+ex ).
If (p — 1) | ex the levels based on the level A = 5 need to be discussed
separately.

We define the set of fundamental levels

Fio:={A [0 <A< P pr AL,

All levels can be obtained from the fundamental levels via the substitutions
presented above. The cardinality of Fg is

#x = |5 = [ | = e [p5] - [ =«

If K does not contain the p-th roots of unity then principal units of the
fundamental levels generate the group of principal units:

Theorem 2.2 (Basis of 1 +px, pp ¢ K). Let wy,...,ws € Ok be a fized
set of representatives of an IFy-basis of K. If p—1 does not divide ex or if
ho is an isomorphism, that is, K does not contain the p-th roots of unity,
then the elements

M =1 + w;m™ where X € Fi,1 <i< fx
are a basis of the group of principal units 1 + pg.
If K contains the p-th roots of unity we need one additional generator:

Theorem 2.3 (Generators of 1+ pg, pp, C K). Assume that (p — 1) |
ex and hs is not an isomorphism, that is, K contains the p-th roots of
unity. Choose ey and pg such that p does not divide eg and such that
ex =p"Hp—1)eg. Let wy,...,ws € Ok be a fized set of representatives
of a Fp-basis of K with wy chosen such that w’fuo - swﬁ’uo_l = Omod px
and w1 #Z 0 mod pgr. Choose w, € O such that 2P — ex = w,mod px has

no solution. Then the group of principal units 1 + px is generated by

N =1 —i—w*ﬂll’(uoeo and ny; =1 +w,-7r}\< where A € F, 1 <1 < fk.
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Algorithms for the computation of the multiplicative group of residue
class rings of global fields and the discrete logarithm therein are presented
in [Coh99] and [HPP03]. They can be easily modified for the computation
of the unit group of a p-adic field modulo a suitable power of the maximal
ideal p.

3. Class Fields

We give a short survey over local class field theory (see [Ser63] or [Iwa86]).
Yamamoto [Yamb8] proofs the isomorphy and the ordering and uniqueness
theorems of local class field theory in a constructive way. He does not show
that there is a canonical isomorphism.

Theorem 3.1 (Isomorphy). Let L/K be an abelian extension, then there
s a canonical isomorphism

K*/Np k(L) = Gal(L/K).

Theorem 3.2 (Ordering and Uniqueness). If L1 /K and Lo/ K are abelian
extensions, then

Nizinrsy/x (L1 N L2)*) =N, g (L1)NL, /k (L3)

and

N(L1L2)/K ((LlLQ)*) = NLI/K(LT) n NLQ/K(Lg)

In particular an abelian extension L/K is uniquely determined by its norm
group Nppc(L*).

The latter result reduces the problem of constructing class fields to the
construction of cyclic extensions whose compositum then is the class field.
The construction of tamely ramified class fields, which is well known and
explicit, is given below. In order to prove the existence theorem of local
class field theory, it remains to prove the existence of cyclic, totally ramified
class fields of degree p™ (m € N). We give this proof by constructing these
fields (algorithm 6.1). The existence theorem for class fields of finite degree
follows:

Theorem 3.3 (Existence). Let G C K* be a subgroup of finite index.
There exists a finite abelian extension L/K with

Npx(L*)=G.

Tamely Ramified Class Fields. An extension L/K is called tamely ram-
ified if p { ey k. Tamely ramified extensions are very well understood. It
is well known that the results of local class field theory can be formulated
explicitly for this case.
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Let g = #K. If G is a subgroup of K* with 1 + px C G then

G = (micCis € x (1+pi)
for some integers F' | ¢g—1, F', and S. There exists a unique tamely ramified
extension L/K with Ny g (L*) =G, e /g = E, and fr = F.
Denote by T the inertia field of L /K. There exists a primitive (¢*" —1)-th

root of unity (; € L, a prime element 7y, of L and automorphisms o, 7 in
Gal(L/K) such that

® Ny g (Cr) = (i and Ny jp(7p) = (Pmx where 0 <t <e—1,
g-1

e (7 =(] and 772_1 = ° % mod PL,
q—1

e (7 =(r and szl = (" -

The Galois group of L/K is generated by o and 7:
Gal(L/K) = (0,7) = (s,t | st =ts, s" =79, tF =id).
The Galois group Gal(L/K) is isomorphic to K*/Np, g (L*) by the map:

g0, (g—T1, n—id for alln € 1+ pg.

Wildly Ramified Class Fields. We have seen above that subgroups
of (rk) correspond to unramified extensions and that subgroups of ((x)
correspond to tamely ramified extensions. Subgroups of K* that do not
contain all of 1+ px correspond to wildly ramified extensions.

Lemma 3.4. Let L/K be an abelian and wildly ramified extension, that is,
[L:K]=p™ for some m € N. Then

K*/Np/r(L) = (14 pk) /Ny (14 pL)-

4. Generating Polynomials of Ramified Extensions of Degree p

Let K be an extension of Q, of degree n = ef with ramification index e,
prime ideal p, and inertia degree f. Set ¢ := p/ = #K. For a, 3 € Ok we
write a = (3 if vg(a — 8) > v ().

In this section we present a canonical set of polynomials that generate
all extensions of K of degree p. These were first determined by Amano
[AmaT71] using different methods. MacKenzie and Whaples [MW56, FV93]
use p-adic Artin-Schreier polynomials in their description of extensions of
degree p.

There are formulas [Kra66, PRO1] for the number of extensions of a
p-adic field of a given degree and discriminant given by:

Theorem 4.1 (Krasner). Let K be a finite extension of Qp, and let j =
aN + b, where 0 < b < N, be an integer satisfying Ore’s conditions:

min{vy(b)N, vp(N)N} < j < vp(N)N.



632 Sebastian PAULI

Then the number of totally ramified extensions of K of degree N and dis-

criminant pNTI—1 s
Lf%:eJ N/t
eN/p"
i=1 ) =
#Ky, =4 "1 o, T ifb=0, and
eN/p*+|(j—|a/e|leN—1)/pla/e
n(g—1)qg =1 if b> 0.
There are no totally ramified extensions of degree N with discriminant
p%ﬂ*l, if j does not satisfy Ore’s conditions.
Let 7 = ap + b satisfy Ore’s conditions for ramified extensions of degree
p then
- pq° ifb=0
#Kpj = { p(g—1)¢* ifb#0.

