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Résumé. Soit K un corps p-adique. Nous donnons une carac-
térisation explicite des extensions abéliennes de K de degré p en
reliant les coefficients des polynômes engendrant les extensions
L/K de degré p aux exposants des générateurs du groupe des
normes NL/K(L∗). Ceci est appliqué à un algorithme de con-
struction des corps de classes de degré pm, ce qui conduit à un
algorithme de calcul des corps de classes en général.

Abstract. Let K be a p-adic field. We give an explicit charac-
terization of the abelian extensions ofK of degree p by relating the
coefficients of the generating polynomials of extensions L/K of de-
gree p to the exponents of generators of the norm groupNL/K(L∗).
This is applied in an algorithm for the construction of class fields
of degree pm, which yields an algorithm for the computation of
class fields in general.

1. Introduction

Local class field theory gives a complete description of all abelian ex-
tensions of a p-adic field K by establishing a one-to-one correspondence
between the abelian extensions of K and the open subgroups of the unit
group K∗ of K. We describe a method that, given a subgroup of K∗ of
finite index, returns the corresponding abelian extension.

There are two classic approaches to the construction of abelian exten-
sions: Kummer extensions and Lubin-Tate extensions. Kummer extensions
are used in the construction of class fields over global fields [Fie99, Coh99].
The theory of Lubin-Tate extensions explicitly gives generating polynomials
of class fields over p-adic fields including the Artin map.

The goal of this paper is to give an algorithm that constructs class fields
as towers of extensions from below thus avoiding the computation of a larger
class field and the determination of the right subfield. The wildly ramified
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part of a class field is constructed as a tower of extensions of degree p over
the tamely ramified part of the class field.

Our approach allows the construction of class fields of larger degree than
the approach with Lubin-Tate or Kummer extensions. Given a subgroup G
ofK∗ these methods provide a class field LH that corresponds to a subgroup
H of G and that contains the class field corresponding to G. In general
the degree of LH is very large and the computation of the corresponding
subfield expensive. Our approach does not yield a construction of the Artin
map though.

We start by recalling the structure of the unit groups of p-adic fields
(section 2). In section 3 we state the main results of local class field theory
and the explicit description of tamely ramified class fields. It follows that
we can restrict our investigation to cyclic class fields of degree pm. We begin
our investigation by constructing a minimal set of generating polynomials
of all extensions of K of degree p (section 4). In section 5 we relate the
coefficients of the polynomials generating extensions of degree p to the
exponents of the generators of their norm groups. This yields an algorithm
for computing class fields of degree p. Section 6 contains an algorithm for
computing class fields of degree pm. In section 7 we give several examples
of class fields.

Given a fixed prime number p, Qp denotes the completion of Q with
respect to the p-adic valuation | · | = p−νp(·), K is a finite extension of
degree n over Qp complete with respect to the extension of | · | to K, and
OK = {α ∈ K | |α| 6 1} is the valuation ring of K with maximal ideal
pK = {α ∈ K | |α| < 1} = (πK). The residue class field is defined by
K := OK/pK and f = fK is the degree of K over the finite field with p
elements Fp. For γ ∈ OK the class γ+pK is denoted by γ. The ramification
index of pK is denoted by e = eK and we recall that ef = n. By dK we
denote the discriminant of K and by dϕ the discriminant of a polyno-
mial ϕ.

2. Units

It is well known that the group of units of a p-adic field K can be de-
composed into a direct product

K∗ = 〈πK〉 × 〈ζK〉 × (1 + pK) ∼= πZ
K ×K∗ × (1 + pK),

where ζK ∈ K a (#K−1)-th root of unity. The multiplicative group 1+pK

is called the group of principal units of K. If η ∈ 1 + pK is a principal unit
with vp(η − 1) = λ we call λ the level of η.

A comprehensive treatment of the results presented in this section can
be found in [Has80, chapter 15].
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Lemma 2.1 (p-th power rule). Let α be in OK . Let p = −πeK
K ε be the

factorization of p where ε is a unit. Then the p–th power of 1+απλ
K satisfies

(1 + απλ)p ≡


1 + αpπpλ

K mod p
pλ+1
K if 1 6 λ < eK

p−1 ,

1 + (αp − εα)πpλ
K mod p

pλ+1
K if λ = eK

p−1 ,

1− εαπλ+e
K mod pλ+e+1

K if λ > eK
p−1 .

The maps h1 : α + p 7−→ αp + pK and h3 : α + pK 7−→ −εα + pK are
automorphisms of K+, whereas h2 : α+ pK 7−→ αp − εα+ pK is in general
only a homomorphism. The kernel of h2 is of order 1 or p.

As (1+pλ
K)/(1+pλ+1

K ) ∼= pλ
K/p

λ+1
K

∼= K+, it follows that if ηλ,1, . . . , ηλ,fK

is a system of generators for the level λ < eK
p−1 (for the level λ > eK

p−1), then
ηp

λ,1, . . . , η
p
λ,f is a system of generators for the level pλ (for the level λ+eK).

If (p − 1) | eK the levels based on the level λ = eK
p−1 need to be discussed

separately.
We define the set of fundamental levels

FK :=
{
λ | 0 < λ < peK

p−1 , p - λ
}
.

All levels can be obtained from the fundamental levels via the substitutions
presented above. The cardinality of FK is

#FK =
⌊

pe
p−1

⌋
−
⌊

pe
p(p−1)

⌋
= e+

⌊
e

p−1

⌋
−
⌊

e
p−1

⌋
= e.

If K does not contain the p-th roots of unity then principal units of the
fundamental levels generate the group of principal units:

Theorem 2.2 (Basis of 1 + pK , µp 6⊂ K). Let ω1, . . . , ωf ∈ OK be a fixed
set of representatives of an Fp-basis of K. If p− 1 does not divide eK or if
h2 is an isomorphism, that is, K does not contain the p-th roots of unity,
then the elements

ηλ,i := 1 + ωiπ
λ where λ ∈ FK , 1 6 i 6 fK

are a basis of the group of principal units 1 + pK .

If K contains the p-th roots of unity we need one additional generator:

Theorem 2.3 (Generators of 1 + pK , µp ⊂ K). Assume that (p − 1) |
eK and h2 is not an isomorphism, that is, K contains the p-th roots of
unity. Choose e0 and µ0 such that p does not divide e0 and such that
eK = pµ0−1(p− 1)e0. Let ω1, . . . , ωf ∈ OK be a fixed set of representatives
of a Fp-basis of K with ω1 chosen such that ωpµ0

1 − εωpµ0−1

1 ≡ 0 mod pK

and ω1 6≡ 0 mod pK . Choose ω∗ ∈ OK such that xp − εx ≡ ω∗mod pK has
no solution. Then the group of principal units 1 + pK is generated by

η∗ := 1 + ω∗π
pµ0e0

K and ηλ,i := 1 + ωiπ
λ
K where λ ∈ FK , 1 6 i 6 fK .
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Algorithms for the computation of the multiplicative group of residue
class rings of global fields and the discrete logarithm therein are presented
in [Coh99] and [HPP03]. They can be easily modified for the computation
of the unit group of a p-adic field modulo a suitable power of the maximal
ideal p.

3. Class Fields

We give a short survey over local class field theory (see [Ser63] or [Iwa86]).
Yamamoto [Yam58] proofs the isomorphy and the ordering and uniqueness
theorems of local class field theory in a constructive way. He does not show
that there is a canonical isomorphism.

Theorem 3.1 (Isomorphy). Let L/K be an abelian extension, then there
is a canonical isomorphism

K∗/NL/K(L∗) ∼= Gal(L/K).

Theorem 3.2 (Ordering and Uniqueness). If L1/K and L2/K are abelian
extensions, then

N(L1∩L2)/K ((L1 ∩ L2)∗) = NL1/K(L∗1)NL2/K(L∗2)

and

N(L1L2)/K ((L1L2)∗) = NL1/K(L∗1) ∩NL2/K(L∗2).

In particular an abelian extension L/K is uniquely determined by its norm
group NL/K(L∗).

The latter result reduces the problem of constructing class fields to the
construction of cyclic extensions whose compositum then is the class field.
The construction of tamely ramified class fields, which is well known and
explicit, is given below. In order to prove the existence theorem of local
class field theory, it remains to prove the existence of cyclic, totally ramified
class fields of degree pm (m ∈ N). We give this proof by constructing these
fields (algorithm 6.1). The existence theorem for class fields of finite degree
follows:

Theorem 3.3 (Existence). Let G ⊂ K∗ be a subgroup of finite index.
There exists a finite abelian extension L/K with

NL/K(L∗) = G.