We give a set of canonical generating polynomials for every extension in
K, ; with j satisfying Ore’s conditions.

First, we recall Panayi’s root finding algorithm [Pan95, PRO1] which we
apply in the proofs in this section. Second, we determine a set of canonical
generating polynomials for pure extensions of degree p of a p-adic field,
that is, for the case b = 0. Third, we give a set of canonical generating
polynomials for extensions of degree p of discriminant pP+@+b=1  where
b #£ 0, of a p-adic field.

Root finding. We use the notation from [PRO1]. Let ¢(z) = c,z™ +
-+ 4+ ¢o € Og[z]. Denote the minimum of the valuations of the coeffi-
cients of p(z) by vi(¢) := min {vk(co),...,vk(cn)} and define ¥ (z) :=
o(x)/m"5¥). For a € O, denote its representative in the residue class
field K by a, and for § € K, denote a lift of 8 to Ok by 3.
In order to find a root of ¢(x), we define two sequences (¢;(z)); and (6;);

in the following way:

e set po(z) := 7 (z) and

e let 6y € Ok be a root of pp(x) modulo p.
If g‘#(a}) has a root (3; then

o pit1(z) == ¢ (a7 + B;) and

o biy1 = fim' T+ 65
If indeed ¢(x) has a root (in Og) congruent to 8 modulo p, then ¢; is

congruent to this root modulo increasing powers of p. At some point, one
of the following cases must occur:

(a) deg(gol#) =1 and d;_; is an approximation of one root of ¢(x).

(b) deg(i) = 0 and §;_; is not an approximation of a root of ¢(z).
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(c) cpf& has no roots and thus d;_; is not an approximation of a root of

the polynomial ¢(x).

While constructing this sequence it may happen that ¢;(z) has more
than one root. In this case we split the sequence and consider one sequence
for each root. One shows that the algorithm terminates with either (a),
(b), or (c) after at most vk (dy) iterations.

Extensions of p-adic fields of discriminant pPTPe~1, Let ¢ be a
(q — 1)-th root of unity and set R = (po,...,pe—1) = (0,1,(, (3, ..., ¢972).
The set R is a multiplicative system of representatives of K in K.

Theorem 4.2. Let J := {r € Z | 1 < r < pe/(p—1), p{r}. Each
extension of degree p of K of discriminant pPteP~1 is generated by a root
of exactly one of the polynomials of the form

(p—1)| e and
P + 7+ Z pe,m T+ kompe/ =D+ yr b gp=1 4 (p/7€)
o(z) = icJ is reducible,
P + 7+ Z pe, it otherwise,

ieJ
where 6 € Ok 1s chosen such that xP — x + § is irreducible over K and

0 < k < p. These extensions are Galois if and only if (p — 1) | e and
2P~ 4 p/7¢ is reducible, i.e., if K contains the p-th roots of unity.

It is obvious that a pure extension can be Galois only if K contains the
p-th roots of unity. We prepare for the proof with some auxiliary results.

Lemma 4.3. Assume that o(z) := P! + ¢ € Fylz] has p — 1 roots in
Fy. Then there exists d € Fq such that Yp(x) = P + cx — kd € Fylx] is
wrreducible for all 1 < k < p.

Proof. Let h(z) = 2P +cx € Fy[z]. As p(x) splits completely over Fy, there
exists d € Fy \ h(Fy). Now 91(x) = 2P 4+ cx — d is irreducible. It follows
that

ki (z) = kaP 4 ckx — kd = (kx)? + c(kz) — kd
is irreducible. Replacing kx by y we find that ¢y (y) = v + cy — kd is
irreducible over IF,. O
Lemma 4.4. Let
o(x) = 2P + 7+ chmﬂr'ﬂ + kot € Ok lx] (t € {1,2})
reJ

where pe,, € R, v = pe/(p—1), and § € Ok. Let ay be a zero of p1 and
g be a zero of o in an algebraic closure of K.

(a) If c1y # coy for somer € J, then K(o) 2 K(ag).



634 Sebastian PAULI

(b) If c1y = coy for allr € J, if K contains the p-th roots of unity, & is
chosen such that ¥P —x+¢ is irreducible, v = pe/(p — 1), and k1 # ko
then K(a1) 2 K(ag).

Proof. Let L; := K(ay) and let p; denote the maximal ideal of L.

(a) We use Panayi’s root-finding algorithm to show that po(z) does not
have any roots over K(ai). As ya(z) = 2P mod (7), we set ¢g1(x) =
p2(aqz). Then

wo1(x) =zl + 7+ Z Peg, ™ T4 kot
reJ
(_ﬂ _ chwﬂrﬂ - kld,]rv-i-l)xp N ZPCQ,JTTH T kodmtt!
reJ red
=n(—axP +1).

reJ reJ

= (—1 - Z Pey T — kléﬂ'l’)alfxp +1+ chwﬂ'r + kodm®.
reJ reJ
Let 3; be a root of gpgfiﬁ. Let m be minimal with ¢i,, = c2,,. Then
Bm # 0. Let m < u < pe/(p—1). Assume that the root-finding algorithm
does not terminate with deg gpiw = 0 for some m < w < u. After u

iterations of the root-finding algorithm, we have

902,u+1(x) = (_1 - ZPCLT-HWT - k157TW>

reJ
: (Oé%l‘ + Bufla’lfil + -+ ﬂmain + 1)]7

+ 1 + Zp6277‘+1ﬂ.i + +k257‘rv71
reJ

T

P u m § :
" —poqx — pﬂmal + (pC2,r+1 - pcl,r+1)7T .
red,r>m

= _P¥
= 03

The minimal valuation of the coefficients of (g ,41(z) is either v, (of") =
pu or v, (pPmaf’) = pe +m. As ged(p,m) =1 and m < pe/(p — 1), there
exists u € N such that the polynomial @ﬁu +1(7) is constant. Thus the root-

finding algorithm terminates with the conclusion that ¢o(x) is irreducible
over K(aq).
(b) We set p21(z) := @a(onz) and po2(z) = cpf(ala: +1). After v+
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1 iterations of the root-finding algorithm we obtain ¢ ,42(x) = —a;"a?
— pajx + (kg — k1)om®. By lemma 4.3 <p2#+v(:v) is irreducible for ki # ko.

Therefore, @o(x) has no root in K (o) and ¢ (z) and p2(x) generate non-
isomorphic extensions over K. O

Proof of theorem 4.2. We will show that the number of extensions given by
the polynomials ¢(x) is greater then or equal to the number of extensions
given by theorem 4.1. The number of elements in J is e (see section 2).

By lemma 4.4 (a), the roots of two polynomials generate non-isomorphic
extensions if the coefficients p., differ for at least one ¢ € J. For every ¢
we have the choice among pf = ¢ values for pe;- This gives ¢¢ polynomials
generating non-isomorphic extensions.

If K does not contain the p-th roots of unity, then an extension generated
by a root a of a polynomial ¢(x) does not contain any of the other roots
of p(x). Hence the roots of each polynomial give p distinct extensions of
K. Thus our set of polynomials generates all pg® extensions.

If K contains the p-th roots of unity, then lemma 4.4 (b) gives us p — 1
additional extensions for each of the polynomials from lemma 4.4 (a). Thus
our set of polynomials generates all pg® extensions. Il

Extensions of p-adic fields of discriminant pP+ep+b—1 p £ 0,

Theorem 4.5. Let J == {r € Z|1<r < (ap+b)/(p—1),pt (b+r)}
and if (p—1) | (a+b), setv= (ap+0b)/(p—1). Fach extension of degree p
of K of discriminant pPT®H0=1 with b # 0 is generated by a root of exactly
one of the polynomials of the form

A (p—1)| (a+0b) and
xp+CS7T“+1:Bb+7T+Z ,061.771“—|—l<:(577”Jrl if{ P~ 4 (—1)‘”’*1@

p(x) = ieJ has p — 1 roots ,
$p+Cs7ra+1xb+7r+Z e, otherwise,
i€

where p € R and 6 € O is chosen such that aP + (—1)Pt1(5bx + 6 is
wrreducible in K and 0 < k < p. These extensions are Galois if and only if
(p—1)| (a+0b) and 2P~ — (b € K|[z] is reducible.

Lemma 4.6. Let
aP + ¢t tgb 4o 4 ZPCMWT—H + kT € Oklx] (t € {1,2})
reJ

where prr € R, v > C;pjlb, and 6; € Ok. Let ay be a zero of 1 and s be

a zero of o in an algebraic closure of K.
(a) If s1 # s9, then K(ay) 2 K(ag).
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(b) If s1 = s and c1, # cap for some r € J then K(aq) 2 K(az).

(c) K(an)/K is Galois if and only if a+b=0mod (p — 1) and 2P~ +
(=1)®Pt1¢51b is reducible over K.

(d) Assume s1 = s and c1, = cap forallr € J. If (p—1) | (ap +b),
then for v = C;pfzb there exists 0 € Ok such that K(a1) 2 K(a2) if
ki # ko.

Proof. Let Ly := K(a1).

(a) Forte {1,2}let v, =, c)pe., " +kidym?. Then of /m = —(*1m%ab —
1 — 1. We use Panayi’s root-finding algorithm to show that yo(x) has no
root over Ly = K (o). As before, we get p21(z) := p2(a1z) = m(—2P +1).
Therefore we set

p22(x) = ¢§, (a1 +1)
— (_C517Taab . ’Yl)(alm 4 1);0 + CSQWaOéb(Oq.%' + 1)b +1 + .

Let 2 < u < pe/(p—1). Let B; € R be a root of go#l(m) Assume that
#

2w T

the root-finding algorithm does not terminate with deg ¢ 0 for some

2 < w < w and let m be minimal with m < u < pe/(p —1) and B, #
0 mod (). After u iterations of the root-finding algorithm, we have

©2.011(z) = (—C17%8 — 1 — ) (@ + Bu_10¥ 4 -+ Bpa + 1)P

+ ¢2tral (s 4 By 10V - 4 Bl + 1)+ 1+ o

Because u < e, vr,(p) = pe, and a < e, the minimal valuation of the
coefficients of g ,,41(7) is either vz, (—af") = pu or v, (7%8) = pa +
b. Hence the root-finding algorithm terminates with ¢ ,41(z) = (¢** —
Csl)w“ab for some wu in the range 2 < u < e.

(b) We show that ¢2(x) does not have any roots over L;. As @a(z) =
xP mod (), we get @2 1(x) := p2(ax). Now 803%1 (x) = —aP 4+ 1 and we set
p22(2) = ¢¥ (arz +1).

Denote by 3. a root of ¢§T+1(x). Let m be minimal with m < u <
pe/(p—1) and B, # 0 mod (). Assume that the root-finding algorithm
does not terminate earlier with deg go%% w = 0 for some w < u. After u
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iterations, we have

_ s1.a b 7 a+1
802,u+1($) = (_< Lo Q] — 1-— ZPCLT-HW — Peia42T )
reJ

. (Oéqfﬁﬂ + ﬁuflollfil + o4 ﬁmaT + 1)17
+ Cslﬂaal{(a”x + ﬂu_la?_l + ot Bpalt + 1)b +1

r a+1
+ ZPCQ,T+17T + Pegai1 T

reJ
= —aPa” — pals — pPmaf = pey 7 (Bmad")? = (Bmal")P
reJ
+ ¢rrabbata + ¢ albBma™ + Y (Pey, iy — Perrsd)T s

reJ

with 8, # 0 mod (a1).
The minimal valuation of the terms of g ,41(x) is

VL, (Cslﬂ“al{bﬂma}”) =pa+b+m

or vg, (") = pr. By the choice of J we have p { (pa-+b+m). Therefore, the
root-finding algorithm terminates with ¢ ,(z) = ¢l bBna™ for some
u € N.

(c) We show that ¢1(x) splits completely over L; if and only if the con-
ditions above are fulfilled. We set ¢11(z) = ¢1(a1z) and ¢12(z) =
@ﬁl(ax +1). Thus

p12(z) = (—Cslﬂaal{ —1-> pcl,,.ﬂr) (apz + 1)P
+ <s17raab(a1m + 1)(2 414+ Z’!‘EJ pCLTﬂ.r

= z(—alzP~! 4 1%l th).

After u + 1 iterations we get

—ayPxP if up < pa+ b+ u,

z(—aiPrP~1 4 ¢1realtU)  if up = pa + b+ u,
s1.-a, b+l v up > pa + b+ u and
HmterTbe ‘ {<p—1>+<a+b>.