Tamely Ramified Class Fields. An extension L/K is called tamely ram-
ified if p - eL/K . Tamely ramified extensions are very well understood. It
is well known that the results of local class field theory can be formulated
explicitly for this case.
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Let q = #K. If G is a subgroup of K∗ with 1 + pK ⊂ G then

G = 〈πF
Kζ

S
K , ζ

E
K〉 × (1 + pK)

for some integers E | q−1, F , and S. There exists a unique tamely ramified
extension L/K with NL/K(L∗) = G, eL/K = E, and fL/K = F .

Denote by T the inertia field of L/K. There exists a primitive (qF −1)-th
root of unity ζL ∈ L, a prime element πL of L and automorphisms σ, τ in
Gal(L/K) such that

• NT/K(ζL) = ζK and NL/T (πL) = ζS
LπK where 0 6 t 6 e− 1,

• ζσ
L = ζq

L and πσ−1
L ≡ ζ

q−1
e

S

L mod pL,

• ζτ
L = ζL and πτ−1

L = ζ
q−1

e
K .

The Galois group of L/K is generated by σ and τ :

Gal(L/K) = 〈σ, τ〉 ∼= 〈s, t | st = ts, sF = t−S , tE = id〉.

The Galois group Gal(L/K) is isomorphic to K∗/NL/K(L∗) by the map:

πK 7→ σ, ζK 7→ τ, η 7→ id for all η ∈ 1 + pK .

Wildly Ramified Class Fields. We have seen above that subgroups
of 〈πK〉 correspond to unramified extensions and that subgroups of 〈ζK〉
correspond to tamely ramified extensions. Subgroups of K∗ that do not
contain all of 1 + pK correspond to wildly ramified extensions.

Lemma 3.4. Let L/K be an abelian and wildly ramified extension, that is,
[L : K] = pm for some m ∈ N. Then

K∗/NL/K(L∗) ∼= (1 + pK)/NL/K(1 + pL).

4. Generating Polynomials of Ramified Extensions of Degree p

Let K be an extension of Qp of degree n = ef with ramification index e,
prime ideal p, and inertia degree f . Set q := pf = #K. For α, β ∈ OK we
write α ≡ β if νK(α− β) > νK(α).

In this section we present a canonical set of polynomials that generate
all extensions of K of degree p. These were first determined by Amano
[Ama71] using different methods. MacKenzie and Whaples [MW56, FV93]
use p-adic Artin-Schreier polynomials in their description of extensions of
degree p.

There are formulas [Kra66, PR01] for the number of extensions of a
p-adic field of a given degree and discriminant given by:

Theorem 4.1 (Krasner). Let K be a finite extension of Qp, and let j =
aN + b, where 0 6 b < N , be an integer satisfying Ore’s conditions:

min{vp(b)N, vp(N)N} 6 j 6 vp(N)N.
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Then the number of totally ramified extensions of K of degree N and dis-
criminant pN+j−1 is

#KN,j =

 n q

ba/ecP
i=1

eN/pi

if b = 0, and

n (q − 1) q

ba/ecP
i=1

eN/pi+b(j−ba/eceN−1)/pba/ec+1c
if b > 0.

There are no totally ramified extensions of degree N with discriminant
p

N+j−1
K , if j does not satisfy Ore’s conditions.

Let j = ap+ b satisfy Ore’s conditions for ramified extensions of degree
p then

#Kp,j =
{
pqe if b = 0
p(q − 1)qa if b 6= 0.

We give a set of canonical generating polynomials for every extension in
Kp,j with j satisfying Ore’s conditions.

First, we recall Panayi’s root finding algorithm [Pan95, PR01] which we
apply in the proofs in this section. Second, we determine a set of canonical
generating polynomials for pure extensions of degree p of a p-adic field,
that is, for the case b = 0. Third, we give a set of canonical generating
polynomials for extensions of degree p of discriminant pp+ap+b−1, where
b 6= 0, of a p-adic field.

Root finding. We use the notation from [PR01]. Let ϕ(x) = cnx
n +

· · · + c0 ∈ OK [x]. Denote the minimum of the valuations of the coeffi-
cients of ϕ(x) by νK(ϕ) := min

{
νK(c0), . . . , νK(cn)

}
and define ϕ#(x) :=

ϕ(x)/πνK(ϕ). For α ∈ OK , denote its representative in the residue class
field K by α, and for β ∈ K, denote a lift of β to OK by β̂.

In order to find a root of ϕ(x), we define two sequences (ϕi(x))i and (δi)i

in the following way:
• set ϕ0(x) := ϕ#(x) and
• let δ0 ∈ OK be a root of ϕ0(x) modulo pK .

If ϕ#
i

(x) has a root βi then

• ϕi+1(x) := ϕ#
i (xπ + β̂i) and

• δi+1 := β̂iπ
i+1 + δi.

If indeed ϕ(x) has a root (in OK) congruent to β modulo p, then δi is
congruent to this root modulo increasing powers of p. At some point, one
of the following cases must occur:

(a) deg(ϕ#
i ) = 1 and δi−1 is an approximation of one root of ϕ(x).

(b) deg(ϕ#
i ) = 0 and δi−1 is not an approximation of a root of ϕ(x).
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(c) ϕ#
i has no roots and thus δi−1 is not an approximation of a root of

the polynomial ϕ(x).
While constructing this sequence it may happen that ϕi(x) has more

than one root. In this case we split the sequence and consider one sequence
for each root. One shows that the algorithm terminates with either (a),
(b), or (c) after at most νK(dϕ) iterations.

Extensions of p-adic fields of discriminant pp+pe−1. Let ζ be a
(q − 1)-th root of unity and set R = (ρ0, . . . , ρq−1) = (0, 1, ζ, ζ2, . . . , ζq−2).
The set R is a multiplicative system of representatives of K in K.

Theorem 4.2. Let J :=
{
r ∈ Z | 1 6 r < pe/(p− 1), p - r

}
. Each

extension of degree p of K of discriminant pp+ep−1 is generated by a root
of exactly one of the polynomials of the form

ϕ(x) =


xp + π +

∑
i∈J

ρciπ
i+1 + kδπpe/(p−1)+1 if


(p− 1) | e and
xp−1 + (p/πe)
is reducible,

xp + π +
∑
i∈J

ρciπ
i+1 otherwise,

where δ ∈ OK is chosen such that xp − x + δ is irreducible over K and
0 6 k < p. These extensions are Galois if and only if (p − 1) | e and
xp−1 + p/πe is reducible, i.e., if K contains the p-th roots of unity.

It is obvious that a pure extension can be Galois only if K contains the
p-th roots of unity. We prepare for the proof with some auxiliary results.

Lemma 4.3. Assume that ϕ(x) := xp−1 + c ∈ Fq[x] has p − 1 roots in
Fq. Then there exists d ∈ Fq such that ψk(x) := xp + cx − kd ∈ Fq[x] is
irreducible for all 1 6 k < p.

Proof. Let h(x) = xp + cx ∈ Fq[x]. As ϕ(x) splits completely over Fq, there
exists d ∈ Fq \ h(Fq). Now ψ1(x) = xp + cx − d is irreducible. It follows
that

kψ1(x) = kxp + ckx− kd = (kx)p + c(kx)− kd

is irreducible. Replacing kx by y we find that ψk(y) = yp + cy − kd is
irreducible over Fq. �

Lemma 4.4. Let

ϕt(x) = xp + π +
∑
r∈J

ρct,rπ
r+1 + ktδπ

v+1 ∈ OK [x] (t ∈ {1, 2})

where ρct,r ∈ R, v > pe/(p− 1), and δ ∈ OK . Let α1 be a zero of ϕ1 and
α2 be a zero of ϕ2 in an algebraic closure of K.
(a) If c1,r 6= c2,r for some r ∈ J , then K(α1) � K(α2).
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(b) If c1,r = c2,r for all r ∈ J , if K contains the p-th roots of unity, δ is
chosen such that xp−x+δ is irreducible, v = pe/(p− 1), and k1 6= k2

then K(α1) � K(α2).

Proof. Let L1 := K(α1) and let p1 denote the maximal ideal of L1.
(a) We use Panayi’s root-finding algorithm to show that ϕ2(x) does not
have any roots over K(α1). As ϕ2(x) ≡ xp mod (π), we set ϕ2,1(x) :=
ϕ2(α1x). Then

ϕ2,1(x) = αp
1x

p + π +
∑
r∈J

ρc2,rπ
r+1 + k2δπ

v+1

=
(
−π −

∑
r∈J

ρc1,rπ
r+1 − k1δπ

v+1
)
xp + π +

∑
r∈J

ρc2,rπ
r+1 + k2δπ

v+1

≡ π(−xp + 1).

Hence ϕ#
2,1(x) = ϕ2,1(x)/π ≡ −xp + 1 and we set

ϕ2,2(x) := ϕ#
2,1(α1x+ 1)

=
(
−1−

∑
r∈J

ρc1,rπ
r − k1δπ

v
)
(α1x+ 1)p + 1 +

∑
r∈J

ρc2,rπ
r + k2δπ

v

≡
(
−1−

∑
r∈J

ρc1,rπ
r − k1δπ

v
)
αp

1x
p + 1 +

∑
r∈J

ρc2,rπ
r + k2δπ

v.

Let βi be a root of ϕ#
2,i+2. Let m be minimal with c1,m = c2,m. Then

βm 6= 0. Let m < u < pe/(p− 1). Assume that the root-finding algorithm
does not terminate with degϕ#

2,w = 0 for some m 6 w 6 u. After u
iterations of the root-finding algorithm, we have

ϕ2,u+1(x) =
(
−1−

∑
r∈J

ρc1,r+1π
r − k1δπ

v
)

· (αu
1x+ βu−1α

u−1
1 + · · ·+ βmα

m
1 + 1)p

+ 1 +
∑
r∈J

ρc2,r+1π
i + +k2δπ

v−1

≡ −αpu
1 xp − pαu

1x− pβmα
m
1 +

∑
r∈J,r>m

(ρc2,r+1− ρc1,r+1)π
r.

The minimal valuation of the coefficients of ϕ2,u+1(x) is either νL1(α
pu
1 ) =

pu or νL1(pβmα
m
1 ) = pe+m. As gcd(p,m) = 1 and m < pe/(p− 1), there

exists u ∈ N such that the polynomial ϕ#
2,u+1(x) is constant. Thus the root-

finding algorithm terminates with the conclusion that ϕ2(x) is irreducible
over K(α1).
(b) We set ϕ2,1(x) := ϕ2(α1x) and ϕ2,2(x) := ϕ#

1 (α1x + 1). After v +
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1 iterations of the root-finding algorithm we obtain ϕ2,v+2(x) ≡ −αvp
1 x

p

− pαv
1x + (k2 − k1)δπv. By lemma 4.3 ϕ#

2+v(x) is irreducible for k1 6= k2.
Therefore, ϕ2(x) has no root in K(α1) and ϕ1(x) and ϕ2(x) generate non-
isomorphic extensions over K. �

Proof of theorem 4.2. We will show that the number of extensions given by
the polynomials ϕ(x) is greater then or equal to the number of extensions
given by theorem 4.1. The number of elements in J is e (see section 2).

By lemma 4.4 (a), the roots of two polynomials generate non-isomorphic
extensions if the coefficients ρci differ for at least one i ∈ J . For every i
we have the choice among pf = q values for ρci . This gives qe polynomials
generating non-isomorphic extensions.

If K does not contain the p-th roots of unity, then an extension generated
by a root α of a polynomial ϕ(x) does not contain any of the other roots
of ϕ(x). Hence the roots of each polynomial give p distinct extensions of
K. Thus our set of polynomials generates all pqe extensions.

If K contains the p-th roots of unity, then lemma 4.4 (b) gives us p− 1
additional extensions for each of the polynomials from lemma 4.4 (a). Thus
our set of polynomials generates all pqe extensions. �

Extensions of p-adic fields of discriminant pp+ap+b−1, b 6= 0.

Theorem 4.5. Let J :=
{
r ∈ Z | 1 6 r < (ap+ b)/(p− 1), p - (b + r)

}
and if (p−1) | (a+ b), set v = (ap+ b)/(p− 1). Each extension of degree p
of K of discriminant pp+ap+b−1 with b 6= 0 is generated by a root of exactly
one of the polynomials of the form

ϕ(x) =


xp+ζsπa+1xb+π+

∑
i∈J

ρciπ
i+1+kδπv+1 if


(p− 1) | (a+ b) and
xp−1 + (−1)ap+1ζsb
has p− 1 roots ,

xp+ζsπa+1xb+π+
∑
i∈J

ρciπ
i+1 otherwise,

where ρ ∈ R and δ ∈ OK is chosen such that xp + (−1)ap+1ζsbx + δ is
irreducible in K and 0 6 k < p. These extensions are Galois if and only if
(p− 1) | (a+ b) and xp−1 − ζsb ∈ K[x] is reducible.

Lemma 4.6. Let

xp + ζstπa+1xb + π +
∑
r∈J

ρct,rπ
r+1 + ktδtπ

v+1 ∈ OK [x] (t ∈ {1, 2})

where ρt,r ∈ R, v > ap+b
p−1 , and δt ∈ OK . Let α1 be a zero of ϕ1 and α2 be

a zero of ϕ2 in an algebraic closure of K.
(a) If s1 6= s2, then K(α1) � K(α2).
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(b) If s1 = s2 and c1,r 6= c2,r for some r ∈ J then K(α1) � K(α2).

(c) K(α1)/K is Galois if and only if a + b ≡ 0 mod (p − 1) and xp−1 +
(−1)ap+1ζs1b is reducible over K.

(d) Assume s1 = s2 and c1,r = c2,r for all r ∈ J . If (p − 1) | (ap + b),
then for v = ap+b

p−a there exists δ ∈ OK such that K(α1) � K(α2) if
k1 6= k2.

Proof. Let L1 := K(α1).
(a) For t ∈ {1, 2} let γt =

∑
r∈J ρct,rπ

r +ktδtπ
v. Then αp

1/π = −ζs1πaαb−
1− γ1. We use Panayi’s root-finding algorithm to show that ϕ2(x) has no
root over L1 = K(α1). As before, we get ϕ2,1(x) := ϕ2(α1x) ≡ π(−xp +1).
Therefore we set

ϕ2,2(x) := ϕ#
2,1(α1x+ 1)

= (−ζs1πaαb − 1− γ1)(α1x+ 1)p + ζs2πaαb(α1x+ 1)b + 1 + γ2.

Let 2 6 u 6 pe/(p− 1). Let βi ∈ R be a root of ϕ#
2,i(x). Assume that

the root-finding algorithm does not terminate with degϕ#
2,w = 0 for some

2 6 w 6 u and let m be minimal with m < u < pe/(p− 1) and βm 6≡
0 mod (α). After u iterations of the root-finding algorithm, we have

ϕ2,u+1(x) = (−ζs1πaαb
1 − 1− γ1)(αu

1x+ βu−1α
u−1
1 + · · ·+ βmα

m
1 + 1)p

+ ζs2tπaαb(αu
1x+ βu−1α

u−1
1 + · · ·+ βmα

m
1 + 1)b + 1 + γ2π.

Because u 6 e, νL1(p) = pe, and a < e, the minimal valuation of the
coefficients of ϕ2,u+1(x) is either νL1(−α

pu
1 ) = pu or νL1(π

aαb
1) = pa +

b. Hence the root-finding algorithm terminates with ϕ2,u+1(x) ≡ (ζs2 −
ζs1)πaαb for some u in the range 2 6 u 6 e.