Prut1(r) =

In the third case, cpffu 41 (%) is linear and therefore o1 (x) has only one root

over Lq. In the second case,

Pur1(r) = —aPaP + %l or = —alPaP + 1 (—ap) Pl
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and so goﬁuﬂ(x) = —2P 4+ (—1)¢*'br mod (o). If gojfil(x) has p roots
over K for every root 3 of goffu 41(x), we get -
P1ru+2(2) = prutpi(a1z + )

= —a§u+1)pxp + (—1)“”0/1‘“6(8%“@[{ -+ (—1)“paqf+lbﬁb§slwaa1{x.
But up+p > u+ 1+ pa+b; thus gpfuﬂ(;r) is linear and ¢ (x) has as many
distinct roots as 5071%“4_1(1‘). -

(d) We set 21(z) = @(az) and pa2(z) = gpgﬂ(am + 1). We obtain

©2011(2) = —aiPaP + ¢ 1%l Tbx + (ky — k2)dm”, hence W#H(x) oy
(=1)®+¢51br + (kg — k2)d. By lemma 4.3, there exists § € O such that
@;fvﬂ(a:) is irreducible. -

Proof of theorem 4.5. If (p — 1)t (a + b), then

#7=a+ [gh] - |+ ety | - 2]

=t [t - [ <

If (p—1) | (a+Db), then

- atb _ 1 _ |atb atb 1| _|b| — atb—1 _ |at+b=1| _
#J—a+p_1 1 LP +p(p_1) 1J LPJ =a-+ P Lp_lJ—a.

Using lemma 4.6 (a), we get pf —1 sets of generating polynomials. By lemma
4.6 (b), each of these sets contains p/® polynomials that generate non-
isomorphic fields. Now either the roots of one of the polynomials generate
p distinct extensions or the extension generated by any root is cyclic. In the
latter case, we have p — 1 additional polynomials generating one extension
each by lemma 4.6 (d). Thus we obtain (pf — 1)p®f+1 distinct extensions.

O

Number of Galois Extensions. The following result can also easily be
deduced from class field theory.

Corollary 4.7. Let K be an extension of Q, of degree n. If K does not
contain the p-th roots of unity, then the number of ramified Galois exten-
sions of K of degree p is p- pp__ll. If K contains the p-th roots of unity then

n+1_1
p—1

p

the number of ramified Galois extensions of K of degree p is p -

Proof. Let ¢(x) be as in theorem 4.5. We denote the inertia degree and the
ramification index of K by f and e, respectively. The number of values of
s for which zP~! — ¢* is reducible is (p/ — 1)/(p — 1). By Ore’s conditions,
0 < a < e. Forevery a < e, there is exactly one b with 1 < b < p such that
(p—1) | (a+0b). For every a, the set J contains a elements. This gives
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pf® combinations of values of ¢;, i € J. We have p choices for k. Thus the
number of polynomials ¢(x) generating Galois extensions is

f—1 ! f—1 ple—1 n—1
P p P p
Z fa_p.

-1 -1 Py

If K contains the p-the roots of unity, a = e also yields Galois extensions.
By theorem 4.2, we obtain additional p(pf)¢ = p"*! extensions. O

5. Ramified Abelian Extensions of Degree p

Let L/K be an abelian ramified extension of degree p. The ramification
number ( Verzweigungszahl) of L/K is defined as v = vy, /i = VL(TFZ_l —1),
where o € Gal(L/K) \ {id}. The ramification number v is independent of
the choice of o. If ¢ is the minimal polynomial of 77, then

vi(d(p)) = > vi(o'(xL) — o/ (mL))
i#]
p(p—1)
= Z VL(U(TrL) — 7rL) =plp—1)(v+1).
=1
Hence, vk (dp k) = (p—1)(v+1) for the discriminant of L/K and Dy, /i =

p%0*1)(

(see Theorem 4.1) that either v = p_%5 or v =
satisfies Ore’s conditions.

vtl) for the different of the extension. It follows from Ore’s conditions
ap+b

€ Fg where j =ap+0b

Lemma 5.1. Let L/K be a ramified extension of degree p. If d := vy, (D k)
=(p—-1)(v+1), then

232
Tr/r(0L) =vg :

See [FV93, section 1.4] for a proof. We use Newton’s relations to inves-
tigate the norm group of abelian extensions of degree p.
Proposition 5.2 (Newton’s relations). Let 9 = 91, ... 9™ be the roots
of @ monic polynomial ¢ = Y gcic, vix'. Then ~; = (~1)"=IR,_;(9)
where Ry,_;(¥) is the (n — i)-th symmetric function in 9, ... 9. Set
Sk(9) =>"1", (ﬁ(i))k for each integer k > 1. Then

—kn—k — Zfz_ll '7nfiSk:—i(?9) for1 <k <n, and
— > —iSk—i (V) for k >n.

The following describes explicitly where and how the jump in the norm
group takes place (c.f. [FV93, section 1.5]).

Sk(V) =
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Lemma 5.3. Let L/K be ramified abelian of degree p and let v denote
the ramification number of L/K. Let (o) = Gal(L/K). Assume that
Np/k(mL) = 7k. Let e € K be chosen such that 77~ =1 +em¥ mod pvtt.
Then

NL/K(1+a7Ti) =1+ aPry mod pitt  ifi <,
Np/k(I+anmp) =14+ (o — P ta)ny mod pitt,  and
Np/x(1+ onrvﬂ”(Z v)) 1—ePtant, mod pHl ifi >w.

The kernel of the endomorphism Kt > Kt given by a — aPf — ePla has
order p.