(b) We show that ϕ2(x) does not have any roots over L1. As ϕ2(x) ≡
xp mod (π), we get ϕ2,1(x) := ϕ2(αx). Now ϕ#

2,1(x) ≡ −xp + 1 and we set
ϕ2,2(x) := ϕ#

2,1(α1x+ 1).
Denote by βr a root of ϕ#

2,r+1(x). Let m be minimal with m < u <

pe/(p− 1) and βm 6≡ 0 mod (α). Assume that the root-finding algorithm
does not terminate earlier with degϕ#

2,w = 0 for some w 6 u. After u
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iterations, we have

ϕ2,u+1(x) =
(
−ζs1πaαb

1 − 1−
∑
r∈J

ρc1,r+1π
i − ρc1,a+2π

a+1
)

· (αu
1x+ βu−1α

u−1
1 + · · ·+ βmα

m
1 + 1)p

+ ζs1πaαb
1(α

ux+ βu−1α
u−1
1 + · · ·+ βmα

m
1 + 1)b + 1

+
∑
r∈J

ρc2,r+1π
r + ρc2,a+1π

a+1

≡ −αpuxp − pαu
1x− pβmα

m
1 −

∑
r∈J

ρc1,r+1π
r(βmα

m
1 )p − (βmα

m
1 )p

+ ζs1πaαb
1bα

u
1x+ ζs1πaαb

1bβmα
m +

∑
r∈J

(ρc2,r+1− ρc1,r+1)π
r,

with βm 6≡ 0 mod (α1).
The minimal valuation of the terms of ϕ2,u+1(x) is

νL1(ζ
s1πaαb

1bβmα
m
1 ) = pa+ b+m

or νL1(α
pr
1 ) = pr. By the choice of J we have p - (pa+b+m). Therefore, the

root-finding algorithm terminates with ϕ2,u(x) ≡ ζsπaαb
1bβmα

m for some
u ∈ N.

(c) We show that ϕ1(x) splits completely over L1 if and only if the con-
ditions above are fulfilled. We set ϕ1,1(x) := ϕ1(α1x) and ϕ1,2(x) :=
ϕ#

1,1(αx+ 1). Thus

ϕ1,2(x) =
(
−ζs1πaαb

1 − 1−
∑

r∈J ρc1,rπ
r
)
(α1x+ 1)p

+ ζs1πaαb(α1x+ 1)b + 1 +
∑

r∈J ρc1,rπ
r

≡ x(−αp
1x

p−1 + ζs1πaαb+1
1 b).

After u+ 1 iterations we get

ϕ1,u+1(x) ≡


−αup

1 xp if up < pa+ b+ u,

x(−αup
1 xp−1 + ζs1πaαb+u

1 b) if up = pa+ b+ u,

ζs1πaαb+1
1 bx if

{
up > pa+ b+ u and
(p− 1) - (a+ b).

In the third case, ϕ#
1,u+1(x) is linear and therefore ϕ1(x) has only one root

over L1. In the second case,

ϕu+1(x) ≡ −αup
1 xp + ζs1πaαb+u

1 bx ≡ −αup
1 xp + ζs1(−α1)apαb+ux
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and so ϕ#
1,u+1(x) ≡ −xp + (−1)apζs1bx mod (α1). If ϕ#

u+1(x) has p roots

over K for every root β of ϕ#
1,u+1(x), we get

ϕ1,u+2(x) = ϕ1,u+1(α1x+ β)

≡ −α(u+1)p
1 xp + (−1)apαu+1

1 βζs1πaαb
1 + (−1)apαu+1

1 bβbζs1πaαb
1x.

But up+p > u+1+pa+ b; thus ϕ#
1,u+2(x) is linear and ϕ1(x) has as many

distinct roots as ϕ#
1,u+1(x).

(d) We set ϕ2,1(x) := ϕ(αx) and ϕ2,2(x) := ϕ#
2,1(αx + 1). We obtain

ϕ2,v+1(x) ≡ −αvp
1 x

p + ζs1πaαb+v
1 bx + (k1 − k2)δπv, hence ϕ#

v+1(x) = xp +
(−1)ap+1ζs1bx + (k1 − k2)δ. By lemma 4.3, there exists δ ∈ OK such that
ϕ#

2,v+1(x) is irreducible. �

Proof of theorem 4.5. If (p− 1) - (a+ b), then

#J = a+
⌊

a+b
p−1

⌋
−
⌊

a+b
p + a+b

p(p−1)

⌋
−
⌊

b
p

⌋
= a+

⌊
a+b−1
p−1

⌋
−
⌊

a(p−1)+a+b(p−1)+b
p(p−1)

⌋
= a.

If (p− 1) | (a+ b), then

#J = a+ a+b
p−1 − 1−

⌊
a+b
p + a+b

p(p−1) − 1
⌋
−
⌊

b
p

⌋
= a+ a+b−1

p−1 −
⌊

a+b−1
p−1

⌋
= a.

Using lemma 4.6 (a), we get pf−1 sets of generating polynomials. By lemma
4.6 (b), each of these sets contains pfa polynomials that generate non-
isomorphic fields. Now either the roots of one of the polynomials generate
p distinct extensions or the extension generated by any root is cyclic. In the
latter case, we have p− 1 additional polynomials generating one extension
each by lemma 4.6 (d). Thus we obtain (pf − 1)paf+1 distinct extensions.

�

Number of Galois Extensions. The following result can also easily be
deduced from class field theory.

Corollary 4.7. Let K be an extension of Qp of degree n. If K does not
contain the p-th roots of unity, then the number of ramified Galois exten-
sions of K of degree p is p · pn−1

p−1 . If K contains the p-th roots of unity then

the number of ramified Galois extensions of K of degree p is p · pn+1−1
p−1 .

Proof. Let ϕ(x) be as in theorem 4.5. We denote the inertia degree and the
ramification index of K by f and e, respectively. The number of values of
s for which xp−1 − ζs is reducible is (pf − 1)/(p− 1). By Ore’s conditions,
0 6 a 6 e. For every a < e, there is exactly one b with 1 6 b < p such that
(p − 1) | (a + b). For every a, the set J contains a elements. This gives
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pfa combinations of values of ci, i ∈ J . We have p choices for k. Thus the
number of polynomials ϕ(x) generating Galois extensions is

p · p
f − 1
p− 1

·
e−1∑
a=0

pfa = p · p
f − 1
p− 1

· p
fe − 1
pf − 1

= p · p
n − 1
p− 1

.

If K contains the p-the roots of unity, a = e also yields Galois extensions.
By theorem 4.2, we obtain additional p(pf )e = pn+1 extensions. �

5. Ramified Abelian Extensions of Degree p

Let L/K be an abelian ramified extension of degree p. The ramification
number (Verzweigungszahl) of L/K is defined as v = vL/K = νL(πσ−1

L −1),
where σ ∈ Gal(L/K) \ {id}. The ramification number v is independent of
the choice of σ. If ϕ is the minimal polynomial of πL, then

νL(d(ϕ)) =
∑
i6=j

νL

(
σi(πL)− σj(πL)

)
=

p(p−1)∑
i=1

νL

(
σ(πL)− πL

)
= p(p− 1)(v + 1).

Hence, νK(dL/K) = (p−1)(v+1) for the discriminant of L/K and DL/K =

p
(p−1)(v+1)
L for the different of the extension. It follows from Ore’s conditions

(see Theorem 4.1) that either v = p eK
p−1 or v = ap+b

p−1 ∈ FK where j = ap+ b

satisfies Ore’s conditions.

Lemma 5.1. Let L/K be a ramified extension of degree p. If d := νL(DL/K)
= (p− 1)(v + 1), then

TL/K(pm
L ) = p

⌊
m+d
eL/K

⌋
K .

See [FV93, section 1.4] for a proof. We use Newton’s relations to inves-
tigate the norm group of abelian extensions of degree p.

Proposition 5.2 (Newton’s relations). Let ϑ = ϑ(1), . . . , ϑ(n) be the roots
of a monic polynomial ϕ =

∑
06i6n γix

i. Then γi = (−1)(n−i)Rn−i(ϑ)
where Rn−i(ϑ) is the (n − i)-th symmetric function in ϑ(1), . . . , ϑ(n). Set
Sk(ϑ) =

∑n
i=1

(
ϑ(i)
)k for each integer k > 1. Then

Sk(ϑ) =

{
−kγn−k −

∑k−1
i=1 γn−iSk−i(ϑ) for 1 6 k 6 n, and

−
∑n

i=1 γn−iSk−i(ϑ) for k > n.

The following describes explicitly where and how the jump in the norm
group takes place (c.f. [FV93, section 1.5]).
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Lemma 5.3. Let L/K be ramified abelian of degree p and let v denote
the ramification number of L/K. Let 〈σ〉 = Gal(L/K). Assume that
NL/K(πL) = πK . Let ε ∈ K be chosen such that πσ−1

L ≡ 1+ επv
L mod pv+1.

Then

NL/K(1 + απi
L) ≡ 1 + αpπi

K mod pi+1
K if i < v,

NL/K(1 + απv
L) ≡ 1 + (αp − εp−1α)πv

K mod pv+1
K , and

NL/K(1 + απ
v+p(i−v)
L ) ≡ 1− εp−1απi

K mod pi+1
K if i > v.

The kernel of the endomorphism K+ → K+ given by α 7→ αp − εp−1α has
order p.

Proof. We have

NL/K(1 + ωπi
L) = 1 + ωR1(πi

L) + ω2R2(πi
L) + · · ·+ ωpRp(πi

L),

where Rk(πi
L) denotes the k-th symmetric polynomial in πi

L, π
σi
L , . . . , π

σp−1i
L .

In particular R1(πi
L) = TL/K(πi

L) and Rp(πi
L) = NL/K(πL)i. By lemma 5.1

and νL(DL/K) = (v + 1)(p− 1), we obtain

Sk(πi
L) = TL/K(πki

L ) ∈ TL/K(pki
L ) ⊂ pλki

K

where

λki =
⌊ (p−1)(v+1)+ki

p

⌋
= v + 1 +

⌊−v−1+ki
p

⌋
= v +

⌈
ki−v

p

⌉
= v −

⌊
v−ki

p

⌋
.

(i) If i < v, then i < λ1 = v −
⌊

v−i
p

⌋
and νK(Sk(πi

L)) > λk > λ1 > i.
With Newton’s relations we get νK(Rk(πi

L)) > i for 1 6 k 6 p − 1 and as
Rp(πi

L) = NL/K(πL)i = πi
K , we obtain

NL/K(1 + απi
L) ≡ 1 + αpπi

K mod pi+1
K .

(ii) Assume i = v. By lemma 5.1 TL/K(pv
L) = pλv

K , and so TL/K(πv
L) ≡

βπv
K mod pv+1

K for some β ∈ OK
∗. We have λk = v +

⌈ (k−1)v
p

⌉
> v. If

k > 2 then νK(Sk(πi
L)) > λk > v + 1. Hence with Newton’s relations

νK(Rk(πi
L)) > min(kv, v + 1) > v + 1 for 2 6 k 6 p − 1. Thus NL/K(1 +

απv
L) ≡ 1 + αβπv

K + αpπv
K mod pv+1

K and NL/K(1 + πv
L) ⊂ (1 + pK)v. By

the definition of ε and as NL/K(πσ−1
L ) = 1 we have NL/K(1 + επv

L) ≡ 1
mod pv+1

K . Therefore β ≡ −εp−1 mod pK and we conclude that

NL/K(1 + απv
L) ≡ 1 + (αp − εp−1α)πv

K mod pv+1
K .

(iii) Let i > v. We have λv+p(i−v) = i and λk(v+p(i−v)) > i. By the
considerations in (ii), we obtain

NL/K(1 + απ
v+p(i−v)
L ) ≡ 1− εp−1απi

K mod pi+1
K .

�
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Next we investigate the relationship between the minimal polynomial of
πL, a uniformizer of the field L, and the norm group NL/K(L∗). We start
by choosing a suitable representation for subgroups of K∗ of index p. We
begin with extensions of discriminant pp+eL/K−1, which are Galois if and
only if K contains the p-the roots of unity.

If K contains the p-th roots of unity then

K∗ = 〈ζK〉 × 〈πK〉 × 〈ηλ,i | λ ∈ FK , 1 6 i 6 fK ; η∗〉
Let G be a subgroup of K∗ of index p with η∗ /∈ G. Let (g1, ..., geKfK+3)
be generators of G. Let n = eKfK and B ∈ Zn+3×n+3 such that

(g1, ..., geKfK+3)T = B(ζK , πK , ηλ,i | λ ∈ FK , 1 6 i 6 fK , η∗)T

be a representation matrix of G. Let A be the row Hermite normal form
of B. Then

A =



1 0 · · · · · · · · · 0 aπ

0 1 0 0 0
... 0 1 0 · · · 0 a1,1
...

. . . . . . . . .
...

...
...

. . . . . . 0
...

...
. . . 1 av−1,f

0 · · · · · · · · · · · · 0 p


.

Thus

G =
〈
πKη

aπ
∗ ; ζK ; ηλ,iη

aλ,i
∗

∣∣ λ ∈ FK , 1 6 i 6 fK ; ηp
∗
〉

(t ∈ {1, 2}).

Theorem 5.4. Assume that K contains the p-th roots of unity. Let

ϕt(x) = xp + π +
∑
r∈J

ρct,rπ
r+1 + ktδπ

v+1 ∈ OK [x] (t ∈ {1, 2})

be polynomials as in theorem 4.2. If L1 := K[x]/(ϕ1) and L2 := K[x]/(ϕ2),
then v = vL1/K = vL2/K = peK/(p− 1). Hence

N(L∗t ) =
〈
πKη

at,π
∗ ; ζK ; ηλ,iη

at,λ,i
∗

∣∣ λ ∈ FK , 1 6 i 6 fK ; ηp
∗
〉

(t ∈ {1, 2}).
(a) Let w ∈ J = {1 6 r 6 pe/(p − 1) | p - r}. We have c1,r = c2,r for
1 6 r < w, r ∈ J if and only if a1,v−r,i = a2,v−r,i for all 1 6 r < w, r ∈ J
and all 1 6 i 6 fK .
(b) If c1,r = c2,r for all r ∈ J , then k1 = k2 if and only if a1,π = a2,π.

Proof. (a) We show one implication directly. The other implication follows
by a counting argument.
(i) As p | (v−λ) if and only if p | λ we have v− r ∈ FK if and only if r ∈ J .
(ii) Let πt be a root of ϕt. We write ϕt = xp − γt. The minimal poly-
nomial of πλ

t over K is xp − γλ
t . The characteristic polynomial of ωπλ

t is
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xp+ωpγλ
t . The characteristic polynomial of 1+ωπλ

t is (x−1)p−αpωλ. Thus
NLt/K(1 + ωπλ

t ) = (−1)p − ωpγλ
t . If γ1 = γ2 + απw+1

K for some α ∈ OK
∗

then for r 6 w we obtain

γv−r
1 = (γ2 + πw+1

K α)v−r ≡ γv−r
2 + (v − r)γv−r−1

2 απw+1
K mod pv+1

K .

(iii) Assume that c1,r = c2,r for all 1 6 r < w. For all r 6 w − 1 we obtain

NL1/K(1 + ωπv−r
L1

) = (−1)p + ωpγv−r
1 ≡ NL2/K(1 + ωπv−r

L1
) mod pv+1

K

which implies a1,v−r,i = a2,v−r,i for all 1 6 r < w and 1 6 i 6 fK .
(iv) If c1,w 6= c2,w for r = w we have

NL2/K(1 + ωπv−w
L2

) = (−1)p + ωpγv−w
2

and

NL1/K(1+ωπv−w
L1

) ≡ (−1)p +ωp(γv−w
2 +(v−w)γv−w−1

2 πw+1
K α) mod pv+1

K .

By (i), p - (v − w) and as νK(γ2) = 1, it follows that a1,w,i 6= a2,w,i.
(v) There are pf choices for each ρct,r . On the corresponding level λ = v−r
there are f generating principal units ηλ,1, . . . , ηλ,1 with in total pf choices
for the exponents at,λ,1, . . . , at,λ,f . This shows the equivalence.
(b) We have

NLt/K(πLt) ≡ πK+
∑
r∈J

ρct,rπ
r+1
K +ktδπ

v+1
K ≡ πK

(∏
λ,i

η
at,λ,i

λ,i ·ηat,π
∗

)
mod pv+2

K .

Since c1,r = c2,r for all r ∈ J , we have a1,λ,i = a2,λ,i for all λ ∈ FLt ,
1 6 i 6 f . Thus k1 = k2 is equivalent to a1,π = a2,π. �

If K does not contain the p-th roots of unity then

K∗ = 〈πK〉 × 〈ζK〉 ×
∏

λ∈FK

∏
16i6fK

〈ηλ,i〉.

Let G be a subgroup of K∗ of index p and let A be the row Hermite
normal form of the representation matrix of G. There are values λ0 ∈ FK ,
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1 6 i0 6 fK , aπ ∈ {0, . . . , p − 1}, aλ,i ∈ {0, . . . , p − 1} for (λ, i) ∈ FK ×
{1, . . . , fK} \ {(λ0, i0)} with λ 6 λ0, i 6 i0 and aλ0,i0 = p, such that

A =



1 0 · · · · · · · · · 0 aπ 0 · · · 0

0 1 0 0 0 0
...

... 0 1 0 · · · 0 a1,1 0
...

...
. . . . . . . . .

...
...

...
...

...
. . . . . . 0

...
...