Proof. We have
Npjk(l+wrp) =1+ wRi(n)) +w’Ra(rp) + -+ W' Ry(m)),

where Ry (7% ) denotes the k-th symmetric polynomial in L, gt 7rj{p K

In particular Ry(n}) = Tk (7}) and Ry(w}) = Ny x(7p)". By lemma 5.1
and v,(Dr k) = (v+1)(p — 1), we obtain

Se(ny) = Trr(nf) € Trr(pi) C R
where
Api = L(pfl)(i;;rl)JrkiJ —v+1+ L—v—pl—l—kiJ v+ [kz v'| — LU—TJmJ

(i) If i < v, then i < A\; = v — L%J and VK(Sk<7TL)) > A = A > 4.
With Newton’s relations we get vi (Ry(n})) > i for 1 <k <p—1 and as
Rp(m7) = Np/g(mL)" = T, we obtain

Np/x(1+ any) =1+ aPrl mod pitt.
(ii) Assume i = v. By lemma 5.1 T g (p7) = p;}“, and so T g (7}) =
B, mod p”Jrl for some 8 € Okg*. We have A\, = v + (@W > v, If
k > 2 then vg(Sk(n})) > A\ = v+ 1. Hence with Newton’s relations
vic(Ri(7y,)) = min(kv,v 4+ 1) > v+ 1for 2 <k < p—1. Thus Np /g (1 +
an?) =1+ afry + aPry mod pit! and Np/k(1+77) C (1+pk)’. By
the definition of ¢ and as Np /g (77~ ') = 1 we have Np/k(l+erp) =1
mod p”+1 Therefore 3 = —P~! mod px and we conclude that

Np/k(l+arp) =1+ (af =P a Ya)ry  mod pit.

(iii) Let ¢ > v. We have )‘v+p(i7v) = ¢ and /\k(v+p(i7v)) > 4. By the
considerations in (ii), we obtain

Np/x(1+ omwrp(l U)) 1 —ePtant, mod pift.
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Next we investigate the relationship between the minimal polynomial of
71, a uniformizer of the field L, and the norm group Ny /i (L*). We start
by choosing a suitable representation for subgroups of K* of index p. We
begin with extensions of discriminant pP*¢2/5K~1 which are Galois if and
only if K contains the p-the roots of unity.

If K contains the p-th roots of unity then

K* = (k) x (mr) X (mai | A € Fre, 1 <@ < fiesma)
Let G be a subgroup of K* of index p with 0. ¢ G. Let (g1, ..., ey fxc+3)
be generators of G. Let n = ex fx and B € Z"3X7+3 such that
(915 s Gercfre+3)” = B(Cre, Ty mai | A€ Fi, 1< < freyma)”

be a representation matrix of G. Let A be the row Hermite normal form
of B. Then

1 0 -+ v o0 Qr
0 1 0 0 0
0 1 0 - 0 ai,1
A— . .
0
: ol ap_ry
0 -++ cov cve oo 0 P

Thus
G = (mgn™; Cis mune™ | A€ Fr, 1 <i < frsy nP) (te€{1,2}).

Theorem 5.4. Assume that K contains the p-th roots of unity. Let

or(x) =2 + 7 + chmﬂ”l + kot € O] (t € {1,2})

reJ
be polynomials as in theorem 4.2. If Ly := K[x]/(p1) and Ly := Klz]/(¢2),
then v =vr, )k =vp,/xk = pex/(p—1). Hence
N(L;) = (mgni™™; (s mme™ | M€ Fi, 1 < < frs Py (t € {1,2}).

(a) Letwe J={1<r<pe/(p—1) | ptr}. We have c1, = ca, for
1<r<w,reJifand only if a1,9—ri = a2.9—r; for all1 <r <w, r e J
and all 1 <1 < fk.

(b) If c1, = o for allr € J, then k1 = ky if and only if a1 » = ag x.

Proof. (a) We show one implication directly. The other implication follows
by a counting argument.

(i) Asp | (v—=2A) if and only if p | A we have v —r € Fi if and only if r € J.
(ii) Let 7 be a root of ¢;. We write ¢ = aP — . The minimal poly-
nomial of 7} over K is #” — 4. The characteristic polynomial of wm} is
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2P 4wPq;. The characteristic polynomial of 14w} is (x—1)P —aPw?. Thus
N, k(1 +wm)) = (1P —wPy. If 91 = 79 + ar™ for some a € Ok*
then for r < w we obtain

N = (et rg ) =4 (v )y argt mod Rt

(iii) Assume that ¢1, = ¢, for all 1 <r < w. For all r < w — 1 we obtain
Np/r(1+ wwzz’") = (1P + WPy  =Np, k(1 + WFZ;T) mod ]J”K+1

which implies a1, y—r; = a2y—r; forall 1 <r <w and 1 <7 < fk.
(iv) If ¢, # 2.4 for 7 = w we have

NLQ/K(l =+ (AJTI'Z;w) = (_1)]3 + wp’yg_w
and
Npx(LHwrp ) = (=10 +wP (5™ 4+ (v—w)y o a)  mod pilt.

By (i), pt (v —w) and as vk (y2) = 1, it follows that a1 4 ; # a2.w,i-
(v) There are p/ choices for each Pe,.- On the corresponding level A = v —7r

there are f generating principal units 7y 1,...,nx1 with in total p! choices
for the exponents a; ) 1,..., a4 r. This shows the equivalence.
(b) We have

N, /k(7mr,) = 7TK—|—Z Per, T kST = my (H niff‘i-nft”) mod p42.
reJ e

Since c1, = ¢, for all » € J, we have a1 x; = ag; for all A\ € Fp,,
1 <e< f. Thus ky = ko is equivalent to a1 » = a2 . O

If K does not contain the p-th roots of unity then

K*=(rr) x ()< [[ ] (ma)-

AeFR 1<i<fr

Let G be a subgroup of K* of index p and let A be the row Hermite
normal form of the representation matrix of G. There are values A\g € F,
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1 <ip < fKa ar € {077p_ ]-}7 a)g € {Ovvp_ 1} for ()"7’) € Fi X
{1, fre} \ {(Noyi0) } with A < Ao, @ <idp and ay, i, = p, such that

1 0 0 Gr 0 o 0
0 1 0 0 0 0 :
0 1 0 0 ai.1 0
A= 0
1
0 axg 0
0 1
: 0

Thus G can be generated as follows
G = (TrmST 05 Cis Maataeio | A € Fro A < Ao, 1< < [k
Modan | 1< <oy 8103 Mo | o < i < fi;
M | A€ Fie, o < A\ 1< < fie).
By lemma 5.3, we have Ao = vy i if G = Np /g (L").
Theorem 5.5. Let
pi(x) = 2P + b 4+ pe, w4 kst € Okla] (t € {1,2})
red

be polynomials as in theorem 4.5 such that Ly := K[z]/(¢1) and Lg :=
K[z]/(w2) are Galois. Then v = v, /i = v,k = (ap+b)/(p —1). If K
does not contain the p-th roots of unity,

At i

N(L}) = (mriyiTs CK; Mty s,

A€ Fg, A <v,1<i< fk;

at v,i

nvzin’v,it

1< <igs 05,5 Mo | i <0 < fr;
M | A€ Fre,v <\ 1<i < fk).
If K contains the p-th roots of unity then 1y is an additional generator of
N(LF)-
(a) s1 # s2 if and only if there exists 1 <1 < iy with a1,; # a2,4,-

(b) Letw € J ={r € Z|1<r < (ap+b)/(p—1),pt (b+7r)}. We
have 1, = coy for 1 <r < w, r € J if and only if a1y—r; = a24—r; for
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1<r<w,reJandalll1 <1< fk.
(c) If c1p = cop forallr e J, then k1 = ko if and only if a1 = azx.