...
...

. . . 1
...

...
...

... 0 aλ0,i0 0
...

... 0 1
. . .

...
...

. . . . . . 0
0 · · · · · · · · · · · · · · · · · · · · · 0 1



.

Thus G can be generated as follows

G =
〈
πKη

aπ
λ0,i0

; ζK ; ηλ,iη
aλ,i

λ0,i0

∣∣ λ ∈ FK , λ < λ0, 1 6 i 6 fK ;

ηλ0,iη
aλ0,i

λ0,i0

∣∣ 1 6 i < i0; η
p
λ0,i0

; ηλ0,i

∣∣ i0 < i 6 fK ;

ηλ,i

∣∣ λ ∈ FK , λ0 < λ, 1 6 i 6 fK

〉
.

By lemma 5.3, we have λ0 = vL/K if G = NL/K(L∗).

Theorem 5.5. Let

ϕt(x) = xp + ζstπa+1xb + π +
∑
r∈J

ρct,rπ
i+1 + ktδπ

v+1 ∈ OK [x] (t ∈ {1, 2})

be polynomials as in theorem 4.5 such that L1 := K[x]/(ϕ1) and L2 :=
K[x]/(ϕ2) are Galois. Then v = vL1/K = vL2/K = (ap + b)/(p − 1). If K
does not contain the p-th roots of unity,

N(L∗t ) =
〈
πKη

at,π

v,it
; ζK ; ηλ,iη

at,λ,i

v,it

∣∣ λ ∈ FK , λ < v, 1 6 i 6 fK ;

ηv,iη
at,v,i

v,it

∣∣ 1 6 i < it; η
p
v,it

; ηv,i

∣∣ it < i 6 fK ;

ηλ,i

∣∣ λ ∈ FK , v < λ, 1 6 i 6 fK

〉
.

If K contains the p-th roots of unity then η∗ is an additional generator of
N(L∗t ).
(a) s1 6= s2 if and only if there exists 1 6 i < it with a1,v,i 6= a2,v,i.
(b) Let w ∈ J =

{
r ∈ Z | 1 6 r < (ap+ b)/(p− 1), p - (b + r)

}
. We

have c1,r = c2,r for 1 6 r < w, r ∈ J if and only if a1,v−r,i = a2,v−r,i for
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1 6 r < w, r ∈ J and all 1 6 i 6 fK .
(c) If c1,r = c2,r for all r ∈ J , then k1 = k2 if and only if a1,π = a2,π.

Proof. We have seen that there exists v in FK and 1 6 it 6 fK such that
at,v,it = p for t = 1, 2.
(a) (i) If εt ∈ O∗

Lt
is chosen such that πσ−1

Lt
≡ 1 + εtπ

v
L mod pv+1

Lt
then

πσ
Lt

= πLt + εtπ
v+1
Lt

mod pv+2
Lt

. By lemma 5.3,

NLt/K(1 + απLt) ≡ 1 + (αp − εp−1
t αp−1)πv

K mod pK .

It follows from the proof of lemma 4.6(c) that modulo pK the unit εt is
congruent to one of the roots of ϕ#

t,v ≡ −xp + (−1)apζst
K bx mod pK . Thus,

εp−1
t ≡ (−1)ap+1ζst

K b mod pK . As the kernel of ψ
t

: K+ → K+, α 7→
αp − εp−1

t α has order p, the intersection of the kernels of ψ
1

and ψ
2

is {0}.
Therefore there exists 1 6 i < fK such that a1,v,i 6= a2,v,i.
(ii) By corollary 4.7, there are pf−1

p−1 possible values for st. For any given
1 6 it < fK there are pfK−it combinations of 0 6 at,v,i < p where 1 6 i < it.
In total this gives

∑f
it=1 p

fK−it = pfK−1
p−1 combinations, the same number

of choices as for the exponent st.
(b) (i) As p divides

(
(ap+ b)/(p− 1) + b− λ

)
=
(
(ap+ bp)/(p− 1)− λ

)
if

and only if p | λ, we have v − r ∈ FK if and only if r ∈ J .
(ii) Assume that ϕt = xp + βxb + γt, with γ1 = γ2 + πw

Kα for some α ∈ O∗
K

with νL(R) = 0. We have

NLt/K(1 + ωπλ
Lt

) = 1 + ωR1(πλ
Lt

) + ω2R2(πλ
Lt

) + · · ·+ ωpRp(πλ
Lt

),

where Ri(πλ
Lt

) denotes the i-th symmetric polynomial in πλ
Lt
, πσλ

Lt
, . . . ,

πσp−1λ
Lt

. In particular, R1(πλ
Lt

) = TLt/K(πλ
Lt

) and Rp(πλ
Lt

) = γλ
t . We

have seen in the proof of theorem 5.4 (a)(ii) that γv−r
1 ≡ γv−r

2 mod pv
K

for r 6 w − 1. By Newton’s relations (proposition 5.2) we see that

Si(πLt) =


(p− b)βt for i = p− b,
(p− b)βk

t for i = k(p− b) < p,
pγt for i = p,
−βtSi−(p−b)(πLt)− γtSi−p(πLt) for i > p,
0 otherwise.

We have νK(Sp(πLt)) = νK(pγt) = e + 1 > v. By Newton’s relations,
Ri(πλ

Lt
) is a sum of the Si(πLt), hence νK(Ri(πλ

Lt
)) > min(a + 1, e + 1) =

a+ 1 > v for i < p. Thus for all r 6 w − 1

NL1/K(1 + ωπv−r
L1

) ≡ NL2/K(1 + ωπv−r
L2

) mod pv
K .

(iii) See the proof of theorem 5.4 (a) (iv).
(c) See the proof of theorem 5.4 (b). �
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Theorems 5.4 and 5.5 yield an algorithm for computing the class field L
over an extension K of Qp corresponding to a subgroup G of K∗ of index p.
The discriminant pp+ap+b−1 of the extension can be directly read off from
the Hermite normal form of the transformation matrix from the generators
of K∗ to the generators of G. After determining the exponent for ζ one has
a first approximation of a generating polynomial of L:

xp + ζsπa+1xb + π.

Now the constant term can be determined by computing the coefficients
of π, π2, . . . in its π-adic expansion step by step up to the coefficient of
πv+1 = π(ap+b)/(p−1)+1.

The existence theorem for ramified extensions of degree p follows from
the two theorems above by a counting argument. A change in a coefficient
of the polynomial results in a change of an entry of the matrix. There are
exactly p choices for the indeces cr of the coefficients of π, π2, . . . and for the
entries aλ,i of the matrix. Likewise there are p choices for the coefficient
k of the polynomials and the entry aπ of the matrix. We obtain a one-
to-one correspondence between generating polynomials of ramified normal
extensions of degree p and the matrices representing their norm groups.

The existence theorem for unramified extensions of degree p is a special
case of the existence theorem for tamely ramified extensions.

Corollary 5.6. Let G be a subgroup of K∗ of index p. Then there exists a
unique abelian extension L/K with NL/K(L∗) = G.

6. Cyclic Totally Ramified Extensions of Degree pm

We construct the class field corresponding to a subgroup G ⊂ K∗ with
K∗/G cyclic of order pm as a tower of extensions of degree p. In each step
we determine a class field L of degree p and then find the class field over L
corresponding to the preimage of G under the norm map.

Norm Equations. Let L/K be a finite extension and let α ∈ K. We are
looking for a solution β ∈ L∗ of the norm equation

NL/K(β) = α ∈ K
provided it exists. Let L∗ = 〈πL〉× 〈ζL〉× 〈ηL,1, . . . , ηL,r〉 be the unit group
of L. Obviously NL/K(β) = α has a solution if α is in the subgroup

U := 〈NL/K(πL),NL/K(ζL),NL/K(ηL,1), . . . ,NL/K(ηL,r)〉
of K∗. We determine a solution β NL/K(β) = α by representing α by
the generators of U given above. The set of all solutions is {β · γ | γ ∈
ker(NL/K)}.

We find the preimage of a subgroup A of NL/K(L∗) ⊂ K∗ in a similar
way. We need to determine a subgroup B of L∗ such that NL/K(B) = A.
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As A ⊂ NL/K(L∗) there exist aπ,l, aζL,l, ak,l ∈ N (1 6 k 6 r, 1 6 l 6 r + 2)
such that

A =
〈
NL/K(πL)aπ,lNL/K(ζL)aζL,l

∏r
k=1 NL/K(ηk)ak,l | 1 6 l 6 r + 2

〉
.

Thus a solution of our problem is given by

B =
〈
π

aπ,l

L ζ
aζL,l

L

∏r
k=1 η

ak,l

k | 1 6 l 6 r + 2
〉
.

Constructing Class Fields. Let G be a subgroup of K∗ with K∗/G ∼=
(1+pK)/

(
G∩(1+pK)

)
cyclic and [K∗ : G] = pm. We describe an algorithm

for constructing the class field over K corresponding to G.
Let η1 ∈ K∗ be such that 〈η1G〉 = K∗/G. If H1 = 〈ηp

1 , G〉, then H1 is the
unique subgroup ofK∗ of index p withH1 ⊃ G. We determine the class field
L1/K corresponding to H1 using the results of the previous section. Let
G1 = N−1

L1/K(G) ⊂ L∗1. Since H1 = NL1/K(L∗1), we have [L∗1 : G1] = pm−1.
Now we determine the subgroup H2 ⊃ G1 with [L∗1 : H2] = p and compute
the class field L2/L1 corresponding to H2.

Next we show that L2/K is normal. If L2/K was not normal then we
would have σ̂(L2) 6= L2 for an extension of an automorphism σ ∈ GalL1/K ,

and Nσ(L2)/K(σ(L∗2)) = NL2/K(L∗2) = 〈ηp2

1 , G〉. But by its construction,

L2/L1 is the unique abelian extension with NL2/K(L∗2) = 〈ηp2

1 , G〉. Thus
L2/K is normal.

The Galois group of L2/K is either isomorphic to Cp × Cp or to Cp2 .
Assume GalL2/K

∼= Cp×Cp. Then L2/K has at least two distinct subfields
L1 and L′1 of degree p with NL1/K(L∗1) ⊃ G and NL′

1/K(L′∗1 ) ⊃ G and
NL1/K(L∗1) 6= NL′

1/K(L′∗1 ) (otherwise L1 = L′1). But H1 is the unique
subgroup of G of index p, therefore GalL2/K

∼= Cp2 .

So L2/K is the class field corresponding to NL2/K(L∗2) =
〈
ηp2

1 , G
〉
. Next

we set G2 = N−1
L2/L1

(G1) = N−1
L2/K(G) ⊂ L∗1 and continue as above until we

obtain Lm/K, the class field corresponding to G.
As the Galois group of all subextensions of Lm/K of degree p2 is isomor-

phic to Cp2 , we obtain GalLm/K
∼= Cpm . This yields the existence theorem

for cyclic class fields of degree pm.

Algorithm 6.1 (Cyclic Class Fields of Degree pm).
Input: K/Qp, G a subgroup of K∗ such that

K∗/G ∼= (1 + pK)/(G ∩ (1 + pK)) cyclic with [K∗ : G] = pm.
Output: Lm/K cyclic of degree pm with NLm/K(Lm) = G.

• Set G1 := G and L0 := K.
• For i from 1 to m:
a. Let ηi ∈ L∗i−1. Set H1 = 〈ηp

i , Gi〉, then [K∗ : Hi] = p.
b. Determine Li/K class field corresponding to Hi.
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c. Set Gi+1 = N−1
Li/Li−1

(Gi) ⊂ L∗i , then [L∗i : Gi+1] = pm−i.

Corollary 6.2. For every subgroup G of K∗ with K∗/G ∼= (1 + pK)/(G ∩
(1+pK)) cyclic of degree pm there exists an abelian extension L/K of degree
pm with NL/K(L∗) = G.

The existence theorem of local class field theory for finite extensions
(theorem 3.3) follows.

Example 6.3. Let G1 = 〈3〉 × 〈−1〉 ×
〈
(1 + 3)9

〉
⊂ Q∗

3. We compute the
class field corresponding to G1 as follows (from bottom to top):

Q3

Q∗
3 = 〈3〉 × 〈−1〉 × 〈1 + 3〉

G1 = 〈3〉 × 〈−1〉 ×
〈
(1 + 3)9

〉a. H1 = 〈3〉 × 〈−1〉 ×
〈
(1 + 3)3

〉
, such that [Q∗

3 : H1] = 3

b. Q3(π1)with π3
1 + 6π2

1 + 3 = 0

Q3(π1)∗ = 〈π1〉 × 〈−1〉 ×
〈
1 + π1, 1 + π2

1, 1 + π4
1

〉
c. G2 = N−1

Q3(π1)/Q3
(G1)

=
〈
π1,−1, (1 + π1)(1 + π4

1)
2, (1 + π2

1)(1 + π4
1), (1 + π4

1)
3
〉a. H2 = G2, as [Q3(π1)∗ : G2] = 3

b. Q3(π2)with π3
2 + (−12π2

1 − 6)π2
2 − 372π2

1 + 31π1 − 183=0

7. Examples

The methods presented above have been implemented in the computer
algebra system Magma [BC95] and released with Magma 2.12. In the tables
below we give cyclic class fields over Qp and some of their extensions for
p ∈ 2, 3, 5, 7, 11, 13 of degree up to 343.

Let K be a finite extension of Qp with unit group

K∗ = 〈π〉 × 〈ζ〉 × 〈ηλ,i | λ ∈ FK , 1 6 i 6 f〉.

A cyclic class field L of degree d over a field K is denoted by

L
(aπ ;aζ ;a1,1...,av−1,f )

d,νK(d(L/K)) /K,

where aπ, aζ , a1,1 . . . , av−1,f are the entries in the relevant column of the
Hermite normal form of the transformation matrix mapping the basis of
K∗ to generators of the norm group NL/K(L∗) (compare the exposition
before theorem 5.5). It is obvious that 0 6 aπ < d, 0 6 aζ < d, and
0 6 aλ,i < d for λ ∈ FK and 1 6 i 6 fK/Qp

. If d is a multiple of p we leave
out aζ = 0.
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In some tables the class fields are parameterized by the ai,j . The ai,j in
the naming scheme are always to be considered modulo d. Throughout this
section we use {0, . . . , p − 1} as a set of representatives of Zp/(p). As we
compute class fields as towers of extensions and in order to facilitate repre-
sentation we give their generating polynomials over a suitable subfield that
can be found in one of the other tables. We use π to denote a uniformizer
of that ground field.

If K contains the p-th roots of unity we have the additional generator η∗
for K∗ and an additional entry a∗ in the transformation matrix.

Class Fields over Q2. There are six totally ramified class fields of degree
2 over Q2. The parameter k is equal to 0 or 1.

L/K NL/K(L∗) over generated by

K
(k)
2,2 /Q2 〈2 · 3k, 32, 5〉 Q2 x2 + 2x+ 2 + k · 4

K
(k,0)
2,3 /Q2 〈2 · 5k, 3, 52〉 Q2 x2 + 2 + k · 8

K
(k+1,1)
2,3 /Q2 〈2 · 5k+1, 3 · 5, 52〉 Q2 x2 + 2 + 4 + k · 8

The following table contains 2 of the class fields of degree 64 over Q2 and
its abelian subfields. The parameter k is equal to 0 or 1.

L/K NL/K(L∗) over generated by

K
(1,2)
4,11/Q2 〈2·5, 3·5, 54〉 K

(1,1)
2,3 x2 + π + π2 + π4

K
(2;5)
8,31/Q2 〈2·52, 3·55, 58〉 K

(1,2)
4,11 x2 + π + π4

K
(10;13)
16,79 /Q2 〈2·510, 3·513, 516〉 K

(2;5)
8,31 x2 + π + π8 + π16 + π17

K
(10;29)
32,191/Q2 〈2·510, 3·529, 532〉 K

(10;13)
16,79

x2+π+π16+π24+π26+π33

K
(10+32k;29)
64,447 /Q2 〈2·510+32k, 3·529, 564〉 K

(29;10)
32,191

x2+π+π32+π40+π42+π50+π52+π56+π58+π62+kπ65

Ramified Class Fields of Degree p over Qp for p odd. If p is an odd
prime then Q∗

p = 〈p, ζ, (1+p)〉 where ζ is a (p−1)-th root of unity. Theorem
4.5 yields generating polynomials of totally ramified normal extensions of
degree p over Qp:

ϕ = xp + (p− 1)pxp−1 + p+ kp2,

where 0 6 k < p. Let K be the extension defined by a root of ϕ. The
exponents of the generators of the norm groups follow immediately from
the coefficients of the polynomial. We obtain

NK/Qp
(K∗) = 〈p(1 + p)k, ζ, (1 + p)p〉.
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Class Fields over Q3. We start with the class fields of degree 2 and 3
over Q3. The parameter k runs from 0 to 2.