Proof. We have seen that there exists v in Fi and 1 < iy < fx such that
At i, =p fort =1,2.

(a) (i) If &, € O7F, is chosen such that Wz:l = 14 g7} mod qutrl then
v+1 mod pv+2

7rLt =TL, + ey, By lemma 5.3,

Ny k(1 +amp) =1+ (o — el laP )l mod py.

It follows from the proof of lemma 4.6(c) that modulo px the unit ¢; is
congruent to one of the roots of gpfv = —aP 4+ (—1)(Gtbr mod pgr. Thus,
e = ( 1)2PT1¢2%h mod pr. As the kernel of v, Kt - KT a—
aP — &b '« has order p, the intersection of the kernels of ¥, and ¥, is {0}.
Therefore there exists 1 < < fx such that a1 ,; # a2,.

(ii) By corollary 4.7, there are p;%ll possible values for s;. For any given

1 <4y < fi there are pr—it combinations of 0 < a;,; < p where 1 <7 <.

In total this gives Z{t -1 plE—it = p;}(% combinations, the same number
of choices as for the exponent s;.

(b) (i) As p divides ((ap+b)/(p—1)+b—X) = ((ap+bp)/(p— 1) — A) if
and only if p | A\, we have v — r € Fi if and only if r € J.

(ii) Assume that ¢ = 2P + Bz° + vy, with 71 = 72 + 7% for some « € O}
with v (R) = 0. We have

Nz, /x(1+ wﬂft) =1+ wR1(772t) + szg(W[)jt) +--+ PR (TI'Lt)
where Ri(wét) denotes the i-th symmetric polynomial in 7['2 ,wg)‘,...,
ng_lA. In particular, Ri(m},) = Ty, x(7},) and Ry(r},) = 7). We
have seen in the proof of theorem 5.4 (a)(ii) that v{"" = fyg " mod pf
for r < w — 1. By Newton’s relations (proposition 5.2) we see that

(p— )5 for i =p—b,
(p—b)Bf for i = k(p —b) <p,
Si(mL,) = Py for i = p,
@ —oy(mr,) = WSi—p(mr,) fori>p,
otherwise.

We have VK(Sp(th)) = vk(py) = e+ 1 > v. By Newton’s relations,
Ri(wét) is a sum of the S;(mr,), hence v (R; (7rLt)) > min(a+ l,e+1) =
a+1>wvfori<p. Thusforallr<w-—1

NLl/K(l-l-WTFZ:r) NLQ/K(l-FLU?TU ") mod p%.

(iii) See the proof of theorem 5.4 (a) (iv).
(c) See the proof of theorem 5.4 (b). O
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Theorems 5.4 and 5.5 yield an algorithm for computing the class field L
over an extension K of Q, corresponding to a subgroup G of K* of index p.
The discriminant pPto7t0=1 of the extension can be directly read off from
the Hermite normal form of the transformation matrix from the generators
of K* to the generators of G. After determining the exponent for ¢ one has
a first approximation of a generating polynomial of L:

aP + o Hab 47
Now the constant term can be determined by computing the coefficients

of m, ®%,... in its m-adic expansion step by step up to the coefficient of

v+l — plap+b)/(p—1)+1

The existence theorem for ramified extensions of degree p follows from
the two theorems above by a counting argument. A change in a coefficient
of the polynomial results in a change of an entry of the matrix. There are
exactly p choices for the indeces ¢, of the coefficients of 7, 72, ... and for the
entries ay; of the matrix. Likewise there are p choices for the coefficient
k of the polynomials and the entry a, of the matrix. We obtain a one-
to-one correspondence between generating polynomials of ramified normal
extensions of degree p and the matrices representing their norm groups.

The existence theorem for unramified extensions of degree p is a special
case of the existence theorem for tamely ramified extensions.

Corollary 5.6. Let G be a subgroup of K* of index p. Then there exists a
unique abelian extension L/K with Ny /i (L*) = G.

6. Cyclic Totally Ramified Extensions of Degree p™

We construct the class field corresponding to a subgroup G C K* with
K*/G cyclic of order p™ as a tower of extensions of degree p. In each step
we determine a class field L of degree p and then find the class field over L
corresponding to the preimage of G under the norm map.

Norm Equations. Let L/K be a finite extension and let a« € K. We are
looking for a solution § € L* of the norm equation

Np/k(B)=aeK

provided it exists. Let L* = (7r) x (Cr) X (Nr1,--.,ML,r) be the unit group
of L. Obviously N,/ (8) =  has a solution if « is in the subgroup

U:=(Np/k(m), Nk (CL), Npyw(mp1), - -+ Noyx(ner))

of K*. We determine a solution 3 N () = a by representing o by
the generators of U given above. The set of all solutions is {3 -7 | v €
ker(Ny i)}

We find the preimage of a subgroup A of Ny i (L*) C K* in a similar
way. We need to determine a subgroup B of L* such that N g (B) = A.
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As A C Ny g (L") there exist ary,ac, ;a6 EN (1< k<, 1<I<r+2)
such that

A= (Np/(rp)* Ny (Cr) et Ty Noyr (mi) ™ | 1 <1< r +2).
Thus a solution of our problem is given by

gl ¢y 1 gl
B:<7rL 2 ey \1<l<r—|—2>.

Constructing Class Fields. Let G be a subgroup of K* with K*/G =
(14+pk)/(GN(1+pk)) cyclic and [K* : G] = p™. We describe an algorithm
for constructing the class field over K corresponding to G.