L/K NL/K(L∗) over generated by
K2,0/Q3 〈32,−1, 4〉 Q3 x2 + 1
K

(0)
2,1/Q3 〈3, 1, 4〉 Q3 x2 + 3

K
(1)
2,1/Q3 〈−3, 1, 4〉 Q3 x2 − 3

K3,0/Q3 〈33,−1, 4〉 Q3 x3 + 2x+ 1
K

(k)
3,4 /Q3 〈3·4k,−1, 43〉 Q3 x3 + 2·3x2 + 3 + k ·32

There are 12 ramified class fields of degree 3 over K(1)
2,1 . The fields L(6)

3,6,

L
(7)
3,6, and L

(8)
3,6 are normal over Q3. In addition to their norm groups in

K
(1)
2,1 , we give their norm groups in Q3. The parameter k takes on values

from 0 to 2.

L/K NL/K(L∗) over generated by

L
(k)
3,4/K

(1)
2,1 〈π(1 + π)k,−1, (1 + π)3, 4〉 K

(1)
2,1 x3+2πx2+π+kπ2

L
(k)
3,6/K

(1)
2,1 〈π ·4k,−1, (1 + π), 43〉 K

(1)
2,1 x3+2π2x+π + π2+kπ3

L
(3+k)
3,6 /K

(1)
2,1 〈π ·4k,−1, (1 + π)4, 43〉 K

(1)
2,1 x3+2π2x+π+2π2+kπ3

L
(6+k)
3,6 /K

(1)
2,1 〈π ·4k,−1, (1 + π)42, 43〉

/Q3 〈−3·4(3−k), 1, 43〉 K
(1)
2,1 x3+2π2x+π+kπ3

Over K(0)
3,4 there are 39 ramified cyclic extensions of degree 3 with 3 different

discriminant. Both parameters l and k run from 0 to 2.

L/K NL/K(L∗) over generated by

L
(k)
3,4/K

(0)
3,4 〈31ηk

1 , η
3
1, η2, η

1
3〉 K

(0)
3,4 x3+2πx2+π+kπ2

L
(k;l)
3,6 /K

(0)
3,4 〈31ηk

2 , η
2
2, η

3
2, η3〉 K

(0)
3,4 x3+lπ2x+π+kπ3

L
(k+l+2;l,0)
3,10 /K

(0)
3,4 〈3ηk+l+2

3 , η1η
l
3, η2, η

3
3〉 K

(0)
3,4

x3 + 2π3x2 + π + π3 + lπ4 + kπ5

L
(k+l+2;l,1)
3,10 /K

(0)
3,4 〈3ηk+l+2

3 , η1η
l
3, η2η3, η

3
3〉K

(0)
3,4

x3 + 2π3x2 + π + π3 + lπ4 + kπ5

L
(k+l;l,2)
3,10 /K

(0)
3,4 〈3ηk+l

3 , η1η
l
3, η2η

2
3, η

3
3〉 K

(0)
3,4

x3 + 2π3x2 + π + lπ4 + kπ5

The three fields L(k+1,2,0)
3,10 for k = 0, 1, and 2 are cyclic over Q3. They appear
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as K(3(2−k))
9,22 /Q3 in the following table of all cyclic extensions of Q3 of degree

9. Let ρ be denote a root of x3 + 2x+ 1 and recall that K3,0 = Q3(ρ).

L/K NL/K(L∗) over generated by
K9,0/Q3 〈39,−1, 4〉 K3,0

x3 + (2ρ+ 2)x2 + (2ρ2 + 2ρ+ 2)x+ 2ρ
K

(3(2−k))
9,22 /Q3 〈3·43(2−k),−1, 49〉 K

(0)
3,4

x3+2π3x2+π+π3+2π4+kπ5

K
(3(k−1)+1)
9,22 /Q3 〈3·43(k−1)+1,−1, 49〉 K

(1)
3,4

x3+2π3x2+π+π3+π4+ kπ5

K
(3(k−1)+2)
9,22 /Q3 〈3·43(k−1)+2,−1, 49〉 K

(2)
3,4 x3+2π3x2+π+π3 + kπ5

K
(1)
9,48/Q3 〈334,−1, 43〉 K3,0 x3 + 2·3x2 + 3 + 2ρ232

K
(2)
9,48/Q3 〈3342,−1, 43〉 K3,0 x3 + 2·3x2 + 3 + ρ232

The following table contains all cyclic extensions of Q3 of degree 27 contain-
ing K(0)

9,22, all cyclic extensions of Q3 of degree 81 containing K(0)
27,94/, and

all cyclic extensions of Q3 of degree 243 containing K(0)
81,364. The parameter

k runs from 0 to 2.
L/K NL/K(L∗) over generated by

K
(9(k+1))
27,94 /Q3 〈3·49(k+2),−1, 427〉 K

(0)
9,22

x3+2π9x2+π+π7+π9+π10+2π12+π13+kπ14

K
(27(k+2))
81,364 /Q3 〈3·427(k+2), ζ, 481〉 K

(0)
27,94

x3 + 2π27x2 + π + π19 + π27 + 2π28 + π30 + 2π31

+ 2π33 + 2π34 + 2π36 + 2π37 + kπ41

K
(81(k))
243,29728/Q3 〈3·481(k), ζ, 4243〉 K

(0)
81,364

x3+2π81x2+π+π55+π81+π82+2π84+2π85+2π87+π88

+π90+ π96 +2π97+2π99+π102+2π103+π105+2π108+π109

+2π112 +π114+2π115+2π120+π121+kπ122

Class Fields over Q5. There are 5 cyclic extensions of degree 25 over Q5

containing K(0)
5,8 and 5 cyclic extensions of degree 125 over Q5 containing

K
(0)
25,68. The parameter k takes values from 0 to 4.

L/K NL/K(L∗) over generated by

K
(k)
5,8 /Q5 〈5·6k, ζ, 65〉 Q5 x5 + 4·5x4 + 5 + k ·52

K
(5(1−k))
25,68 /Q5 〈5·65(1−k), ζ, 625〉 K

(0)
5,8 x5+4π5x4+π+π5+4π6+kπ7

K
(25(k+4))
125,468 /Q5 〈5·625(k+4), ζ, 6125〉 K

(0)
25,68

x5+4π25x4+π+π21+π25+π26

+4π28+3π29+4π30+π31+kπ32
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Class Fields over Q7. Over Q7 there are 7 cyclic extensions of degree 49
containing K(0)

7,12 and 7 cyclic extensions of degree 343 containing K(0)
49,138.

The parameter k runs from 0 to 6.
L/K NL/K(L∗) over generated by

K
(k)
7,12/Q7 〈7·8k, ζ, 87〉 Q7 x5 + 6·7x6 + 7 + k ·72

K
(7(1−k))
49,138 /Q7 〈7·87(1−k), ζ, 849〉 K

(0)
7,12 x7+6π7x6+π+π7+6π8+kπ9

K
(49k)
343,488/Q7 〈7·849k, ζ, 8343〉 K

(0)
49,138

x7+6π49x6+π+π43+π49+π50+6π52+6π53

+6π54+5π55+6π56+3π57+kπ58

Class Fields over Q11. There are 11 cyclic extensions of degree 121 over
Q11 containing K(4)

11,20. The parameter k runs from 0 to 11.

L/K NL/K(L∗) over generated by

K
(k)
11,20/Q11 〈11·12k, ζ, 1211〉 Q11

x11 + 10·11x10 + 11 + k ·112

K
(11(1−k))
121,350 /Q11 〈11·1211(1−k), ζ, 12121〉 K(4)

11,20

x11 + 10π11x10 + π + π11 + 10π12 + k · π13

Class Fields over Q13. There are 13 cyclic extensions of degree 169 over
Q13 containing K(9)

13,24. The parameter k runs from 0 to 12.

L/K NL/K(L∗) over generated by

K
(k)
13,24/Q13 〈13·14k, ζ, 1413〉 Q13

x13 + 12·13x12 + 13 + k ·132

K
(−13k+9)
169,492 /Q13 〈13·14−13k+9, ζ, 14169〉 K

(9)
13,24

x13 + 12π13x12 + π + π13 + 3π14 + kπ15
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