Let 1 € K* be such that ()G) = K*/G. If Hy = (n}, G), then H; is the
unique subgroup of K* of index p with H; D G. We determine the class field
L1/K corresponding to H; using the results of the previous section. Let
G1 =N | ((G) C Li. Since Hy = Ny, (L5), we have [L} : Gi] = p™ .
Now we determine the subgroup Hs D G with [L} : Ha] = p and compute
the class field Ly/L; corresponding to Ha.

Next we show that Ly/K is normal. If Ly/K was not normal then we
would have o(La) # Lo for an extension of an automorphism o € Galy,, /x,

and Ny () (0(L3)) = Np,/x(L3) = <17f2,G>. But by its construction,
L/Ly is the unique abelian extension with Ny, /x(L3) = <77}172,G>. Thus
Ly /K is normal.

The Galois group of Lo/K is either isomorphic to C), x €} or to Cpe.
Assume Galy, /g = C), x Cp. Then Ly/K has at least two distinct subfields
Ly and Lj of degree p with N, /r(L7) D G and Npr/g(LY) D G and
Np,/x(L7) # Npyre(Ly) (otherwise Ly = Lj). But Hy is the unique
subgroup of G of index p, therefore Galy, /i = C)p2.

So La/K is the class field corresponding to Nz, /x (L3) = <771f2, G). Next
we set Gy = NZ;/Ll (Gy) = NZ;/K(G) C L7 and continue as above until we
obtain L,,/K, the class field corresponding to G.

As the Galois group of all subextensions of L,,/K of degree p? is isomor-

phic to €2, we obtain Galy, = Cpm. This yields the existence theorem
for cyclic class fields of degree p™.

Algorithm 6.1 (Cyclic Class Fields of Degree p™).
Input: K/Q,, G a subgroup of K* such that
K*/G= (14+pK)/(GN(1+pk)) cyclic with [K*: G] = p™.
Output: L /K cyclic of degree p™ with Ny, /r(Lm) = G.
e Set G1 := G and Ly := K.
e For i from 1 to m:
a. Let n; € LY ,. Set Hy = (nf, G;), then [K* : H;] = p.
b. Determine L;/K class field corresponding to H;.
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c. Set Gi+1 = 1\171

Li/ni(Gi) C Ly, then [LY : Gipa] = pmr

Corollary 6.2. For every subgroup G of K* with K*/G = (14 pk)/(GN
(14+px)) cyclic of degree p™ there exists an abelian extension L/ K of degree
p™ with Ny (L") = G.

The existence theorem of local class field theory for finite extensions
(theorem 3.3) follows.

Example 6.3. Let G1 = (3) x (—1) x ((1+3)?) C Q5. We compute the
class field corresponding to G as follows (from bottom to top):

b. Qs(m)with 73 + (—127% — 6)73 — 37272 + 31m; — 183=0
a. _H2 = Gg,las [Qg(ﬂ'l)* : GQ} =3
c- Go = NQS(M)/QS (G1)

= (m, =L (14 m) (1 + )% L+ 7)) (1 + 1), (1+71)°)
Qs(m)* = (m) x (=1) x (L 4+ m,1+ 71,1 +77)
b. Q3(m)with 7'1':13 + 671'% +3=0

a. Hy = (3) x (—1) x ((1+3)*), such that [Q} : H{] =3
Gr = (3) x (1) x {(1+3)°)
Q% = (3) x (—1) x (1 +3)

Qs

7. Examples

The methods presented above have been implemented in the computer
algebra system Magma [BC95] and released with Magma 2.12. In the tables
below we give cyclic class fields over Q, and some of their extensions for
p € 2,3,5,7,11,13 of degree up to 343.

Let K be a finite extension of Q, with unit group

K™ =(m) x () x (mni | A € Fr, 1 <i < f).
A cyclic class field L of degree d over a field K is denoted by

Ar5A¢5AT ] eeny Oy —
iy K

where ar,ac,a11...,a,—1,5 are the entries in the relevant column of the
Hermite normal form of the transformation matrix mapping the basis of
K* to generators of the norm group Ny x(L*) (compare the exposition
before theorem 5.5). It is obvious that 0 < ar < d, 0 < a¢ < d, and
O0<ay; <dfor \€ Fgand 1 <i< fK/Qp. If d is a multiple of p we leave
out a¢c = 0.
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In some tables the class fields are parameterized by the a; ;. The a;; in
the naming scheme are always to be considered modulo d. Throughout this
section we use {0,...,p — 1} as a set of representatives of Z,/(p). As we
compute class fields as towers of extensions and in order to facilitate repre-
sentation we give their generating polynomials over a suitable subfield that
can be found in one of the other tables. We use 7w to denote a uniformizer
of that ground field.

If K contains the p-th roots of unity we have the additional generator 7,
for K* and an additional entry a, in the transformation matrix.

Class Fields over Q3. There are six totally ramified class fields of degree
2 over Q3. The parameter k is equal to 0 or 1.

L/K | Nk (L) over generated by

Kgcz)/@ (2-3%,3%5) Q a?+20+2+k-4

szg,o /Qy | (2-5%,3,5%) Qy 2242+k-8
kﬂl/@ (2-5M1,3.5,5°) Qy a2 +2+4+k-8

The following table contains 2 of the class fields of degree 64 over Q3 and
its abelian subfields. The parameter k is equal to 0 or 1.

L/K ‘ Ny g (L¥) over  generated by
K5YQ, (2-5,3-5,5%) KD 224w+ oo
Ky30/Qs (2:52 3-5%,5%) KD 2o+t
1(15073)3)/@2 (2-510 3.513 516) Ké%ﬁ) 22 4 7+ 78 4 716 4 17
KGron/@ | (2:593:5%,5%)  Kigh”

2 w4l 24 p 264 133
K (10+32F; 29)/@ (2.510+32k’ 3.529’ 564> KégQiéO)

64,447 ,
T2 w4 w32 404 42 B0y 524 56 758y 7624 for65

Ramified Class Fields of Degree p over Q, for p odd. If p is an odd
prime then Qj = (p, ¢, (1+p)) where ( is a (p—1)-th root of unity. Theorem
4.5 yields generating polynomials of totally ramified normal extensions of
degree p over Qy:

o =aP+ (p— DpzP~ +p + kp?,

where 0 < k < p. Let K be the extension defined by a root of ¢. The
exponents of the generators of the norm groups follow immediately from
the coefficients of the polynomial. We obtain

Nk /g, (K*) = (p(1+p)*, ¢, (1 +p)).
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Class Fields over Q3. We start with the class fields of degree 2 and 3
over Q3. The parameter k runs from 0 to 2.

L/K ‘ Np/x(L¥) over generated by
Ko0/Qs | (3%,—1,4) Q3 z"+1

KQ(?l)/Qi% (3,1,4) Qs 22+3

Ké}l)/Q3 (=3,1,4) Qs 2?-3

K30/Qs | (3%,—1,4) Q3 2>+2x+1

K:E,Z)/QS (3-4%,-1,4%) Q3 23+2:322 +3 +k-3?

There are 12 ramified class fields of degree 3 over Kéll) . The fields Lz(f),

ng, and L:(;’% are normal over Q3. In addition to their norm groups in

Kéll), we give their norm groups in Q3. The parameter k takes on values
from 0 to 2.

L/K ‘ L/ (L) over generated by
éki/Kéll) ‘ (r(147)*, =1, (1 4 7)3,4) K2(711) o342+ kn?
Ly 6/K§11 (m-dF, —1, (14 m),43) K2(11) w3 yomle+m + ik
3+k;)/K§11) (m-4F 1, (1 + )4, 43) K2(11) r3+2mir+ 4 2n24-krd
6+k‘) @) k 2 43
S e R

Over K é?i there are 39 ramified cyclic extensions of degree 3 with 3 different
discriminant. Both parameters [ and k run from 0 to 2.

L/K ‘ Np/g(L¥) over generated by
k) (0) 0

Lg4/K34 8'F, 13, n2,m3) Kg()i o3 2ra? - km?
k;l) (@ 0

L( /K32 <3177]2€7n§777§a773> K;i $3+Z7T2[E+7T+k‘ﬂ'3

k+l+2,l,0 0 k+i+2 0
Lg 10 )/Ké,i (30572 ik o, n3) Ks(,i
23+ 2m3a? + 4+ 73 + Int + kn®
k-+142;0,1 0 0
LZ(S 10 )/Kz)(),i <377k+l+27 77177f°,a 112713, 77§> Ké,éz .
23 421322 + 7 + w3 + Int + kn®

0
Bty g nd) K
23 4+ 2m82? + 1+ Int + kn®

k+1;1,2 0
LG T KS)

The three fields Lg’ff{]l’z’o) for k = 0,1, and 2 are cyclic over Q3. They appear
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in the following table of all cyclic extensions of Q3 of degree

9. Let p be denote a root of 22 + 22 + 1 and recall that K30 =Qs3(p).

L/K

‘ Ny k(L") over generated by

Ky0/Qs3

(37,—1,4) Kz
23+ (20 +2)22 + (202 + 2p + 2)x + 2p

Ky /Qs

(34320, 1,49 K|
3423 4 i 2t ke

Ko Vs | (348000 10 K

2 2m3 2+ 4+ w34+t 4 knd

E§yy VQs | (3430042 149 K adrenda®tmend 4 kn

Kéiis/ Qs
2
ng,is/ Qs

(334, —1,43) Kso a3 +2-32% + 3+ 2p%32
(3342, —1,43) Kso 23 +2-32% + 3 + p?3?

The following table contains all cyclic extensions of Q3 of degree 27 contain-

(0)

ing KQ?QQ, all cyclic extensions of Q3 of degree 81 containing Kég?% /, and

all cyclic extensions of Q3 of degree 243 containing K, §(1]3364. The parameter
k runs from 0 to 2.

L/K | Npyk (L) over generated by
9(k+1 0
KSGT/Qs | (349649 —1,427) K,
2 2m0 % T+ 4 w4 104 2 12 13y o 14
27(k+2 0
ngl,?,(64 ))/Qg (3-427(k+2) ¢ 481) K§7?94
+ 2733 4 2734 4 2736 4 9737 4 fpdd
SI(k 0
K2(43,(23)728/Q3 <3'481(k)v G 4243> K§1?364

w34 2m8 2 4 OO w814 w824 2784 2804 28Ty B8
+7r90+ 26 +27T97—|-27T99+7T102—|—27T103—|—77105+27T108+7r109
—|—27r112 —|—7T114+27r115+27['120+71'121+kﬂ122

Class Fields over Q5. There are 5 cyclic extensions of degree 25 over Qs

containing K é?g

and 5 cyclic extensions of degree 125 over Q5 containing

Kég?GS' The parameter k takes values from 0 to 4.

L/K ‘ Ny (L*) over generated by

K§d/Qs | (5:6".¢,6%) Qs 5+ 450+ 51 k5
Kég,%s_k))/(@s) (5-6°17H), ¢, 6%) K§§ P+ArSpi m+ O+ AnSt kr”
Kgg,(fg?))/(@s (5-623(k+4) ¢ 6125) KQ((;?%

o+ 4n x4 2y 254 26
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Class Fields over Qy. Over Q7 there are 7 cyclic extensions of degree 49
(0)

containing K7, and 7 cyclic extensions of degree 343 containing K 83138.
The parameter k runs from 0 to 6.

L/K | Nk (L) over generated by
KW /Qr [ (7:85,¢,8T) Qr 25 + 6725 + 7 + k-7
KO P)Q, [ (78708 ¢ 85) KO,  27+6n7a % m+ '+ 6m+ kn?
49k
KU /Qr [ (785 C8%8) KO
2T 61900 7+ 7434 4% 1504 67524 6753
+6m°Y4- 556798 3P ko8

Class Fields over Qq;. There are 11 cyclic extensions of degree 121 over
Q11 containing Kﬁ?zo. The parameter k£ runs from 0 to 11.

L/K | Nk (L) over generated by
E

KDoo/Qu | (11:12%,¢,121) Qu

2+ 1011210 + 11 + k112

TI(1—F)) - 7

521(350 /Qqq| (11-12110R) ¢ 12121) K£1?20

e 10120 2 1072 4 k13

Class Fields over Q3. There are 13 cyclic extensions of degree 169 over
Q13 containing K{g?ﬂ. The parameter k£ runs from 0 to 12.

L/ K ‘ Np k(L") over generated by
13 24/@13 (13-14% ¢, 1413) Qus
213 4+ 12-13212 + 13 + k132
k —
1(69129;9)/(@13 (131471359 ¢ 14169) K(g)24
213 4 12718212 4o 4 113 4 3514 4 fopl5
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